EXERCISE 3 IN PERVERSE SHEAVES

SHACHAR CARMELI

For an abelian category \mathcal{C} , let $K(\mathcal{C})$ denote the homotopy category of \mathcal{C} and $D(\mathcal{C})$ the derived category. If $f : A \to B$ we denote by $\operatorname{Cone}(f)$ the mapping cone, and by $\pi_f : B \to \operatorname{Cone}(f)$ the inclusion to the second factor.

- (1) Prove that $\operatorname{Cone}(\pi_f) \cong A[1]$.
- (2) Prove that $H^i(A) \xrightarrow{f_*} H^i(B) \xrightarrow{(\pi_f)_*} H^i(\operatorname{Cone}(f))$ is exact. Deduce that a distinguished triangle induces a long exact sequence on cohomologies.
- (3) (P) Prove that $f : A \to B$ is a homotopy equivalence if and only if Cone(f) is contractible (i.e. isomorphic to 0 in $K(\mathcal{C})$).
- (4) Prove that $f: A \to B$ is a quasiisomorphism if and only if $\operatorname{Cone}(f)$ is acyclic.
- (5) (*) Prove that every distinguished triangle in $K(\mathcal{C})$ is isomorphic to a short exact sequence. Deduce once again that a distinguished triangle induces a long exact sequence on cohomologies. Is every short exact sequence a distinguished triangle in $K(\mathcal{C})$? Prove that in $D(\mathcal{C})$, every short exact sequence is a distinguished triangle.
- (6) (P) Prove that for $g: C \to B$ and $f: A \to B$, $g = f \circ g'$ if and only if $\pi_f \circ g = 0$. State and prove a dual statement.
- (7) (P) Define the complex Hom(A, B), and prove that $H^0(Hom(A, B)) = Hom_{K(\mathcal{C})}(A, B)$. Prove that Hom(X, C(f)) = C(Hom(X, f)). Use this to solve the last exercise much faster!
- (8) (*) Prove that in $D^+(Ab)$ every object is isomorphic to a complex with zero differentials.
- (9) (P) Prove that if $I \in K^+(\mathcal{C})$ is a complex of injective objects, and $M \in K^+(\mathcal{C})$ is acyclic, then $Hom_{K(\mathcal{C})}(M, I) = 0$. Deduce that for every complex A, $Hom_{D^+(\mathcal{C})}(A, I) \cong Hom_{K^+(\mathcal{C})}(A, I)$.
- (10) Recall that RHom(A, B) := Hom(A, I) where $B \cong I$ in $D^+(\mathcal{C})$ and I is a complex of injectives. Alternatively, if we work in $D^-(\mathcal{C})$ it is Hom(P, A) where $A \cong P$ and P is a complex of projectives. Prove that $Hom_{D^+(\mathcal{C})}(A, B) = H^0(RHom(A, B))$, and similarly for $D^-(\mathcal{C})$.
- (11) (*) Find an example of a complex which is not quasi-isomorphic to a complex with zerodifferentials.
- (12) (P) Let k be a field. Let $\mathcal{C} = Mod(k[x, y])$. Let A be the complex

$$k[x,y] \xrightarrow{\cdot x^2} k[x,y] \to k[x,y]/x$$

Date: May 17, 2022.

SHACHAR CARMELI

and B be the complex

$$k[x,y]/(y^2-x) \xrightarrow{\cdot y^2} k[x,y]/(y^2-x) \to k[x,y]/(x,y).$$

Compute the cohomologies of RHom(A, B) and $A \overset{L}{\otimes} B$. Here, RHom is the derived functor

of the *Hom* functor, and $\overset{L}{\otimes}$ is the derived functor of the tensor product functor.

URL: http://www.wisdom.weizmann.ac.il/~dimagur/PSheaves2.html