EXERCISE 6 IN ALGEBRAIC NUMBER THEORY

- (1) Le (a, p) = 1. Show that the number of solutions of the congruence $ax^2 + bx + c = 0 \mod p$ equals $1 + \left(\frac{b^2 4ac}{p}\right)$.
- (2) (P) Let $K = \mathbb{Q}(i)$. Give an example each of ideals that are unramified, ramified and inert.
- (3) If \mathfrak{a} and \mathfrak{b} are ideals of \mathfrak{o} , then $\mathfrak{a} = \mathfrak{a} \mathcal{O} \cap \mathfrak{o}$ and $\mathfrak{a} \mid \mathfrak{b} \iff \mathfrak{a} \mathcal{O} \mid \mathfrak{b} \mathcal{O}$.
- (4) (P) For a number field K, the statement of Prop. (8.3) concerning the prime decomposition in the extension $K(\theta)$ holds for all prime ideals $\mathfrak{p} \nmid (\mathcal{O} : \mathfrak{o}[\theta])$.
- (5) (P) Show that the class group of $\mathbb{Q}(\sqrt{-30})$ is isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/2$.