EXERCISE 4 IN INTRODUCTION TO REPRESENTATION THEORY

DMITRY GOUREVITCH

(1) For any representation π of a group G, the following are equivalent:
(a) π is isotypic
(b) All irreducible subrepresentations of π are isomorphic
(c) If $\pi \simeq \omega \oplus \tau$ with $\langle\omega, \tau\rangle=0$ then either $\omega=0$ or $\tau=0$.
(2) Let a (finite) group G act on a (finite) set X. Let π_{X} be the corresponding representation of G on $F(X)$, and let χ_{X} be the corresponding character. Show that for any $g \in G, \chi_{X}(g)$ equals the number of elements of X fixed by g.
(3) Show that the character of the regular representation equals $|G|$ at the identity of the group, and equals zero in all other points.
(4) (P) Compute the characters of all irreducible representations of S_{4}. Use the description we gave on lecture 3. Hint: $\chi_{\pi \oplus \tau}=\chi_{\pi}+\chi_{\tau}$.

Classification of irreducible representations of S_{n}. Note that conjugate classes in $S_{n}=$ partitions of n, i.e. sets $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ of natural numbers s.t. $\alpha_{1}+\ldots+\alpha_{k}=n$ and $\alpha_{1} \geq \ldots \geq \alpha_{k}$.

Let X be a set of size n and $G=\operatorname{Sym}(X)=S_{n}$. Let us now find an irreducible representation for each partition $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$. Denote by X_{α} the set of all decompositions of the set X to subsets X_{1}, \ldots, X_{k} s.t. $\left|X_{i}\right|=\alpha_{i}$.

Definition 1. $T_{\alpha}:=F\left(X_{\alpha}\right), \quad T_{\alpha}^{\prime}:=\operatorname{sgn} \cdot T_{\alpha}$.
Definition 2. Denote by α^{*} the partition given by $\alpha_{i}^{*}:=\mid\left\{j: \alpha_{j} \geq i\right\}$.
(5) Show that α^{*} is a partition and $\left(\alpha^{*}\right)^{*}=\alpha$. Show that the partial order defined in the lecture is indeed a (partial) order relation.
(6) $\left(^{*}\right)$ Show that

$$
\left\langle T_{\alpha}, T_{\beta}^{\prime}\right\rangle= \begin{cases}0, & \alpha \not \leq \beta^{*} \\ 1, & \alpha=\beta^{*}\end{cases}
$$

This implies that T_{α} and T_{α}^{\prime} have a unique joint irreducible component U_{α} and that these components are different for different α. This gives a classification of all irreducible representations of S_{n}.

Fourier transform for finite groups.

Let C be a finite commutative group, $n=|C|$. We will denote by \widehat{C} the dual group of characters $C \rightarrow \mathbb{C}$. We define Fourier transform $\mathcal{F}: F(C) \rightarrow F(\widehat{C})$ by

$$
\mathcal{F}(u)(\psi)=\sum u(g) \psi(g) .
$$

(P) Show that if we define an L^{2}-structure on spaces of functions by $\|u\|^{2}=1 / n \sum|u(g)|^{2}$ then the operator \mathcal{F} satisfies the Plancherel formula $\|\mathcal{F}(u)\|^{2}=n\|u\|^{2}$.
(P) Using the Plancherel formula prove the following Theorem(Gauss). Fix a non-trivial multiplicative character χ and a nontrivial additive character ψ for the finite field \mathbb{F}_{q} and consider the Gauss sum $\Gamma=\sum \chi(g) \psi(g)$, where the sum is taken over $g \in F^{\times}$. Then $|\Gamma|=q^{1 / 2}$.

