On classification of hypergeometric orthogonal polynomials

Dmitry Gourevitch (Weizmann Institute, Israel)

Cable Car Algebra Seminar, Haifa j.w. J. Bernstein & S. Sahi

http://www.wisdom.weizmann.ac.il/~dimagur/

March 20, 2025

• Let $\{P_n\}_{n=0}^{\infty}$ be a family of polynomials in $\mathbb{C}[x]$ with deg $P_n = n$.

• 3 •

- Let $\{P_n\}_{n=0}^{\infty}$ be a family of polynomials in $\mathbb{C}[x]$ with deg $P_n = n$.
- $\{P_n\}$ is a *quasi-orthogonal* family if there exists a linear functional $M : \mathbb{C}[x] \to \mathbb{C}$ s.t. $M(P_iP_j) = 0 \iff i \neq j$.

- Let $\{P_n\}_{n=0}^{\infty}$ be a family of polynomials in $\mathbb{C}[x]$ with deg $P_n = n$.
- $\{P_n\}$ is a *quasi-orthogonal* family if there exists a linear functional $M : \mathbb{C}[x] \to \mathbb{C}$ s.t. $M(P_iP_j) = 0 \iff i \neq j$.
- Write $P_n = \sum_{k=0}^n c(n, k) x^k$. Say P_n is of Jacobi type if it is quasi-orthogonal and \exists polynomials p(u, s), w(s) s.t.

$$\frac{c(n, k+1)}{c(n, k)} = \frac{p(n, k)}{w(k)}$$

- Let $\{P_n\}_{n=0}^{\infty}$ be a family of polynomials in $\mathbb{C}[x]$ with deg $P_n = n$.
- $\{P_n\}$ is a *quasi-orthogonal* family if there exists a linear functional $M : \mathbb{C}[x] \to \mathbb{C}$ s.t. $M(P_iP_j) = 0 \iff i \neq j$.
- Write $P_n = \sum_{k=0}^n c(n, k) x^k$. Say P_n is of Jacobi type if it is quasi-orthogonal and \exists polynomials p(u, s), w(s) s.t.

$$\frac{c(n, k+1)}{c(n, k)} = \frac{p(n, k)}{w(k)}$$

- Let $\{P_n\}_{n=0}^{\infty}$ be a family of polynomials in $\mathbb{C}[x]$ with deg $P_n = n$.
- $\{P_n\}$ is a *quasi-orthogonal* family if there exists a linear functional $M : \mathbb{C}[x] \to \mathbb{C}$ s.t. $M(P_iP_j) = 0 \iff i \neq j$.
- Write $P_n = \sum_{k=0}^n c(n, k) x^k$. Say P_n is of Jacobi type if it is quasi-orthogonal and \exists polynomials p(u, s), w(s) s.t.

$$\frac{c(n,k+1)}{c(n,k)} = \frac{p(n,k)}{w(k)}$$

Equivalence: $P_n(x) \sim P_n(\lambda x)$, $P_n(x) \sim e_n P_n(x)$, $e_n \in \mathbb{C}^{\times}$.

Theorem (Bernstein-G.-Sahi '24)

There exist only five families of Jacobi type (up to \sim): Jacobi, Laguerre, Bessel, and two families E_n , F_n obtained from Lommel polynomials.

$$_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k} \cdots (a_{i})_{k}}{(b_{1})_{k} \cdots (b_{j})_{k}k!} x^{k}, \quad (c)_{k} := c(c+1) \cdots (c+k-1),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

If $a_1 = -n$ the infinite series truncates to a polynomial of degree $\leq n$.

$${}_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k} \cdots (a_{i})_{k}}{(b_{1})_{k} \cdots (b_{j})_{k}k!} x^{k}, \quad (c)_{k} := c(c+1) \cdots (c+k-1),$$

If $a_1 = -n$ the infinite series truncates to a polynomial of degree $\leq n$. Jacobi:₂ $F_1(-n, n + a; b; x)$ measure: $(1 - x)^{b-1}(1 + x)^{a-b}dx$ on [0, 1] $p(u, s) = (s - u)(s + u + a), \quad w(s) = (s + 1)(s + b).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

$$_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!} x^{k}, \quad (c)_{k} := c(c+1)\cdots(c+k-1),$$

If $a_1 = -n$ the infinite series truncates to a polynomial of degree $\leq n$.

• Jacobi: ${}_{2}F_{1}(-n, n+a; b; x)$ measure: $(1-x)^{b-1}(1+x)^{a-b}dx$ on [0, 1] $p(u, s) = (s-u)(s+u+a), \quad w(s) = (s+1)(s+b).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆

3 Bessel:₂ $F_0(-n, n+a; ; x)$ measure: $x^{a-1} \exp(1/x) dx$ on $(-\infty, 0)$

$${}_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k} \cdots (a_{i})_{k}}{(b_{1})_{k} \cdots (b_{j})_{k}k!} x^{k}, \quad (c)_{k} := c(c+1) \cdots (c+k-1),$$

If $a_{1} = -n$ the infinite series truncates to a polynomial of degree $\leq n$.
Jacobi:_{2}F_{1}(-n, n+a; b; x) measure: $(1-x)^{b-1}(1+x)^{a-b}dx$ on $[0,1]$
 $p(u,s) = (s-u)(s+u+a), \quad w(s) = (s+1)(s+b).$
Bessel:_{2}F_{0}(-n, n+a; ; x) measure: $x^{a-1} \exp(1/x)dx$ on $(-\infty, 0)$
Laguerre: ${}_{1}F_{1}(-n; b; x)$ measure: $x^{b-1} \exp(-x)dx$ on $(0, \infty)$

$${}_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!} x^{k}, \quad (c)_{k} := c(c+1)\cdots(c+k-1),$$

If $a_{1} = -n$ the infinite series truncates to a polynomial of degree $\leq n$.
Jacobi:{}_{2}F_{1}(-n, n+a; b; x) measure: $(1-x)^{b-1}(1+x)^{a-b}dx$ on $[0, 1]$
 $p(u, s) = (s-u)(s+u+a), \quad w(s) = (s+1)(s+b).$
Bessel:{}_{2}F_{0}(-n, n+a; ; x) measure: $x^{a-1}\exp(1/x)dx$ on $(-\infty, 0)$
Laguerre: ${}_{1}F_{1}(-n; b; x)$ measure: $x^{b-1}\exp(-x)dx$ on $(0, \infty)$
 $E_{n}^{(c)}: {}_{4}F_{1}(-n, -n-c+1, n+c, n+1; 1/2; x)$

$${}_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!} x^{k}, \quad (c)_{k} := c(c+1)\cdots(c+k-1),$$
If $a_{1} = -n$ the infinite series truncates to a polynomial of degree $\leq n$.

4 Jacobi:_{2}F_{1}(-n, n+a; b; x) measure: $(1-x)^{b-1}(1+x)^{a-b}dx$ on $[0,1]$
 $p(u,s) = (s-u)(s+u+a), \quad w(s) = (s+1)(s+b).$

4 Bessel:_{2}F_{0}(-n, n+a; ; x) measure: $x^{a-1} \exp(1/x)dx$ on $(-\infty, 0)$

5 Laguerre: ${}_{1}F_{1}(-n; b; x)$ measure: $x^{b-1} \exp(-x)dx$ on $(0, \infty)$

6 $E_{n}^{(c)}$: ${}_{4}F_{1}(-n, -n-c+1, n+c, n+1; 1/2; x)$

7 $F_{n}^{(c)}$: ${}_{4}F_{1}(-n, -n-c+2, n+c, n+2; 3/2; x)$

$${}_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!} x^{k}, \quad (c)_{k} := c(c+1)\cdots(c+k-1),$$
If $a_{1} = -n$ the infinite series truncates to a polynomial of degree $\leq n$.

4 Jacobi:_{2}F_{1}(-n, n+a; b; x) measure: $(1-x)^{b-1}(1+x)^{a-b}dx$ on $[0,1]$
 $p(u,s) = (s-u)(s+u+a), \quad w(s) = (s+1)(s+b).$

4 Bessel:_{2}F_{0}(-n, n+a; ; x) measure: $x^{a-1} \exp(1/x)dx$ on $(-\infty, 0)$

5 Laguerre: ${}_{1}F_{1}(-n; b; x)$ measure: $x^{b-1} \exp(-x)dx$ on $(0, \infty)$

6 $E_{n}^{(c)}$: ${}_{4}F_{1}(-n, -n-c+1, n+c, n+1; 1/2; x)$

7 $F_{n}^{(c)}$: ${}_{4}F_{1}(-n, -n-c+2, n+c, n+2; 3/2; x)$

$$_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\cdots(a_{j})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!} x^{k}, \quad (c)_{k} := c(c+1)\cdots(c+k-1),$$

If $a_{1} = -n$ the infinite series truncates to a polynomial of degree $\leq n$.
• Jacobi:_{2}F_{1}(-n, n+a; b; x) measure: $(1-x)^{b-1}(1+x)^{a-b}dx$ on $[0, 1]$
 $p(u,s) = (s-u)(s+u+a), \quad w(s) = (s+1)(s+b).$
• Bessel:_{2}F_{0}(-n, n+a; ; x) measure: $x^{a-1}\exp(1/x)dx$ on $(-\infty, 0)$
• Laguerre: $_{1}F_{1}(-n; b; x)$ measure: $x^{b-1}\exp(-x)dx$ on $(0, \infty)$
• $E_{n}^{(c)}$: $_{4}F_{1}(-n, -n-c+1, n+c, n+1; 1/2; x)$
• $F_{n}^{(c)}$: $_{4}F_{1}(-n, -n-c+2, n+c, n+2; 3/2; x)$
Measures of E_{n}, F_{n} are discrete measures defined using zeros of (modified)
Bessel functions.

 ∞ 1

$${}_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!} x^{k}, \quad (c)_{k} := c(c+1)\cdots(c+k-1),$$
If $a_{1} = -n$ the infinite series truncates to a polynomial of degree $\leq n$.

• Jacobi:_{2}F_{1}(-n, n+a; b; x) measure: $(1-x)^{b-1}(1+x)^{a-b}dx$ on $[0,1]$
 $p(u,s) = (s-u)(s+u+a), \quad w(s) = (s+1)(s+b).$

• Bessel:_{2}F_{0}(-n, n+a; ; x) measure: $x^{a-1}\exp(1/x)dx$ on $(-\infty, 0)$

• Laguerre: ${}_{1}F_{1}(-n, -n-c+1, n+c, n+1; 1/2; x)$

• $F_{n}^{(c)}$: ${}_{4}F_{1}(-n, -n-c+2, n+c, n+2; 3/2; x)$

Measures of E_{n}, F_{n} are discrete measures defined using zeros of (modified)
Bessel functions.

 $(D(D-1/2) - x(D-n)(D-n-c+1)(D+n+c)(D+n+1))E_{n}^{(c)} = 0$
 $(D(D+1/2) - x(D-n)(D-n-c+2)(D+n+c)(D+n+2))F_{n}^{(c)} = 0$

where $D := x \frac{d}{d_{x}}$

$$_{i}F_{j}(\underline{a};\underline{b};x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\cdots(a_{i})_{k}}{(b_{1})_{k}\cdots(b_{j})_{k}k!} x^{k}, \quad (c)_{k} := c(c+1)\cdots(c+k-1),$$

If $a_1 = -n$ the infinite series truncates to a polynomial of degree $\leq n$.

a Jacobi:₂F₁(-n, n + a; b; x) measure:
$$(1 - x)^{b-1}(1 + x)^{a-b}dx$$
 on [0, 1]
 $p(u, s) = (s - u)(s + u + a), \quad w(s) = (s + 1)(s + b).$
a Bessel:₂F₀(-n, n + a; ; x) measure: $x^{a-1}\exp(1/x)dx$ on $(-\infty, 0)$
b Laguerre: ₁F₁(-n; b; x) measure: $x^{b-1}\exp(-x)dx$ on $(0, \infty)$
a E_n^(c): ₄F₁(-n, -n - c + 1, n + c, n + 1; 1/2; x)
b F_n^(c): ₄F₁(-n, -n - c, n + c, n + 2; 3/2; x)
c h_{2n}^(c) = (-1)ⁿE_n^(c)(-x²), $h_{2n+1}^{(c)} = (-1)^{n}xF_{n}^{(c-1)}(-x^{2}),$
e h_{n+1}^(c) = 2(c + n)xh_n^(c) - h_{n-1}^(c), h₀ = 1, h₋₁ = 0.

Theorem (Bernstein-G.-Sahi '24)

If $\{P_n\}_{n=0}^{\infty}$ is a quasi-orthogonal family with

$$rac{c(n, k+1)}{c(n, k)} = f(n, k)$$
 for some rational function $f \in \mathbb{C}(u, s)$

then there exists $g \in \mathbb{C}[u, s]$ and a family $\{Q_n\}_{n=0}^{\infty}$ such that

 $P_n = g(n, x\partial_x)Q_n \quad \forall n,$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

and $\{Q_n\}$ is either Jacobi, or Laguerre, or Bessel, or $Q_n(x) = {}_4F_1(-n, -n+d, n+a, n+c; b; x)$ for some scalars a, b, c, $d \in \mathbb{C}$.

Theorem (Bernstein-G.-Sahi '24)

If $\{P_n\}_{n=0}^{\infty}$ is a quasi-orthogonal family with

$$rac{c(n, k+1)}{c(n, k)} = f(n, k)$$
 for some rational function $f \in \mathbb{C}(u, s)$

then there exists $g \in \mathbb{C}[u, s]$ and a family $\{Q_n\}_{n=0}^{\infty}$ such that

 $P_n = g(n, x\partial_x)Q_n \quad \forall n,$

and $\{Q_n\}$ is either Jacobi, or Laguerre, or Bessel, or $Q_n(x) = {}_4F_1(-n, -n+d, n+a, n+c; b; x)$ for some scalars a, b, c, $d \in \mathbb{C}$.

Example

•
$$P_n = {}_{3}F_2(-n, n+1, cn + \frac{c+3}{2}; 3/2, cn + \frac{c+1}{2}; x),$$

 $Q_n = Jacobi(1, 3/2).$

2 Families not of the form $_iF_i$.

Theorem (Bernstein-G.-Sahi '24)

If $\{P_n\}_{n=0}^{\infty}$ is a quasi-orthogonal family with

 $\frac{c(n, k+1)}{c(n, k)} = f(n, k) \text{ for some rational function } f \in \mathbb{C}(u, s)$

then there exists $g \in \mathbb{C}[u, s]$ and a family $\{Q_n\}_{n=0}^\infty$ such that

 $P_n = g(n, x\partial_x)Q_n \quad \forall n,$

and $\{Q_n\}$ is either Jacobi, or Laguerre, or Bessel, or $Q_n(x) = {}_4F_1(-n, -n+d, n+a, n+c; b; x)$ for some scalars a, b, c, $d \in \mathbb{C}$.

Question

- Can it be that Q_n is always of Jacobi type?
- **2** Given a Q_n of Jacobi type, what P_n are possible?

Dima Gourevitch

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Families of HG type

Generalization: let $R(s) \in \mathbb{C}[s]$, and define a family Φ_k of monic polynomials by

$$\Phi_{-1} = 0$$
, $\Phi_0 = 1$, $\Phi_{k+1} = (z + R(k))\Phi_k$

∃ ⇒

æ

Families of HG type

Generalization: let $R(s) \in \mathbb{C}[s]$, and define a family Φ_k of monic polynomials by

$$\Phi_{-1} = 0$$
, $\Phi_0 = 1$, $\Phi_{k+1} = (z + R(k))\Phi_k$

Definition

Let $\{P_n\}$ be a quasi-orthogonal family of polynomials. We say that it is of rational HG type if there exists a rational function f(u, s), and a polynomial R(s), such that for any $n \in \mathbb{Z}_{\geq 0}$ we have $P_n = \sum_{k=0}^n c(n, k) \Phi_k$ where c(n, k) satisfy

 $c(n, k+1) = f(n, k)c(n, k) \quad \text{for all } n, k \in \mathbb{Z}.$ (1)

We say that $\{P_n\}$ is of **HG type** if it is of rational HG type, and the denominator of f(u, s) does not depend on u.

Dima Gourevitch

Theorem (Bernstein-G.-Sahi '25)

Any family $\{P_n\}$ of HG type arises by a rescaling $P_n(z) \mapsto P_n(ez)$ and/or a renormalization $P_n(z) \mapsto e_n P_n(z)$ and/or shift $P_n(z) \mapsto P_n(z+e)$ from a family given by a pair (f, R) such that $f(u, s) = \frac{s-u}{s+1}f_1(u, s)$, R(s) = sr(s-1), and $(f_1(u, s), r(s))$ belongs to the following list. $r(s) \in \{0, 1, s+a\}$ and $f_1(u, s) = (sr(s) + bs + d)^{-1}$, for a, b, $d \in \mathbb{C}$

<ロ> <=>> <=>> <=>> <=> <=> の<

Theorem (Bernstein-G.-Sahi '25)

Any family $\{P_n\}$ of HG type arises by a rescaling $P_n(z) \mapsto P_n(ez)$ and/or a renormalization $P_n(z) \mapsto e_n P_n(z)$ and/or shift $P_n(z) \mapsto P_n(z+e)$ from a family given by a pair (f, R) such that $f(u, s) = \frac{s-u}{s+1}f_1(u, s)$, R(s) = sr(s-1), and $(f_1(u, s), r(s))$ belongs to the following list. and $r(s) \in \{0, 1, s+a\}$ and $f_1(u, s) = (sr(s) + bs + d)^{-1}$, for a, b, $d \in \mathbb{C}$ u+s+c

$$f_1(u,s)=\frac{u+s+c}{w(s)},$$

and r(s) is the quotient obtained by Euclidean division of w(s) by s(s+c). Here, w(s) is a monic polynomial of degree ≤ 3 and $c \in \mathbb{C}$.

(日) (母) (目) (日) (日) (の)

Theorem (Bernstein-G.-Sahi '25)

Any family $\{P_n\}$ of HG type arises by a rescaling $P_n(z) \mapsto P_n(ez)$ and/or a renormalization $P_n(z) \mapsto e_n P_n(z)$ and/or shift $P_n(z) \mapsto P_n(z+e)$ from a family given by a pair (f, R) such that $f(u, s) = \frac{s-u}{s+1}f_1(u, s)$, R(s) = sr(s-1), and $(f_1(u, s), r(s))$ belongs to the following list. $r(s) \in \{0, 1, s+a\}$ and $f_1(u, s) = (sr(s) + bs + d)^{-1}$, for a, b, $d \in \mathbb{C}$

$$f_1(u,s)=\frac{u+s+c}{w(s)},$$

and r(s) is the quotient obtained by Euclidean division of w(s) by s(s+c). Here, w(s) is a monic polynomial of degree ≤ 3 and $c \in \mathbb{C}$. $r(s) \equiv 0$ and for some $c \in \mathbb{C}$ we have either

$$f_1(u,s) = \frac{(s-u-c+1)(u+s+1)(u+s+c)}{s+1/2} \text{ or}$$

$$f_1(u,s) = \frac{(s-u-c+2)(u+s+2)(u+s+c)}{s+3/2}$$

Theorem (Bernstein-G.-Sahi '25)

For any family $\{P_n\}$ of rational HG type there exists $g(u, s) \in \mathbb{C}(s)[u]$ and a family $Q_n = c'(n, k)\Phi_k$ such that $P_n(z) = \sum g(n, k)c'(n, k)\Phi_k$, and one of the following holds

(a)
$$\{Q_n\}$$
 is of HG type

(a)
$$\{Q_n\}$$
 is given by $(f_1(u, s), 0)$ where

$$f_1(u,s) = \frac{(s-u-b)q(u+s)}{s+d},$$

for some monic quadratic polynomial $q \in \mathbb{C}[s]$ and scalars b, $d \in \mathbb{C}$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem (Bernstein-G.-Sahi '25)

For any family $\{P_n\}$ of rational HG type there exists $g(u, s) \in \mathbb{C}(s)[u]$ and a family $Q_n = c'(n, k)\Phi_k$ such that $P_n(z) = \sum g(n, k)c'(n, k)\Phi_k$, and one of the following holds

(a)
$$\{Q_n\}$$
 is of HG type

(a)
$$\{Q_n\}$$
 is given by $(f_1(u, s), 0)$ where

$$f_1(u,s) = \frac{(s-u-b)q(u+s)}{s+d},$$

for some monic quadratic polynomial $q \in \mathbb{C}[s]$ and scalars b, $d \in \mathbb{C}$.

Question: would you call $P_n = {}_{3}F_2(-n, n+1, cn + \frac{c+3}{2}; 3/2, cn + \frac{c+1}{2}; x)$ a hypergeometric orthogonal family?

Theorem (Bernstein-G.-Sahi '25)

For any family $\{P_n\}$ of rational HG type there exists $g(u, s) \in \mathbb{C}(s)[u]$ and a family $Q_n = c'(n, k)\Phi_k$ such that $P_n(z) = \sum g(n, k)c'(n, k)\Phi_k$, and one of the following holds

(a)
$$\{Q_n\}$$
 is of HG type

(a)
$$\{Q_n\}$$
 is given by $(f_1(u, s), 0)$ where

$$f_1(u,s) = \frac{(s-u-b)q(u+s)}{s+d},$$

for some monic quadratic polynomial $q \in \mathbb{C}[s]$ and scalars $b, d \in \mathbb{C}$.

Question: would you call $P_n = {}_{3}F_2(-n, n+1, cn + \frac{c+3}{2}; 3/2, cn + \frac{c+1}{2}; x)$ a hypergeometric orthogonal family? Finite families are obtained from HG type families by substituting special parameters.

• Gauss-Favard: $\{P_n\}$ monic quasi-orthogonal $\iff \exists \{\alpha_n\}, \{\beta_n\} \in \mathbb{C}^{\mathbb{N}}$ s.t. $xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}, \quad \beta_n \neq 0$ for all $n \ge 1$; (2)

★ 3 ★ 3

Gauss-Favard: {P_n} monic quasi-orthogonal ⇔ ∃{α_n}, {β_n} ∈ C^N s.t. xP_n = P_{n+1} + α_nP_n + β_nP_{n-1}, β_n ≠ 0 for all n ≥ 1; (2)
Algebra A = C(u, s) ⟨U^{±1}, S^{±1}⟩ with Uu = u + 1, Ss = s + 1.

- Gauss-Favard: $\{P_n\}$ monic quasi-orthogonal $\iff \exists \{\alpha_n\}, \{\beta_n\} \in \mathbb{C}^{\mathbb{N}}$ s.t. $xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}, \quad \beta_n \neq 0$ for all $n \ge 1$; (2)
- Algebra $A = \mathbb{C}(u, s) \langle U^{\pm 1}, S^{\pm 1} \rangle$ with Uu = u + 1, Ss = s + 1.
- Key lemma: If $\{P_n\}$ of HG type then $\alpha_n, \beta_n \in \mathbb{C}(n)$ (almost), and c(n, k) generate an A-module that is 1-dimensional over $\mathbb{C}(u, s)$.

s.t.
$$xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}$$
, $\beta_n \neq 0$ for all $n \ge 1$; (2)

- Algebra $A = \mathbb{C}(u, s) \langle U^{\pm 1}, S^{\pm 1} \rangle$ with Uu = u + 1, Ss = s + 1.
- Key lemma: If $\{P_n\}$ of HG type then $\alpha_n, \beta_n \in \mathbb{C}(n)$ (almost), and c(n, k) generate an A-module that is 1-dimensional over $\mathbb{C}(u, s)$.
- Ore (1930s): models for all 1-dimensional A-modules using products of functions of the form Γ(ku + ls), k, l ∈ Z and exp(au + bs).

s.t.
$$xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}$$
, $\beta_n \neq 0$ for all $n \ge 1$; (2)

- Algebra $A = \mathbb{C}(u, s) \langle U^{\pm 1}, S^{\pm 1} \rangle$ with Uu = u + 1, Ss = s + 1.
- Key lemma: If $\{P_n\}$ of HG type then $\alpha_n, \beta_n \in \mathbb{C}(n)$ (almost), and c(n, k) generate an A-module that is 1-dimensional over $\mathbb{C}(u, s)$.
- Ore (1930s): models for all 1-dimensional A-modules using products of functions of the form Γ(ku + ls), k, l ∈ Z and exp(au + bs).
- Elementary analysis of poles using these models and (2):

$$\begin{split} \Psi(u, s-1) &= \Psi(u+1, s) + (\alpha(u) + R(s))\Psi(u, s) + \beta(u)\Psi(u-1, s),\\ \text{where } \Psi &= g\exp(au + bs)\prod \Gamma(k_iu + l_is + c_i), \ g \in \mathbb{C}(u, s) \Rightarrow \end{split}$$

s.t.
$$xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}$$
, $\beta_n \neq 0$ for all $n \ge 1$; (2)

- Algebra $A = \mathbb{C}(u, s) \langle U^{\pm 1}, S^{\pm 1} \rangle$ with Uu = u + 1, Ss = s + 1.
- Key lemma: If $\{P_n\}$ of HG type then $\alpha_n, \beta_n \in \mathbb{C}(n)$ (almost), and c(n, k) generate an A-module that is 1-dimensional over $\mathbb{C}(u, s)$.
- Ore (1930s): models for all 1-dimensional A-modules using products of functions of the form Γ(ku + ls), k, l ∈ Z and exp(au + bs).
- Elementary analysis of poles using these models and (2):

$$\begin{split} \Psi(u, s-1) &= \Psi(u+1, s) + (\alpha(u) + R(s))\Psi(u, s) + \beta(u)\Psi(u-1, s),\\ \text{where } \Psi &= g\exp(au + bs)\prod \Gamma(k_iu + l_is + c_i), \ g \in \mathbb{C}(u, s) \Rightarrow \end{split}$$

s.t.
$$xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}$$
, $\beta_n \neq 0$ for all $n \ge 1$; (2)

- Algebra $A = \mathbb{C}(u, s) \langle U^{\pm 1}, S^{\pm 1} \rangle$ with Uu = u + 1, Ss = s + 1.
- Key lemma: If $\{P_n\}$ of HG type then $\alpha_n, \beta_n \in \mathbb{C}(n)$ (almost), and c(n, k) generate an A-module that is 1-dimensional over $\mathbb{C}(u, s)$.
- Ore (1930s): models for all 1-dimensional A-modules using products of functions of the form Γ(ku + ls), k, l ∈ Z and exp(au + bs).
- Elementary analysis of poles using these models and (2):

$$\Psi(u, s-1) = \Psi(u+1, s) + (\alpha(u) + R(s))\Psi(u, s) + \beta(u)\Psi(u-1, s),$$

where $\Psi = g \exp(au + bs) \prod \Gamma(k_i u + l_i s + c_i), \ g \in \mathbb{C}(u, s) \Rightarrow$

$$(k_i, l_i) \in \{(\pm 1, 1), (0, -1), (\pm 1, 0)\} \ \forall i \Rightarrow$$

• Gauss-Favard: $\{P_n\}$ monic quasi-orthogonal $\iff \exists \{\alpha_n\}, \{\beta_n\} \in \mathbb{C}^{\mathbb{N}}$

s.t.
$$xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}$$
, $\beta_n \neq 0$ for all $n \ge 1$; (2)

- Algebra $A = \mathbb{C}(u, s) \langle U^{\pm 1}, S^{\pm 1} \rangle$ with Uu = u + 1, Ss = s + 1.
- Key lemma: If $\{P_n\}$ of HG type then $\alpha_n, \beta_n \in \mathbb{C}(n)$ (almost), and c(n, k) generate an A-module that is 1-dimensional over $\mathbb{C}(u, s)$.
- Ore (1930s): models for all 1-dimensional A-modules using products of functions of the form Γ(ku + ls), k, l ∈ Z and exp(au + bs).
- Elementary analysis of poles using these models and (2):

$$\begin{aligned} \Psi(u, s-1) &= \Psi(u+1, s) + (\alpha(u) + R(s))\Psi(u, s) + \beta(u)\Psi(u-1, s), \\ \text{where } \Psi &= g \exp(au + bs) \prod \Gamma(k_i u + l_i s + c_i), \ g \in \mathbb{C}(u, s) \Rightarrow \end{aligned}$$

$$(k_i, I_i) \in \{(\pm 1, 1), (0, -1), (\pm 1, 0)\} \ \forall i \Rightarrow$$

$$\Psi(u, s+1) = \frac{p(s-u)q(s+u)Sg}{w(s)g} \Psi(u, s)$$

10 / 12

• Gauss-Favard: $\{P_n\}$ monic quasi-orthogonal $\iff \exists \{\alpha_n\}, \{\beta_n\} \in \mathbb{C}^{\mathbb{N}}$

s.t.
$$xP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}$$
, $\beta_n \neq 0$ for all $n \ge 1$; (2)

• Algebra $A = \mathbb{C}(u, s) \langle U^{\pm 1}, S^{\pm 1} \rangle$ with Uu = u + 1, Ss = s + 1.

- Key lemma: If $\{P_n\}$ of HG type then $\alpha_n, \beta_n \in \mathbb{C}(n)$ (almost), and c(n, k) generate an A-module that is 1-dimensional over $\mathbb{C}(u, s)$.
- Ore (1930s): models for all 1-dimensional A-modules using products of functions of the form Γ(ku + ls), k, l ∈ Z and exp(au + bs).
- Elementary analysis of poles using these models and (2):

$$\begin{split} \Psi(u, s-1) &= \Psi(u+1, s) + (\alpha(u) + R(s))\Psi(u, s) + \beta(u)\Psi(u-1, s),\\ \text{where } \Psi &= g \exp(au + bs) \prod \Gamma(k_i u + l_i s + c_i), \ g \in \mathbb{C}(u, s) \Rightarrow\\ & (k_i, l_i) \in \{(\pm 1, 1), (0, -1), (\pm 1, 0)\} \ \forall i \Rightarrow\\ & \Psi(u, s+1) = \frac{p(s-u)q(s+u)Sg}{w(s)g}\Psi(u, s) \end{split}$$

• Finish, using clever but elementary considerations.

- basic HG families (q-hypergeometric) in progress.
- rational HG families.

- (日)

3. 3

- basic HG families (q-hypergeometric) in progress.
- rational HG families.

Askey-Wilson, 1979: A characterization theorem that leads to new orthogonal polynomials is usually interesting, one that says the classical polynomials are the only polynomials with a given property is usually much less interesting and if it keeps people from looking for new polynomials it is harmful.

Fortunately, ours found new polynomials, and leaves open questions.

- basic HG families (q-hypergeometric) in progress.
- rational HG families.

Askey-Wilson, 1979: A characterization theorem that leads to new orthogonal polynomials is usually interesting, one that says the classical polynomials are the only polynomials with a given property is usually much less interesting and if it keeps people from looking for new polynomials it is harmful.

Fortunately, ours found new polynomials, and leaves open questions.

Thank you for your attention!