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Orthogonal families of hypergeometric polynomials

Let {Pn}∞
n=0 be a family of polynomials in C[x ] with degPn = n.

{Pn} is a quasi-orthogonal family if there exists a linear functional
M : C[x ] → C s.t. M(PiPj ) = 0 ⇐⇒ i ̸= j .

Write Pn = ∑n
k=0 c(n, k)x

k . Say Pn is of Jacobi type if it is
quasi-orthogonal and ∃ polynomials p(u, s), w(s) s.t.

c(n, k + 1)

c(n, k)
=

p(n, k)

w(k)

Equivalence: Pn(x) ∼ Pn(λx), Pn(x) ∼ enPn(x), en ∈ C×.

Theorem (Bernstein-G.-Sahi ’24)

There exist only five families of Jacobi type (up to ∼):
Jacobi, Laguerre, Bessel, and two families En, Fn obtained from Lommel
polynomials.
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Definitions of the families

iFj (a; b; x) =
∞

∑
k=0

(a1)k · · · (ai )k
(b1)k · · · (bj )kk !

xk , (c)k := c(c + 1) · · · (c + k − 1),

If a1 = −n the infinite series truncates to a polynomial of degree ≤ n.

1 Jacobi:2F1(−n, n+ a; b; x) measure:(1− x)b−1(1+ x)a−bdx on [0, 1]
p(u, s) = (s − u)(s + u + a), w(s) = (s + 1)(s + b).

2 Bessel:2F0(−n, n+ a; ; x) measure: xa−1 exp(1/x)dx on (−∞, 0)
3 Laguerre: 1F1(−n; b; x) measure: xb−1 exp(−x)dx on (0,∞)

4 E
(c)
n : 4F1(−n,−n− c + 1, n+ c , n+ 1; 1/2; x)

5 F
(c)
n : 4F1(−n,−n− c + 2, n+ c , n+ 2; 3/2; x)

Measures of En,Fn are discrete measures defined using zeros of (modified)
Bessel functions.

(D(D − 1/2)− x(D − n)(D − n− c + 1)(D + n+ c)(D + n+ 1))E
(c)
n = 0

(D(D + 1/2)− x(D − n)(D − n− c + 2)(D + n+ c)(D + n+ 2))F
(c)
n = 0

where D := x d
dx
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h
(c)
2n = (−1)nE

(c)
n (−x2), h

(c)
2n+1 = (−1)nxF

(c−1)
n (−x2),

h
(c)
n+1 = 2(c + n)xh

(c)
n − h

(c)
n−1, h0 = 1, h−1 = 0.



Theorem (Bernstein-G.-Sahi ’24)

If {Pn}∞
n=0 is a quasi-orthogonal family with

c(n, k + 1)

c(n, k)
= f (n, k) for some rational function f ∈ C(u, s)

then there exists g ∈ C[u, s ] and a family {Qn}∞
n=0 such that

Pn = g(n, x∂x )Qn ∀n,

and {Qn} is either Jacobi, or Laguerre, or Bessel, or
Qn(x) = 4F1(−n,−n+ d , n+ a, n+ c; b; x)
for some scalars a, b, c , d ∈ C.

Example

1 Pn =3 F2(−n, n+ 1, cn+ c+3
2 ; 3/2, cn+ c+1

2 ; x),
Qn = Jacobi(1, 3/2).

2 Families not of the form iFj .
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Theorem (Bernstein-G.-Sahi ’24)

If {Pn}∞
n=0 is a quasi-orthogonal family with

c(n, k + 1)

c(n, k)
= f (n, k) for some rational function f ∈ C(u, s)

then there exists g ∈ C[u, s ] and a family {Qn}∞
n=0 such that

Pn = g(n, x∂x )Qn ∀n,

and {Qn} is either Jacobi, or Laguerre, or Bessel, or
Qn(x) = 4F1(−n,−n+ d , n+ a, n+ c; b; x)
for some scalars a, b, c , d ∈ C.

Question
1 Can it be that Qn is always of Jacobi type?

2 Given a Qn of Jacobi type, what Pn are possible?
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Families of HG type

Generalization: let R(s) ∈ C[s ], and define a family Φk of monic
polynomials by

Φ−1 = 0, Φ0 = 1, Φk+1 = (z + R(k))Φk

Definition

Let {Pn} be a quasi-orthogonal family of polynomials. We say that it is of
rational HG type if there exists a rational function f (u, s), and a
polynomial R(s), such that for any n ∈ Z≥0 we have
Pn = ∑n

k=0 c(n, k)Φk where c(n, k) satisfy

c(n, k + 1) = f (n, k)c(n, k) for all n, k ∈ Z. (1)

We say that {Pn} is of HG type if it is of rational HG type, and the
denominator of f (u, s) does not depend on u.
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Theorem (Bernstein-G.-Sahi ’25)

Any family {Pn} of HG type arises by a rescaling Pn(z) 7→ Pn(ez) and/or
a renormalization Pn(z) 7→ enPn(z) and/or shift Pn(z) 7→ Pn(z + e) from
a family given by a pair (f ,R) such that f (u, s) = s−u

s+1 f1(u, s),
R(s) = sr(s − 1), and (f1(u, s), r(s)) belongs to the following list.

(a) r(s) ∈ {0, 1, s + a} and f1(u, s) = (sr(s) + bs + d)−1, for a, b, d ∈ C

(b)

f1(u, s) =
u + s + c

w(s)
,

and r(s) is the quotient obtained by Euclidean division of w(s) by
s(s + c). Here, w(s) is a monic polynomial of degree ≤ 3 and c ∈ C.

(c) r(s) ≡ 0 and for some c ∈ C we have either

f1(u, s) =
(s − u − c + 1)(u + s + 1)(u + s + c)

s + 1/2
or

f1(u, s) =
(s − u − c + 2)(u + s + 2)(u + s + c)

s + 3/2
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(c) r(s) ≡ 0 and for some c ∈ C we have either

f1(u, s) =
(s − u − c + 1)(u + s + 1)(u + s + c)

s + 1/2
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f1(u, s) =
(s − u − c + 2)(u + s + 2)(u + s + c)

s + 3/2
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Classically, families in type (a) are called Laguerre, Charlier, Meixner, and
continuous dual Hahn, and in type (b) Bessel, Jacobi, continuous Hahn,
and Wilson.

Theorem (Bernstein-G.-Sahi ’25)

For any family {Pn} of rational HG type there exists g(u, s) ∈ C(s)[u]
and a family Qn = c ′(n, k)Φk such that Pn(z) = ∑ g(n, k)c ′(n, k)Φk ,
and one of the following holds

(a) {Qn} is of HG type

(b) {Qn} is given by (f1(u, s), 0) where

f1(u, s) =
(s − u − b)q(u + s)

s + d
,

for some monic quadratic polynomial q ∈ C[s ] and scalars b, d ∈ C.

Question: would you call Pn = 3F2(−n, n+ 1, cn+ c+3
2 ; 3/2, cn+ c+1

2 ; x)
a hypergeometric orthogonal family?
Finite families are obtained from HG type families by substituting special
parameters.



Classically, families in type (a) are called Laguerre, Charlier, Meixner, and
continuous dual Hahn, and in type (b) Bessel, Jacobi, continuous Hahn,
and Wilson.

Theorem (Bernstein-G.-Sahi ’25)

For any family {Pn} of rational HG type there exists g(u, s) ∈ C(s)[u]
and a family Qn = c ′(n, k)Φk such that Pn(z) = ∑ g(n, k)c ′(n, k)Φk ,
and one of the following holds

(a) {Qn} is of HG type

(b) {Qn} is given by (f1(u, s), 0) where

f1(u, s) =
(s − u − b)q(u + s)

s + d
,

for some monic quadratic polynomial q ∈ C[s ] and scalars b, d ∈ C.

Question: would you call Pn = 3F2(−n, n+ 1, cn+ c+3
2 ; 3/2, cn+ c+1

2 ; x)
a hypergeometric orthogonal family?
Finite families are obtained from HG type families by substituting special
parameters.



Classically, families in type (a) are called Laguerre, Charlier, Meixner, and
continuous dual Hahn, and in type (b) Bessel, Jacobi, continuous Hahn,
and Wilson.

Theorem (Bernstein-G.-Sahi ’25)

For any family {Pn} of rational HG type there exists g(u, s) ∈ C(s)[u]
and a family Qn = c ′(n, k)Φk such that Pn(z) = ∑ g(n, k)c ′(n, k)Φk ,
and one of the following holds

(a) {Qn} is of HG type

(b) {Qn} is given by (f1(u, s), 0) where

f1(u, s) =
(s − u − b)q(u + s)

s + d
,

for some monic quadratic polynomial q ∈ C[s ] and scalars b, d ∈ C.

Question: would you call Pn = 3F2(−n, n+ 1, cn+ c+3
2 ; 3/2, cn+ c+1

2 ; x)
a hypergeometric orthogonal family?

Finite families are obtained from HG type families by substituting special
parameters.



Classically, families in type (a) are called Laguerre, Charlier, Meixner, and
continuous dual Hahn, and in type (b) Bessel, Jacobi, continuous Hahn,
and Wilson.

Theorem (Bernstein-G.-Sahi ’25)

For any family {Pn} of rational HG type there exists g(u, s) ∈ C(s)[u]
and a family Qn = c ′(n, k)Φk such that Pn(z) = ∑ g(n, k)c ′(n, k)Φk ,
and one of the following holds

(a) {Qn} is of HG type

(b) {Qn} is given by (f1(u, s), 0) where

f1(u, s) =
(s − u − b)q(u + s)

s + d
,

for some monic quadratic polynomial q ∈ C[s ] and scalars b, d ∈ C.

Question: would you call Pn = 3F2(−n, n+ 1, cn+ c+3
2 ; 3/2, cn+ c+1

2 ; x)
a hypergeometric orthogonal family?
Finite families are obtained from HG type families by substituting special
parameters.



Proof Ingredients

Gauss-Favard:{Pn} monic quasi-orthogonal ⇐⇒ ∃{αn}, {βn} ∈ CN

s.t. xPn = Pn+1 + αnPn + βnPn−1, βn ̸= 0 for all n ≥ 1; (2)

Algebra A = C(u, s)⟨U±1,S±1⟩ with Uu = u + 1,Ss = s + 1.
Key lemma: If {Pn} of HG type then αn, βn ∈ C(n) (almost), and
c(n, k) generate an A-module that is 1-dimensional over C(u, s).
Ore (1930s): models for all 1-dimensional A-modules using products
of functions of the form Γ(ku + ls), k , l ∈ Z and exp(au + bs).
Elementary analysis of poles using these models and (2):

Ψ(u, s− 1) = Ψ(u+ 1, s)+ (α(u)+R(s))Ψ(u, s)+ β(u)Ψ(u− 1, s),

where Ψ = g exp(au + bs)∏ Γ(kiu + li s + ci ), g ∈ C(u, s) ⇒

(ki , li ) ∈ {(±1, 1), (0,−1), (±1, 0)} ∀i ⇒

Ψ(u, s + 1) =
p(s − u)q(s + u)Sg

w(s)g
Ψ(u, s)
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Finish, using clever but elementary considerations.



Future plans

basic HG families (q-hypergeometric) - in progress.

rational HG families.

Askey-Wilson, 1979: A characterization theorem that leads to new
orthogonal polynomials is usually interesting, one that says the classical
polynomials are the only polynomials with a given property is usually much
less interesting and if it keeps people from looking for new polynomials it
is harmful.

Fortunately, ours found new polynomials, and leaves open questions.

Thank you for your attention!
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