EXERCISE 5 IN ALGEBRAIC NUMBER THEORY

(1) (P) Show that the quadratic fields with discriminant $5,8,11,-3,-4,-7$, $-8,-11$ have class number 1 . Is the class number of $\mathbb{Q}(\sqrt{-23})=1$?
(2) (P) Let d_{K} denote the discriminant of the number field K. Show that the absolute value $\left|d_{K}\right|>1$.
Hint: Use Minskowski's bound from assignment 4.
(3) (P^{*}) Let \mathfrak{a} be an integral ideal of K such that \mathfrak{a}^{n} is a principal ideal generated by $a \in \mathcal{O}_{K}$, say. Show that $\mathfrak{a} \mathcal{O}_{L}$ is a principal ideal in the extension field $L=K(\sqrt[n]{a})$. Furthermore, show that for every number field K, there exists a finite extension L such that every ideal of K becomes a principal ideal in L.
(4) (P) Describe the group of units in $\mathbb{Q}(\sqrt{D})$, where $D \in\{1,-1,2,3,-3,5,6,10\}$.
(5) (P) Let ζ be the 5 -th root of unity. Show that $\mathbb{Z}[\zeta]^{*}=\left\{ \pm \zeta^{k}(1+\zeta)^{n} \mid 0 \leq k<\right.$ $5, n \in \mathbb{Z}\}$.

