EXERCISE 4 IN INTRODUCTION TO REPRESENTATION THEORY

DMITRY GOUREVITCH

- (1) For any representation π of a group G, the following are equivalent:
 - (a) π is isotypic
 - (b) All irreducible subrepresentations of π are isomorphic
 - (c) If $\pi \simeq \omega \oplus \tau$ with $\langle \omega, \tau \rangle = 0$ then either $\omega = 0$ or $\tau = 0$.
- (2) Let a (finite) group G act on a (finite) set X. Let π_X be the corresponding representation of G on F(X), and let χ_X be the corresponding character. Show that for any $g \in G$, $\chi_X(g)$ equals the number of elements of X fixed by g.
- (3) Show that the character of the regular representation equals |G| at the identity of the group, and equals zero in all other points.
- (4) (P) Compute the characters of all irreducible representations of S_4 . Use the description we gave on lecture 3. Hint: $\chi_{\pi\oplus\tau} = \chi_{\pi} + \chi_{\tau}$.

Classification of irreducible representations of S_n . Note that conjugate classes in S_n = partitions of n, i.e. sets $(\alpha_1, ..., \alpha_k)$ of natural numbers s.t. $\alpha_1 + ... + \alpha_k = n$ and $\alpha_1 \ge ... \ge \alpha_k$.

Let X be a set of size n and $G = \text{Sym}(X) = S_n$. Let us now find an irreducible representation for each partition $\alpha = (\alpha_1, ..., \alpha_k)$. Denote by X_{α} the set of all decompositions of the set X to subsets $X_1, ..., X_k$ s.t. $|X_i| = \alpha_i$.

Definition 1. $T_{\alpha} := F(X_{\alpha}), \quad T'_{\alpha} := sgn \cdot T_{\alpha}.$

Definition 2. Denote by α^* the partition given by $\alpha_i^* := |\{j : \alpha_j \ge i\}.$

- (5) Show that α^* is a partition and $(\alpha^*)^* = \alpha$. Show that the partial order defined in the lecture is indeed a (partial) order relation.
- (6) (*) Show that

$$\langle T_{\alpha}, T_{\beta}' \rangle = \begin{cases} 0, & \alpha \nleq \beta^*; \\ 1, & \alpha = \beta^*. \end{cases}$$

This implies that T_{α} and T'_{α} have a unique joint irreducible component U_{α} and that these components are different for different α . This gives a classification of all irreducible representations of S_n .

Fourier transform for finite groups.

Let C be a finite commutative group, n = |C|. We will denote by \widehat{C} the dual group of characters $C \to \mathbb{C}$. We define Fourier transform $\mathcal{F} : F(C) \to F(\widehat{C})$ by

$$\mathcal{F}(u)(\psi) = \sum u(g)\psi(g).$$

Date: November 30, 2021.

DMITRY GOUREVITCH

(P) Show that if we define an L^2 -structure on spaces of functions by $||u||^2 = 1/n \sum |u(g)|^2$ then the operator \mathcal{F} satisfies the Plancherel formula $||\mathcal{F}(u)||^2 = n||u||^2$.

(P) Using the Plancherel formula prove the following Theorem (Gauss). Fix a non-trivial multiplicative character χ and a nontrivial additive character ψ for the finite field \mathbb{F}_q and consider the Gauss sum $\Gamma = \sum \chi(g)\psi(g)$, where the sum is taken over $g \in F^{\times}$. Then $|\Gamma| = q^{1/2}$.