EXERCISE 10 IN INTRODUCTION TO REPRESENTATION THEORY

DMITRY GOUREVITCH

- (1) (P) Demonstrate the Brower Induction Theorem for S_3 . Namely, show how the character of each of the irreducible representations from the classification in section 3 can be expressed as an integer linear combination of inductions of characters of cyclic subgroups (in this case all elementary subgroups are cyclic).
- (2) (P) Let G be a finite group and p be a prime number. Show that for any $g \in G$ there exist unique $g_r, g_s \in G$ such that $g = g_r g_s = g_s g_r$, the order of g_r is prime to p and the order of g_s is a power of p.
- (3) (P) Let $G := SO(2) = S^1$ be the group of rotations of the real plane. It can also be viewed as a circle inside the (complex) plane. Consider the regular representation of G in the Banach space C(G) of continuous functions on G with maximum norm. Let $\operatorname{End}(C(G))$ denote the Banach space of continuous operators from C(G) to itself with the operator norm. Show that the map $G \to \operatorname{End}(C(G))$ given by the representation is not continuous.
- (4) (\Box) Show that the representation of \mathbb{R} in the space of all bounded continuous functions on \mathbb{R} is not a continuous representation.
- URL: http://www.wisdom.weizmann.ac.il/~dimagur/RepTheo4.html

Date: July 17, 2020.