EXERCISE 3 IN ALGEBRAIC NUMBER THEORY

(1) Show that

$$
54=2 \cdot 3^{3}=\frac{13+\sqrt{-47}}{2} \cdot \frac{13-\sqrt{-47}}{2}
$$

are two essentially different decompositions into irreducible integral elements of $\mathbb{Q}(\sqrt{-47})$.
(2) (P) Let d be squarefree and p a prime number not dividing $2 d$. Let \mathcal{O} be the ring of integers of $\mathbb{Q}(\sqrt{d})$. Show that $(p)=p \mathcal{O}$ is a prime ideal if and only if the congruence $x^{2} \equiv d \bmod p$ has no solution.
(3) (P) The quotient ring $\mathcal{O} / \mathfrak{a}$ of a Dedekind domain by an ideal $\mathfrak{a} \neq 0$ is principal. (See book for a hint).
(4) (P) Every ideal of a Dedekind domain can be generated by two elements. (Use Ex. 3).
(5) $(\mathrm{P})^{*}$ Let \mathfrak{m} be a nonzero integral ideal of the Dedekind domain \mathcal{O}. Let K denote the fraction field of \mathcal{O}. Show that in every ideal class of the class group $C l_{K}$, there exists an integral ideal prime to \mathfrak{m}.
(6) (P) The fractional ideals \mathfrak{a} of a Dedekind domain \mathcal{O} are projective \mathcal{O}-modules, i.e., given any surjective homomorphism $M \xrightarrow{f} N$ of \mathcal{O}-modules, each homomorphism $\mathfrak{a} \xrightarrow{g} N$ can be lifted to a homomorphism $h: \mathfrak{a} \rightarrow M$ such that $f \circ h=g$.

