(1) Let X be a G-set and \mathcal{F} be a sheaf on X. The following structures on \mathcal{F} are equivalent:

(a) An equivariant structure
(b) For any $x \in X$ and $g \in G$ - a linear map $\pi(g)_x : \mathcal{F}_x \to \mathcal{F}_{gx}$ such that for $g_1, g_2 \in G$, $\pi(g_1 g_2)_x = \pi(g_1)_x \circ \pi(g_2)_x$.

(2) (P) Let $H \subset G$ be a subgroup, and $\pi \in \text{Rep}(H)$. Define an isomorphism $\text{Ind}(\pi)(G/H) \cong \text{Ind}_H^G(\pi)$.

(3) (P) Let the group $G = S_3$ act on itself by conjugation. Describe all the equivariant sheaves on $X = S_3$ under this action. Hint: say that every such sheaf is a direct sum of irreducibles, and describe the irreducible ones.