EXERCISE 9 IN ALGEBRAIC NUMBER THEORY

(1) (P) Let K be a number field such that $[K: \mathbb{Q}]=n$. Define a subgroup M of K as

$$
M=\mathbb{Z} \alpha_{1}+\cdots+\mathbb{Z} \alpha_{n}
$$

where $\alpha_{1}, \cdots, \alpha_{n}$ form a basis of K / \mathbb{Q}. Show that the ring of multipliers

$$
\mathfrak{o}=\{\alpha \in K \mid \alpha M \subseteq M\}
$$

is an order in K, but in general not the maximal order.
(2) (P) In an order \mathfrak{o} of K, the following are equivalent;
(i) \mathfrak{p} is a non-zero regular prime ideal
(ii) \mathfrak{p} is invertible
(iii) the set $\{x \in K \mid x \mathfrak{p} \subseteq \mathfrak{p}\}=\mathfrak{o}$
(3) (P) Let \mathfrak{a} be an \mathcal{O}_{K}-ideal of K. Show that $\mathfrak{o}=\mathbb{Z}+\mathfrak{a} \mathcal{O}_{K}$ is an order. Compute the conductor of \mathfrak{o}.
(4) $\left(P^{*}\right)$ Recall that in a dedekind domain, every invertible ideal is generated by atmost two elements. Is it true for invertible ideals in an order as well?

