EXERCISE 6 IN INTRODUCTION TO REPRESENTATION THEORY

DMITRY GOUREVITCH

- (1) Let X be a G-set and \mathcal{F} be a sheaf on X. The following structures on \mathcal{F} are equivalent:
 - (a) An equivariant structure
 - (b) For any $x \in X$ and $g \in G$ a linear map $\pi(g)_x : \mathcal{F}_x \to \mathcal{F}_{gx}$ such that for $g_1, g_2 \in G, \pi(g_1g_2)_x = \pi(g_1) \circ \pi(g_2)_x$.
- (2) (P) Let $H \subset G$ be a subgroup, and $\pi \in Rep(H)$. Define an isomorphism $\mathcal{I}nd(\pi)(G/H) \cong Ind_{H}^{G}(\pi)$.
- (3) (P) Let the group $G = S_3$ act on itself by conjugation. Describe all the equivariant sheaves on $X = S_3$ under this action. Hint: say that every such sheaf is a direct sum of irreducibles, and describe the irreducible ones.
- URL: http://www.wisdom.weizmann.ac.il/~dimagur/IntRepTheo5.html

Date: December 14, 2021.