EXERCISE 9 IN REPRESENTATION THEORY

DMITRY GOUREVITCH

(1) (P) Let G be a finite group and p be a prime number. Show that for any $g \in G$ there exist unique $g_{r}, g_{s} \in G$ such that $g=g_{r} g_{s}=g_{s} g_{r}$, the order of g_{r} is prime to p and the order of g_{s} is a power of p.
(2) (P) Let Y be a finite set, $t \in \operatorname{Sym}(Y)$ be an element of order which is a power of p, and X be the set of fixed points of t. Then p divides $|Y|-|X|$.

Principal series representations of $\mathrm{SL}\left(2, \mathbb{F}_{q}\right)$

(3) (P) Let $G:=\mathrm{SL}\left(2, \mathbb{F}_{q}\right)$ be the group of 2×2 matrices with entries in \mathbb{F}_{q} and determinant 1. Let $X:=\mathbb{F}_{q}^{2} \backslash 0$. Consider the representation of G on $F(X)$, where F is some algebraically closed field of characteristic zero (e.g. $F=\mathbb{C}$). For any character χ of the multiplicative group \mathbb{F}_{q}^{\times}, let

$$
V_{\chi}:=\{f \in F(X) \text { s.t. } f(\lambda x)=\chi(\lambda) f(x)\}
$$

Let Δ denote the standard anti-symmetric bilinear form on F^{2}. Define a linear operator $T: F(X) \rightarrow F(X)$ by

$$
T f(x):=\sum_{\{y \text { s.t. } \Delta(x, y)=1\}} f(y) .
$$

Show that
(a) V_{χ} is a subrepresentation of $F(X)$ and $F(X)=\bigoplus_{\chi} V_{\chi}$
(b) T is an intertwining operator (=morphism of representations) and T maps V_{χ} into $V_{\chi^{-1}}$.
(c) $\langle F(X), F(X)\rangle=2 q-2$.
(d) V_{χ} is irreducible if $\chi \neq \chi^{-1}$ and is a sum of 2 non-isomorphic irreducible components if $\chi=\chi^{-1}$. Find the 2 components. Note that if q is odd there are only two χ with $\chi=\chi^{-1}$, and if q is even there is only one: $\chi=1$.
(e) $V_{\chi} \simeq V_{\psi}$ if and only if $\chi=\psi^{ \pm 1}$.
(f) T is invertible
(g) The sum of squares of the dimensions of the irreducible representations we found is $q(q-1)(q+3) / 2$, which is approximately $|G| / 2$.
The V_{χ} are called principal series representations and T is called the standard intertwining operator.

