EXERCISE 2 IN INTRODUCTION TO REPRESENTATION THEORY

DMITRY GOUREVITCH

(1) Let $\pi, \tau \in \operatorname{Rep}(G)$ and let $\phi: \pi \rightarrow \tau$ be a morphism of representations which is an isomorphism of linear spaces. Show that ϕ is an isomorphism of representations. In other words, show that the linear inverse ϕ^{-1} is also a morphism of representations.
(2) (P) Show that a finite-dimensional representation π of a group G is a direct sum of irreducible representations if and only if for any subrepresentation $\tau \subset \pi$ there exists another subrepresentation $\tau^{\prime} \subset \pi$ such that $\pi=\tau \oplus \tau^{\prime}$.
(3) (P) Let G be an infinite group and $H<G$ a subgroup of finite index. Let (π, G, V) be a complex representation of G and $L \subset V$ a G-invariant subspace. Suppose we know that the subspace L has an H-invariant complement. Show that then it has a G-invariant complement.

Definition 1. If X is a finite G-set we denote by π_{X} the natural representation of the group G on the space $F(X)$ of functions on X.
(4) (P) Show that if X, Y are finite G-sets then the intertwining number $\left\langle\pi_{X}, \pi_{Y}\right\rangle$ equals to the number of G-orbits in the set $X \times Y$ (with respect to the diagonal action $g(x, y)=(g x, g y))$.
(5) Let $\pi \in \operatorname{Rep}(G)$ and $\tau \in \operatorname{Rep}(H)$. Let π^{G} denote the space of G-invariant vectors, $\pi^{G}=\{v \in \pi: \pi(g) v=v \forall g \in G\}$. Show that $(\pi \otimes \tau)^{G \times H}=\pi^{G} \otimes \tau^{H}$.
(6) Show that every complex matrix A with $A^{n}=I d$ is diagonalizable.
(7) (P) Let $\chi: G \rightarrow \mathbb{F}^{\times}=\mathrm{GL}_{1}(F)$ be a non-trivial one-dimensional representation of G. Show that $\sum_{g \in G} \chi(g)=0$.
(8) (P) Let $Q=\{ \pm 1, \pm i, \pm j, \pm k\}$ be the group of basic quaternions. The product is given by $i^{2}=j^{2}=k^{2}=i j k=-1$.
(a) Show that $\pi: Q \rightarrow G L_{2}(\mathbb{C})$ defined by

$$
\pi(\pm 1)= \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \pi(\pm i)= \pm\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \pi(\pm j)= \pm\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \pi(\pm k)= \pm\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

is an irreducible representation of Q .
(b) Find four inequivalent one-dimensional representations of Q.
$(9)\left(^{*}\right)$ Let G, H be finite groups. Show that any irrep of $G \times H$ is of the form $\sigma \otimes \rho$, where $\sigma \in \operatorname{Irr}(G), \rho \in \operatorname{Irr}(H)$.
(10) $\left(^{*}\right)$ We showed that $\langle\pi, \tau\rangle=\langle\tau, \pi\rangle$. Is that still true over
(a) $F=\mathbb{R}$?
(b) $F=\mathbb{F}_{p}$?

URL: http://www.wisdom. weizmann.ac.il//-dimagur/TntR.epTheo5.htm]

