EXERCISE 10 IN INTRODUCTION TO REPRESENTATION THEORY

DMITRY GOUREVITCH

(1) (P) Let (π, B) be a continuous representation of a compact group K in a Banach space B, and let $\rho \in \operatorname{Irr}_{f}(K)$. In the lecture we defined the isotypic component $\pi_{\rho}:=\rho \otimes \operatorname{Hom}_{K}(\rho, \pi)$. Note that π_{ρ} is a continuous representation of K and has a natural embedding into π.

Show that the image of this embedding coincides with the image of $\operatorname{End}_{\mathbb{C}}(\rho)$ in π under the composition of the matrix coefficient embedding End $_{\mathbb{C}}(\rho) \hookrightarrow C(K)$ and the action map $C(K) \otimes \pi \rightarrow \pi$ given by $f \otimes v \rightarrow \pi(f) v$.
(2) Denote by P_{n} the space of all functions on the sphere S^{2} that are restrictions of polynomials of degree n in \mathbb{R}^{3}. Show that $P_{n} \subset P_{n+2}$ and $\operatorname{dim} P_{n}=(n+1)(n+2) / 2$.
(3) (P) Let $S O(2) \subset S O(3)$ denote the subgroup of rotations with respect to the z axis and identify $S^{2}=S O(3) / S O(2)$. Show that $\operatorname{dim}\left(P_{n}\right)^{S O(2)}=[n / 2]+1$.
Hint: Show that $\left(P_{n}\right)^{S O(2)}$ is spanned by $z^{n}, z^{n-2}\left(x^{2}+y^{2}\right), \ldots, z^{n-2[n / 2]}\left(x^{2}+y^{2}\right)^{[n / 2]}$.
(4) (P) Let L_{n} denote the restriction to S^{2} of the n-th Legandre polynomial:

$$
L_{n}(z)=\frac{d^{n}}{d z^{n}}\left(\left(z^{2}-1\right)^{n}\right)
$$

Show that L_{n} is orthogonal to P_{n-2}.
Hint: Show that for any $S O(2)$-invariant function f on S we have

$$
\int_{S} f(x) d x=\int_{-1}^{1} 2 \pi z f(z) d z
$$

deduce that

$$
\left\langle f_{1}, f_{2}\right\rangle=\int_{-1}^{1} 2 \pi z f_{1}(z) \overline{f_{2}(z)} d z
$$

and use integration by parts to show that $L_{n}(z)$ is orthogonal to all polynomials in z of degree smaller than n.
URL: http://www.wisdom.weizmann.ac.il//~dimagur/RepTheo4.html

