EXERCISE 3 IN ALGEBRAIC NUMBER THEORY

(1) Show that

$$54 = 2 \cdot 3^3 = \frac{13 + \sqrt{-47}}{2} \cdot \frac{13 - \sqrt{-47}}{2}$$

are two essentially different decompositions into irreducible integral elements of $\mathbb{Q}(\sqrt{-47})$.

- (2) (P) Let d be squarefree and p a prime number not dividing 2d. Let \mathcal{O} be the ring of integers of $\mathbb{Q}(\sqrt{d})$. Show that $(p) = p \mathcal{O}$ is a prime ideal if and only if the congruence $x^2 \equiv d \mod p$ has no solution.
- (3) (P) The quotient ring \mathcal{O}/\mathfrak{a} of a Dedekind domain by an ideal $\mathfrak{a} \neq 0$ is principal. (See book for a hint).
- (4) (P) Every ideal of a Dedekind domain can be generated by two elements. (Use Ex. 3).
- (5) (P)* Let \mathfrak{m} be a nonzero integral ideal of the Dedekind domain \mathcal{O} . Let K denote the fraction field of \mathcal{O} . Show that in every ideal class of the class group Cl_K , there exists an integral ideal prime to \mathfrak{m} .
- (6) (P) The fractional ideals \mathfrak{a} of a Dedekind domain \mathcal{O} are projective \mathcal{O} -modules, i.e., given any surjective homomorphism $M \xrightarrow{f} N$ of \mathcal{O} -modules, each homomorphism $\mathfrak{a} \xrightarrow{g} N$ can be lifted to a homomorphism $h : \mathfrak{a} \to M$ such that $f \circ h = g$.