EXERCISE 9 IN ALGEBRAIC NUMBER THEORY

(1) (P) Let K be a number field such that $[K : \mathbb{Q}] = n$. Define a subgroup M of K as

 $M = \mathbb{Z}\alpha_1 + \dots + \mathbb{Z}\alpha_n,$ where $\alpha_1, \dots, \alpha_n$ form a basis of K/\mathbb{Q} . Show that the ring of multipliers $\mathfrak{o} = \{\alpha \in K | \alpha M \subseteq M\}$

is an order in K, but in general not the maximal order.

- (2) (P) In an order \boldsymbol{o} of K, the following are equivalent;
 - (i) **p** is a non-zero regular prime ideal
 - (ii) **p** is invertible
 - (iii) the set $\{x \in K | x \mathfrak{p} \subseteq \mathfrak{p}\} = \mathfrak{o}$
- (3) (P) Let \mathfrak{a} be an \mathcal{O}_K -ideal of K. Show that $\mathfrak{o} = \mathbb{Z} + \mathfrak{a} \mathcal{O}_K$ is an order. Compute the conductor of \mathfrak{o} .
- (4) (P^*) Recall that in a dedekind domain, every invertible ideal is generated by atmost **two** elements. Is it true for invertible ideals in an order as well?