EXERCISE 4 IN ALGEBRAIC NUMBER THEORY

- (1) (P) Show that a lattice Γ in \mathbb{R}^n is complete if and only if the quotient \mathbb{R}^n/Γ is compact.
- (2) (P) Show that Minkowski's lattice point theorem (LPT) cannot be improved, by giving an example of a centrally symmetric convex set $X \subset V$ such that $\operatorname{vol}(X) = 2^n \operatorname{vol}(\Gamma)$ which does not contain any nonzero point of the lattice Γ . Further, if X is compact, the statement of LPT remains true in the case of equality as well.
- (3) (P*) Let K be a number field and let O_K denote its ring of integers. Show that in every ideal $\mathfrak{a} \neq 0$ of O_K there exist an element $a \neq 0 \in \mathfrak{a}$ such that

$$|N_{K/\mathbb{Q}}(a)| \le M(O_K : \mathfrak{a}),$$

where $M = \frac{n!}{n^n} \cdot (\frac{4}{\pi})^s \sqrt{|d_K|}$ (the so-called Minkowski bound). See the book for a hint.

(4) Find a constant A which depends only on K such that any integral ideal $\mathfrak{a} \neq 0$ of K contains an element $a \neq 0$ satisfying

 $|\tau a| < A(O_K : \mathfrak{a})^{1/n}$ for all $\tau \in \operatorname{Hom}(K, \mathbb{C})$, where n = [K : Q].