EXERCISE 6 IN ALGEBRAIC NUMBER THEORY

(1) $\mathrm{Le}(a, p)=1$. Show that the number of solutions of the congruence $a x^{2}+$ $b x+c=0 \bmod p$ equals $1+\left(\frac{b^{2}-4 a c}{p}\right)$.
(2) (P) Let $K=\mathbb{Q}(i)$. Give an example each of ideals that are unramified, ramified and inert.
(3) If \mathfrak{a} and \mathfrak{b} are ideals of \mathfrak{o}, then $\mathfrak{a}=\mathfrak{a O} \cap \mathfrak{o}$ and $\mathfrak{a}|\mathfrak{b} \Longleftrightarrow \mathfrak{a O}| \mathfrak{b O}$.
(4) (P) For a number field K, the statement of Prop. (8.3) concerning the prime decomposition in the extension $K(\theta)$ holds for all prime ideals $\mathfrak{p} \nmid(\mathcal{O}: \mathfrak{o}[\theta])$.
(5) (P) Show that the class group of $\mathbb{Q}(\sqrt{-30})$ is isomorphic to $\mathbb{Z} / 2 \times \mathbb{Z} / 2$.

