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ABSTRACT. In this paper we provide a framework for quantitative state-
ments on distances and measures when studying algebraic varieties and
morphisms of algebraic varieties over local fields.

We will concentrate on local fields of the type F¢((¢)) and work uni-
formly with respect to finite extensions of Fy.

In this framework we prove analogues of standard results from local
differential topology, including the implicit function theorem and study
the behavior of smooth measures under push forward with respect to
submersions.
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1. INTRODUCTION

The goal of this paper is to provide a framework for formulating quantita-
tive statements on distances and measures when studying algebraic varieties
and maps between them over local fields.

We will concentrate on local fields of the type F,((¢)) and work uniformly
with respect to finite extensions of .

We introduce a notion of a rectification of an algebraic variety. This notion
allows us to define the concept of a ball on a variety and to fix a family of
measures on it.

1.1. The framework. For a variety X defined over a finite field F, we
introduce the notion of rectification (see Definition 3.1). This notion allows
us to define balls in the set X := X(F') of F-points of the variety, where F'
is a local field containing F, (see Definition 3.3). Note that the notion of a
ball is defined simultaneously for all local fields of the type F((¢)). This
allows us to formulate uniform statements for all such fields.

Notation 1.1. For a variety X and an integer k € N, we will consider two
kinds of balls in X(Fux((t))).

(1) Non-centered balls, denoted by BX*, see Definition 5.3(1)(a) for the
formal definition. These could be thought of as balls around the origin
(though the origin is not necessarily a point in X). Here m € 7 is
the valuative radius of the ball, i.e. the actual radius is (*™. Usually,
m will be positive when considering such a ball.

(2) Centered balls, denoted by BX*(x), see Definition 3.3(1)(c) for the
formal definition. These are balls of valuative radius m € Z around
x € X(Fui((t))). Here the integer m is usually negative.

Although the balls themselves will depend on the rectification, all the
statements that we will prove will not. This is due to the fact that for any
two rectifications, one can compare between the corresponding balls. See
Corollary 3.6(1).

Similarly, we will define the notion of a u-rectification of smooth algebraic
varieties (see Definition 3.1). This notion allows us to fix measures on balls
in X (see Definition 3.3). Again, although the measures themselves will
depend on the p-rectification, the results that we will prove will not. This
is established in Corollary 3.6(ii) and Lemma 5.5.

Remark 1.2. For the sake of simplicity, we work only with algebraic vari-
eties defined over Fy. This is enough for our purposes. However, we believe
that with minor modifications, all the statements would be valid also for
varieties defined over Fy[[t]] and, with slightly more modifications, also for
varieties defined over Fy((t)).

1.2. Main results. We prove the following results:

(1) Effective uniform continuity and boundedness of algebraic morphisms

on balls. See §1.2.1.
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(2) Effective version of the implicit function theorem. See §1.2.2.

(3) The compliment of a small neighborhood around a closed subvariety
Z C X is controlled by large balls in the complement of Z. See §1.2.3.

(4) Effective surjectivity of Nisnevich covers. See §1.2.4.

(5) Effective smoothness of push forward of smooth measures with re-
spect to smooth maps. See §1.2.5.

(6) Effective bounds on pushforward of smooth measures with respect to
smooth maps. See §1.2.6.

1.2.1. Effective uniform continuity and boundedness. Let v : X — Y be a
map of algebraic varieties defined over a finite field F,. This gives maps 4 :
X(Fe((t)) = Y(Fu((t))). Note that each map -y, is uniformly continuous
and bounded on any ball in X(Fsx((¢))). We prove that the modulus of
continuity and the bound on 7, in a ball BX* of a fixed (valuative) radius
m are bounded when we vary k.

More formally, we prove:

Proposition A (Proposition 3.5). Let v : X — Y be a map of rectified
algebraic varieties defined over a finite field Fy. Then for any m € N there
is m' > m such that for any k € N we have:

(i) v(BX*) ¢ BXF,
(ii) For any x € BX*, we have v(B™F (x)) ¢ BX%(~(z)).

m )

1.2.2. Effective versions of the inverse and the implicit function theorems.
We prove an effective versions of the inverse and the implicit function theo-
rems. Informally it means the following:

Let v : X — Y be an etale (respectively smooth) map of smooth algebraic
varieties defined over a finite field F,. We again consider the maps ~; :
X(Fu((t))) — Y(Fu((t))). Then, in a ball BX* the map 7, admits a local
inverse (respectively section), with bounded modulus of continuity, when
m € N is fixed and k varies.

More formally, we prove the following theorems.

Theorem B (Theorem 4.1). Let v : X — Y be an étale map of smooth
rectified algebraic varieties defined over a finite field Fy,. Then for any m
there is m' such that ’y]B%,k is @ monomorphism on balls of valuative radius

—m/'.

Theorem C (Theorem 4.2). Let v : X — Y be a smooth map of smooth
rectified algebraic varieties defined over a finite field ¥y. Then for any m
there is m’ such that for any k and any x € BX* we have

V(B () D BE (3(x)).

1.2.3. Control on the compliment of a small neighborhood around a closed
subvariety.

Proposition D (Proposition 4.3). Let X be a rectified variety. Let U C X

be open and Z = X ~U. Then for any m there exists m’' such that for any
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k, the ball BX* is covered by the union of the ball Bgik and the neighborhood
of Z(Fu((t))) of valuative radius —m.

Note that the notion of ball in U is not the one induced from X, but rather
an intrinsic notion for U. In particular, Z is considered to be infinitely far
with respect to this notion.

1.2.4. Effectively surjective maps. We introduce the notion of effective sur-
jectivity for a map v : X — Y. Informally it means that the map is not
only surjective on the level of points but we also can control the norm of a
pre-image in terms of the norm of the target in a way that is uniform on
extension of the local field. More precisely:

Definition 1.3 (Definition 6.1). Let v : X — Y be a map between rectified
algebraic varieties defined over Fy. We say that ~y is effectively surjective if
for any m there exist m' such that for any k we have

v(BXF) o BY k.
We prove the following criterion for this surjectivity:

Theorem E (Theorem 6.3). Let v : X — Y be a smooth map of rectified
algebraic varieties defined over a finite field Fy, that is onto on the level of
points for any field extension of F,. Then v is effectively surjective.

Remark 1.4. In fact our argument also shows that if v is onto on the level
of points for any infinite field extension of ¥y, then there is a finite extension
of scalars of v which is effectively surjective.

1.2.5. Effective smoothness of push forward of smooth measures with respect
to smooth map. Let v : X — Y be a smooth map of smooth algebraic
varieties defined over a finite field F,.

Let p and v be compactly supported measures on X = X(F,((¢))) and
Y =Y (Fy((t))) which are coming from p-rectifications on X and Y. Assume
that the support of v includes the support of v.(x). We show that the density
of the pushforward ~,(u) with respect to v is given by a smooth function
which is constant on balls of some valuative radius —m. Moreover m remains
bounded when we replace [, with its finite extensions.

More formally, we make:

Notation 1.5 (Definition 3.3). For any integers m, k and a p-rectified smooth
algebraic variety defined over F, we use the rectification in order to define a
measure X" on BY¥ .-

We prove:
Theorem F (Theorem 5.7). Let v : X — Y be a smooth map of p-rectified
varieties. Then for any m € N there is m’ € N such that for any k € N and
any function g € CZ(X(Fp((t)))) which is constant on balls of valuative

radius —m, there is a function f € C(Y (Fu((t)))) which is constant on
balls of valuative radius —m/’, such that:

Ye(guky = f k.
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1.2.6. Effective bounds on push forward of smooth measures. We prove:

Theorem G (Lemma 3.9, Theorem 4.4, Corollary 6.8). Let v : X — Y be
a submersion of p-rectified smooth varieties defined over ¥,. Then for any
m there are m” > m' > m such that for any k € N we have

—km' Y.k X,k km' Y.k
e Fon |Supp(’y*(ux’,k)) < 7*(”777/ ) < Mo rr

Moreover, if v s effectively surjective then

R <)
1.3. Related results. Our notion of balls is parallel to the notion of norms
in [Kot05, §18]. However, while [Kot05, §18] was concerned with large balls,
we are also interested in small balls, and in measures. On the other hand,
[Kot05, §18] needed more quantitative results than we need. It is likely that
our theory can be put in a more general context.

The results of [Kot05] are, by themselves, not uniform on the field. Since
[Kot05] allows non-local fields like F,((¢)), sometimes it is possible to deduce
from it results that are uniform on field extensions. However, this is not
the case for results that include the existential quantifier, like the implicit
function theorem.

Other related notions of metric in the context of Archimedean algebraic
geometry was introduced in [Wei2l, BKS24] under the name of metric alge-
braic geometry.

1.4. Motivation. The main motivation for this work is a sequel work [AGKS]
where we bound the dimensions of the jet schemes of the nilpotent cone (in
gl,) in positive (small) characteristic.

The characteristic zero counterpart of this result is done by [Mus01, Ap-
pendix by Eisenbud and Frenkel]. The methods of [Mus01] are not available
in positive characteristic. Instead we use an analytic argument, resembling
[HC70] in order to bound the number of points in these jet schemes. These
arguments involve volumes and integration.

We use the Lang-Weil bounds to deduce the required bound on the di-
mension. For this we need the bound on the number of points to be uniform
in field extensions of the underlying finite field. Classical analytic arguments
do not give such uniform bounds. Therefore they are not enough for us and
we need the results of the present paper.

In [AGKS], we use the bound on the dimension of the jet-schemes in order
to bound the push-forward of smooth measures under the Chevalley map
p : gl, — ¢,, that sends every matrix to its characteristic polynomial. We
do it under the assumption of existence of a certain resolution of singularities.

Note that the 0-characteristic counterpart of this result is done [HC70].
While we can use the method of [HC70] in a neighborhood of the nilpotent
cone, the method fails to provide the desired global result due to issues of
positive characteristic. This is why we take the detour through the jet-

schemes.
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1.5. Ideas of the proofs. A possible way to get uniform results for the
fields Fyr((t)) is to work over the field F,((t)). However, this field is not
locally compact and we can not obtain boundedness in the standard way.
Thus, we have to use different methods, as we will now describe.

The proof of Proposition A is straightforward but technical.

1.5.1. Idea of the proofs of Theorem B and Theorem C. The classical argu-
ment for the implicit function theorem (see e.g. [KP13]) is rather effective for
the case of affine spaces, but not in general. So we have to employ additional
considerations. Let us briefly explain the main steps in our proof:

Step 1. We prove Theorem B by reducing to the case of standard étale map.

Step 2. We prove Theorem C for the case of a map between (principal open
subsets of) affine spaces.

Step 3. We deduce the case when the source X is a general variety and the
target Y is an affine space. This we do by noticing that locally X can
be written as a fiber of smooth map between affine spaces V.~ W
and then applying the statement for the map V- W x Y.

Step 4. The general case: we use the fact that locally Y can be mapped
by an étale map to an affine space L. Then we use the result for
the composition X — Y — L. In order to deduce the required
statement, we also use Theorem B.

1.5.2. Idea of the proof of Proposition D. We use a stratification argument
in order to reduce the statement to the case when Z is smooth. This case we
deduce from Theorem C using the fact that Z is locally a fiber of a smooth
map.

1.5.3. Idea of the proof of Theorem E.

Step 1. We show (using Noetherian induction) that if a map is surjective on
the level of points over every field, then the target admits a strat-
ification such that the map admits a section for each strata. See
Lemma 6.4 below.

Step 2. We note that if a map admits a section then it is effectively surjective.

Step 3. We show, using the effective version of the implicit function theorem
(Theorem C), that if a smooth map is effectively surjective over a
closed subvariety, then it is effectively surjective over a controllable
neighborhood of this subvariety.

Step 4. We use the previous step and Proposition D to show that any smooth
map that is effectively surjective over a closed subvariety and over
its complement is effectively surjective.

Step 5. We deduce the theorem.

1.5.4. Idea of the proof of Theorem F. Here we use a standard technique of
presentation of a smooth map as a composition of simpler maps, and the

effective version of the implicit function theorem, Theorem C.
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1.5.5. Idea of the proof of Theorem G. The main part is the first inequality.
Here the main difficulty is that we can not deduce the statement for a com-
position of morphisms from the statement for each morphism. However, we
still can reduce to the case when the morphism is a composition of an étale
map and a projection from a product with affine space. For such compo-
sitions we can explicitly compute the density function of the push forward.
Then we can get the required bound using Theorem C.

1.6. Structure of the paper. In §2 we fix the conventions that we use in
this paper.

In §3 we define the notion of rectified algebraic varieties, the notion of a
ball in such varieties and define the measures p2* described above. We also
show that these objects essentially do not depend on the rectification. We
also prove basic properties of these objects, including Proposition A, and the
second (easier) inequality of Theorem G.

In §4 we prove effective version of the implicit function theorem (Theo-
rem C) and draw some corollary of it (Proposition D and the main part of
Theorem G).

In §5 we prove Theorem F.

In §6 we prove Theorem E and complete the proof of Theorem G.

1.7. Acknowledgments. We would like to thank Gal Binyamini and Yosef
Yomdin for helpful discussions.

During the preparation of this paper, A.A., D.G. and E.S. were partially
supported by the ISF grant no. 1781/23. D.K. was partially supported by
the ERC grant no. 101142781.

2. CONVENTIONS

(1) Throughout we fix a prime power /.

(2) By a variety we mean a reduced scheme of finite type over a field.
Unless stated otherwise this field will be [F,.

(3) Morphisms between varieties will be always defined over the field of
definition of the varieties.

(4) When we consider a fiber product of varieties, and fibers of maps
between varieties, we always consider it in the category of schemes.

(5) We will describe subschemes and morphisms of varieties and schemes
using set-theoretical language, when no ambiguity is possible.

(6) We will usually denote algebraic varieties by bold face letters (such
as X).

(7) We will use the symbol O in a middle of a square diagram in order
to indicate that the square is Cartesian.

(8) For a field extension E/F and a variety X defined over F', we will de-
note by X g the extension of scalars. We will use analogous notation
for all algebro-geometric objects on the variety X, including regular

functions and differential forms.
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(9) For aregular function f on an algebraic variety X defined over a local
field F', we denote by |f| the corresponding function on X := X(F).

(10) For a top form w on a smooth algebraic variety X defined over a local
field F'; we denote the corresponding measure on X := X(F') by |w|.

3. BALLS AND MEASURES ON RECTIFIED VARIETIES

In this section we introduce the concept of rectified varieties and define
balls on them. We also fix a measure on each ball.

We prove that the balls and measures are essentially independent of the
rectification, see Corollary 3.6.

We also prove some basic properties of these objects, including Proposi-
tion A and the second (easier) inequality of Theorem G.

Definition 3.1. Let X be a smooth algebraic variety over IFy.

(1) A rectification of X is a finite open cover X C J,,.; Ua with closed
embeddings i, : Uy — AM for each o € 1.

(2) We will call a rectification simple if |I| = 1.

(8) By a rectified variety we will mean a smooth algebraic variety over
F, equipped with a rectification. By a map or a morphism of such we
just mean a morphism of the underlying algebraic varieties.

(4) A p-rectification of X is a rectification of X together with invertible
top differential forms w, € QP(U,,) for each o € I.

(5) We define similarly the notion of a p-rectified variety, and simple
w-rectification.

ael

Definition 3.2. By an almost affine space we mean a principal open subset!
m an affine space defined over F,. Note that any almost affine space is
equipped with a natural simple (u-)rectification that we will call the standard
(u-)rectification on this space.

We are now ready to define balls and measures on our rectified varieties.

Definition 3.3.

(1) Let (X, U,, i) be a rectified variety. Then, for any k € N andm € Z
define:
(a) BF =, ix" (T Fu[[t]M) C X(Fu((2))).
(b) B = U o BXF = X(Fpe((1)).
(c) For x € X(Fu((t))) define a ball around x:

Brtei= U it (@) + T Fa ).
a s.t. 2€Ua(Fyr ((1)))
(d) For Z C X we define:
Bit@) = J B,
zEBgo’k

li.e. the complement of a divisor



(2) Let (X, Uy, iq,ws) be a p-rectified variety. Then, for any integers
k € N,m € Z we define a measure Xk on X(Fp((t))) supported on
BXk by:

Xk .
Hop™ = Z |<wa)Fek((t))| ' 1z‘;1(t*mIng[[tHM)‘

(3) If X is an affine space, we denote by p** the Haar measure on
X(Fu((t))) normalized such that p®* (X (Fu[[t]]) = 1.

The following is obvious:

Lemma 3.4. Let X be a rectified variety. Then for any 2 positive integers

my, mo € N we have:
Xk ,
(1) If x € BXF then BT, (x) C BX:F.
(2) If € BX* and y € BX" (x) then z € BXF ().

—m —m

3 the rectification o 18 stmple and my > mo, then
If th fi f X [ d h
BXy (v) € BE3,(x) = BX5, ()

—mi —ma2 —m2

for any x € X(Fu((1))) and y € BXE ().

s
Proposition 3.5. Let v : X — Y be map of rectified algebraic varieties.

Then for any m € N there is m' > m such that for any k and any v € BX*
we have

(i) 7(By*) € B".
(ii) 7(BZ(x)) € B (7(x))-
Proof.

Case 1. X = AMY = A! (both equipped with the standard rectifications)
and v is a monomial:

In this case it is easy to see that one can take m’ = dm where d is
the degree of ~.

Case 2. X = AM Y = A® (both equipped with the standard rectifications):
follows from the previous case and the fact that Fu((¢)) is non
Archimedean.

Case 3. X,Y are affine spaces (both equipped with the standard rectifica-
tions):
follows from the previous case.

Case 4. The rectifications of X,Y are simple:
by definition of a map between affine varieties we have a commuta-
tive diagram

X — AM

lv lv’
Y —— AM:

where the rectifications of X and Y are induced from their embed-
ding into affine spaces in the diagram. Now, this case follows from

the previous one.
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Case 5.

Case 6.

(3.1)

The rectification of Y is simple:

Follows from the previous case.

The rectification of X is simple, v is an isomorphism, and the recti-
fication of Y comes from a cover with principal open sets, and their
standard embedding into X x A:

Let X =Y =Y, Y, = UX}, be the cover defining the rectifica-
tion of Y. By Hilbert’s Nullstellensatz we can find g; € Ox(X)
such that > fig; = 1. Consider the map X — AZ*M given by
= (filz),..., fu(x),q1(x),...,gm(x)) and apply to it Case 4.
We obtain numbers m; > mg > m such that for any = € B%’k we
have

(2) |gi(=)| <[t7m

(b) fi(BEn (@) C BE, o, (fil2))

Take m’ = m;. From (a) we obtain that for any x € BX* there
exists ¢ such that

|fix)] > [¢m].
Thus _—
) , Y.k
x € Bmy'” C BYF C B,

proving (i).
From (3.1) and (b) we obtain that for any z € BX* there exists
i such that for any y € Bi(;:, () we have

Case 7.

Case 8.

Case 9.

Case 10.

Case 11.

fi() N fi(y)

= <|fily) = filz)| - [t72m0 < [¢7).

1 1 ‘ fily) — fi(w)
fi(@) fi(y)

Thus vk

y € B,y (x) € BL(x),
proving (ii).
The rectification of X is obtained from a union of rectifications of
each v71(U;) where Y = | U; given by the rectification of Y:
Follows immediately from Case 4.
The rectification of X is simple, v is an isomorphism.
Let Y, be identical to Y as a variety but with a rectification defined
by a cover by principal open sets such that the identity map Y; — Y
satisfies the condition of the previous case (Case 7). The statement
follows now from the previous 2 cases.
~ is an isomorphism and the rectification of Y is obtained from a
union of rectifications of each v(U;) where X = (JU; given by the
rectification of X:
Follows from the previous case (Case 8).
v is an isomorphism.
Follows from Cases 7 and 9.
general case:
Follows from Cases 7 and 10.
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Corollary 3.6. Let X, Xy be two copies of the same Fy-variety with two
(possibly different) rectifications. Let Z0 C Xy be a closed subvariety. Then
(i) for any m € N there is m' € N such that for any k € N we have:
(a) BXvk ¢ BX*
(b) for any x € Xy (Fp((t))) we have BX1 ¥ (z) € BX2*(x)
(¢) BX*(Z) C By*(2Z).
(ii) For any p-rectifications of X; and m € N, there exists m' such that for

1 ’ Xo,k
X 7k‘ < Ek}m 25 .

Hom m/
Proof. Ttems (i) follow immediately from the previous proposition (Proposi-
tion 3.5). It is enough to prove (ii). We will proceed by analyzing cases:

Case 1. The p-rectifications of X; are simple, and their embedding into an
affine space is the same:
Let w; be the form on X;. Let ¢ = 2 € O*(Xy). Fix m. By
Proposition 3.5(i) there is m’ > m such that for any & € N we have

max(val(g(BX+*))) < m/.

Now we have:

e e ] R A T A Th
Case 2. The p-rectifications of X; are simple and the forms on X, are the

same:
follows immediately from Proposition 3.5(i).

Case 3. The p-rectifications of X; are simple:
Let X3 be a variety identical to X, X5 with a rectification given by
the embedding of X; to an affine space and the form on X5. The
assertion follows now from the previous cases (applied to the pairs
(X1,X3) and (X3, Xs) in correspondence).

Case 4. The covers of X; and X, are the same:
Follows from the previous case.

Case 5. There is an invertible top form w on X; such that the forms in the
rectifications on both X; and X, are restrictions of w.
Let M be the size of largest of the 2 covers of X;. We have

Jwri (o)L gxi < ptt < Mwr,, (o)1 i

[k(

The assertion follows now from part (a).

Case 6. X; admits an invertible top-form:
Follows from the previous 2 cases.

Case 7. The rectification of X is obtained by rectifications of each U; where
Xy = |JU; is the cover of X, given by its rectification:
Follows from the previous case.

Case 8. The rectification of Xy is obtained by a rectification of each U; where
X1 = JU; is the cover of X; given by its rectification:

Follows from Case 6.
11



Case 9. General case:
Follows from the last 2 cases.

g

At some point we will need the following stronger version of Corollary 3.6
(a):

Lemma 3.7. Let Xy, Xy be two copies of the same Fy-variety with two (pos-
sibly different) rectifications. Then there exists a € N such that for any
m, k € N we have:

BXik  pXak

am+ta
Proof. In fact, the proof of Proposition 3.5 provides a proof of this lemma.
It also follows from [Kot05, Proposition 18.1 (1)]. O

Corollary 3.8. Let v: X — Y be a closed embedding. Then for any integer
m € N there exists m' € N such that for any k € N we have v~{(BY*) C
BXk

m

Proof. Let X’ be the variety X with the induced rectification from Y. We
have y~1(BY*) = BX"*_ The assertion follows now from Corollary 3.6(a).
O

Lemma 3.9. Let v: X — Y be a submersion of u-rectified varieties. Then
for any m there is m’' such that

Yo () < 08 X
Proof.
Case 1. The rectifications of X and of Y are simple, « is étale and the form
on X is the pullback of the form on Y:
Fix m € N. By [Sta25, Tag 03JA, Tag 03J5] there is M € N such
that for any y € Y (F((t))) we have
M > #y7(y).
By Proposition 3.5 there exists m; > m such that
YBR") € Byl

Take m’ = m;M. Let k € N. Let wy be the form on Y given by its
p-rectification. For k € N, let wy 1 := (wy k)r,(r)) We have

Vel ™) = f - |y il

where
fly) = #{z € BFy(z) = y}.
So,

W E) = £ sl € M1, - sl € M 1w o] = M ik < 07
'7( m) mq

Case 2. the rectifications of X and of Y are simple and ~ is étale:

Follows from the previous case using Corollary 3.6.
12
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Case 3. the p-rectifications of X and of Y are simple, X =Y x AM, and v
is the projection:
WLOG assume that the p-rectification of X is given by the pu-
rectification of Y and the standard p-rectification of AM. Take
m’ =mM + 1. The assertion is a straightforward computation.
Case 4. 7 = 71 o0 75 when ~; satisfy the conditions of Case 3 and v, satisfy
the conditions of Case 2:
Follows immediately from the previous 2 cases.
Case 5. The rectification of Y is simple:
By [Sta25, Tag 039P] there is a cover X = (JI, U; such that |y,
satisfy the condition of the previous case. WLOG we can also assume
that each U; admits a simple pu-rectification. By Corollary 3.6, we
can also assume that the p-rectification of X is coming from these
rectifications. The statement follows now from the previous case.
Case 6. General case:
Follows from the previous case and Corollary 3.6.

g

Corollary 3.10. Let X be a p-rectified variety. Then for any m € N there
exists M € N such that for any k € N:

B < 4

Proof. It follows from the previous lemma for the map v : X — pt = A°. O

4. EFFECTIVE VERSION OF THE IMPLICIT FUNCTION THEOREM AND ITS
COROLLARIES

In this subsection we prove Theorem B (see Theorem 4.1 below) and The-
orem C (see Theorem 4.2 below).
We also deduce 2 statements:

e Proposition D. See Proposition 4.3.

e The main part of Theorem G: The push of the measure pX* under
a submersion X — Y controls (from above) the measure pY*¥ on the
support of the former. See Theorem 4.4.

We start with the following:

Theorem 4.1. Lety : X — Y be an étale map of smooth (rectified) algebraic
varieties defined over Fy. Then for any m there is m’ such that for any k
and any v € BX* the map ’Y‘Bx,k/ (@) 18 a monomorphism.

Proof. By Corollary 3.6 the statement does not depend on the rectification,
so we will choose it each time as convenient. For an integer n, denote by
Y, the collection of monic polynomials of degree n, considered as an affine

space. Denote also X,, := {(f,a)|f € Y,; f(a) =0, f'(a) # 0}.
13
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Case 1.

X =X,,Y =Y, (for some n), and 7 is the projection:
Embed X into A"*2 by (f,a) — (f,a, ﬁ) This gives a rectifica-
tion of X. Take also the rectification of Y that comes from the fact
that it is an affine space.

Set m' =mn +1+m+ 1. Let x = (f,a) € BXk. Tt is enough to

show that if (f,b) € B (x) then a = b. For a polynomial f € Zx]

denote fI¥ .= % This is a polynomial over Z, so this operation is
defined over any field. We have

0=f(b) = fla+(b—a)) = f(a) + fa)(b—a) +--- = fH(a)(b—a) +---

Case 2.

Case 3.

Assuming that b # a we obtain:
@)+ (b= a)f¥(a) + - =0
Since x € BX* we have
(@) < [,
Thus
|(b—a)fP(a) + ... < [{"*.
On the other hand
fH(a) = f'(a) > ™

This leads to a contradiction.

~ is standard étale map*:

Follows from the previous step, Proposition 3.5 and the fact that we
have a base change diagram:

X — X,
| o |
Y —Y,

General case:
Follows from the previous case using [Sta25, Tag 02GT].

The next result is an effective version of the open mapping theorem:

Theorem 4.2. Let v : X — Y be a smooth map of smooth (rectified) alge-
braic varieties. Then for any m € N there is m' > m such that for any k
and any v € BXF we have

Proof.

V(B (@) D BX(4(x)).

2See [Sta25, Definition 02GI].
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Case 1. X = (A%); is an almost affine space, Y = A
Let j € O(X) be the Jacobian of 7. Choose the rectification of X
that is given by the embedding x +— (z, f(z)™!, j(x)™!), and choose
the standard rectificaion of Y. Fix m. Write

v(z) = hw) _ L 4T
f@)M flx)M 7
in multi-index notation, where a; are vectors. Note that val(a;) = 0,

where the valuation of a vector is defined to be the minimum of the
valuations of its coordinates. Let

m' = mM + m(deg(f)M + M + deg(j)) + 8mdM deg(f) + Mm.

Take ¢ € BY%(y(z)). We have to find 2/ € BX%(z) such that

v(z') = /. Define recursively a sequence x, € B (x). Set zy = x,
and define

Tri1 =2 + (D) 7 (Y — ().

We will show by induction on r that for any » > 0:

(ar) val(y' —y(z:))2m’ + 7

(by) m, € BXF

(CT) Try1 € B—m r(xr>

Before proving these statements, we will show that for any given
r statements (a,) and (b,) imply (c¢.). For this note that for w €
Fi((t)) we have

val ((Dxrfy)_lw) = val (det (D, ) Adj (D,, )w) = val ( i(2,) ' Adj (D, ) w)
> val (j(l’r) 1) + val(w) + (d — 1) mln val (D, 7)st)
_ ; -1 _
= val (j(z,)~") + val(w) + (d — 1) énltgd val (Opys(,))
_ (o )1
= val (j(z,)~") + val(w) + (d — 121t2dva1 (8 <fM> T, )
_ . —1 flu JJT)dths(iUr 8t(f]w)(-737‘)hs($r)
= val (j(z,)™") + val(w) + (d — 121t2dval ( T yET >
= val (j(z,)™") + val(w)+

+ (d - 1) fnln (Val (f(xr)Maths<xr> - at(fM)<xT‘)hs<xr>) — val (f(xr‘)QM))

+ min (—V;l (f(xr)2M))
Statement (b,) implies that:
val (j(z,)"") + val(w) + (d — 1) érslir%d (min(val (f(z,)" Ohs(x,)) , val (O, (f*) () )hs(z,))) +

+ min (—val (f(z,)*"")) > —m — d(deg(f)M + M)m — 2dMm > —4mdM deg(f)
15



(4.1)

So
val((D,,7) *w) > —4mdM deg(f) + val(w).
This implies:

val(z,41 — 2,) = val((Dg,7) ' (v — v(x,))) > —4mdM deg(f) + val(y' — v(z,))

(4.2)

So, by (a,) we obtain:

val(z, 41 — ) > —4dmdM deg(f) + m' +r > 3m + mdeg(f) + mdeg(j) + r

(4.3)

This implies that
val(f(z,41) — f(x,)) > val(z,1 — ) — mdeg(f) > 3m +r.
So

val(f(,41)) = val((f (2y41) — [(2,) + f(2)) < m.
Thus

1 . 1 o f(xr) - f($r+1)
TPy R e L Ty T R
Similarly,
val( Lo ) >m+r.

j(mr-i-l) j<xr)
Formulas (4.2),(4.4) and (4.5) (which are proven under the assump-
tions of (a,) and (b,)) imply (c,).

We now proceed to prove by induction (a,), (b,) and (c¢,). The
base statements (ag), and (by) are obvious. So the base statement
(¢o) follows from the above. For the induction step we assume (a,),
(b.) and (c,) for an integer r and prove (a,41), (by+1) and (¢,41).

By Lemma 3.4(1) statement (b,,1) follows from (¢.) and (b,).
Also, as shown before, (a,,1) and (b,41) imply (¢,41). It is left to
show (a,41) and we can use (b,,1) for this. For z € Fjx((t))?, write

2aciii<m biZ'
[, +2)M
Let 6(w) := f(w)M(y(w) — v(x,) — (Dy,v)(w — z,)). Note that
e this is a polynomial map.
e The valuation of its coefficients are bounded from below by
—mM.
e Its degree is bounded by deg(f)M + M.
Define 6/ as in the proof of Theorem 4.1, but for vector valued
functions of a vector variable. We have

val(b;) = val(6(z,)) > —mM — m(deg(f)M + M).
Setting

Y(@r + 2) = v(x) + (Do, v) 2 +

2= (Dp, )Ny = (),
16



formula (4.1) above implies
val(z) > —4mdM deg(f) + val(y' — v(z,)).
So,

val (4 = Y(2,41)) = val (¢ = y(z, +2)) =

—val | — (m) + (Day)z + Z'—”’)) =

f(xr + Z)M

22<|'|<M bt
= l I r) — Dx ] R —
val | y' — () — (Dq,7)z Fay + 2

= val

Z biz' | —val (f(z, +2)")

M
flwr +2) 2<i|<M

2 a<lij<m bizi>
—=—=— | =val

= val Z bzt | — val (f(xTH)M)

2<il<M

min (val(b;) + ifval(z)) — val (f(z,1)™)

2<|il<M
—mM —m (deg(f)M + M) + 2val(z) — Mval (f(x,41))
—mM —m (deg(f)M + M) — 8mdM deg(f) + 2val (y' — ~v(z,)) —
— Mval (1))
By (br41), we know that
val(f(r1)"") = —m.

By (a,), we know that

v

ALY

val(y' — y(x,)) >m' +r.
Thus
val(y' — y(xp41)) > —mM — m(deg(f)M + M) — 8mdM deg(f) + 2m’ + 2r — Mm >
>m +r+1,

proving (a,y1) and finishing the proof of (a,), (b.) and (¢,) for every
r.

Now, (¢,) implies that val(z,.; —x,) > m+r. Thus the sequence
x, converges. Let z/ := lim,_,, z,. Using Lemma 3.4(3) and (c,)
again, we get that z, € BX"(x) for any r. Thus 2/ € B (x).
Finally, (a,)ren implies that v(2') = ¢ as required.

Case 2. X and Y are almost affine spaces and dim(X) = dim(Y):

Follows immediately from the previous case.

Case 3. X and Y are almost affine spaces, and there exists a morphism

p: X — AdmX=dimY och that the map v x p : X — Y x AdimX-dimY
17



Case 4.

Case 5.

Case 6.

Case 7.

(4.11)

is étale:

Follows from the previous case applied to the map v X p.

X is an open subset of an affine space and Y is almost affine spaces:
We can find a finite cover X := (JU; such that 7|y, satisfies the
conditions of the previous case. The statement now follows from
the previous case.

Y is an almost affine space and X is a fiber of a smooth map between
almost affine spaces:

Write X as the fiber of a smooth map U — V. Extend the map v to
amap v : U—=Y, this defines a map " : U — V x Y. Note that
~" is smooth at X. Thus we can find U C U containing X such
that 4" |u is smooth. The statement follows now from the previous
case applied to v"|y.

Y is an almost affine space:

We can find a finite cover X := (J U, such that v|y, satisfies the
conditions of the previous case. The statement now follows from
the previous case.

Y is an affine variety that admits an étale map to an affine space:
Let 6 : Y — U be an étale map to an almost affine space. Fix m.
By Proposition 3.5 there is m; > m such that for any £ € N we have

X,k Yk
V(By")) C Byl

By Theorem 4.1 there is ms > m; such that for any k£ € N and any
x € BY* we have

| gy @) sa monomorphism.

By Proposition 3.5 there is m3 > msy such that for any £ € N and
any x € BX* we have
X,k Yk

By the previous case there is m4 > mg such that for any k£ € N and
any € BX* we have

3(y(BE,, () D BES, (5(1(2)))-
By Proposition 3.5 there is m5 > my such that for any £ € N and
any « € BY:* we have

8(BX, (2)) € B, (8(2)).

—ms —my

Take m’ = ms. Let k be an integer and x € BX* Let ¢/ €
BY " (y(x)). we have to find 2/ € BXF(z) such that v(z') = 3/,

—m/

By (4.6) v(z) € BY:*. So, by (4.10)
0(y') € B2, (3(v(2)).
Thus, by (4.9), there is 2/ € BX" () such that

o(y(z") = 0(y').
18



By (4.8)
v(2') € BX, (v()).
Also
y' € BY,, (3(x)).
Therefore, (4.7) and (4.11) imply that v(2’) = ¢/ as required.

Case 8. General case:

We find a finite cover Y = | J U; such that the maps ~; : v 1(U;) —
U, obtained by the restriction of v to U; satisfy the conditions of
the previous case. So the previous case implies the assertion.

El

Proposition 4.3. Let X be a rectified variety. Let U C X be open and
Z .= X~ U. Then for any me N there exists m'> m such that for any k
we have

Proof.

BX* « BYFuBXkZ).

Case 1. the rectification of X is simple, Z is a fiber of a smooth map ¢ :

X — Y, and Y has simple rectification:

Let x1, ..., x4 be the coordinates of the affine space that includes Y.
WLOG assume that Z is the fiber of 0 € Y (F,). Let f; := 0*(z;).
Embed X; := X/, to affine space in the standard way, and choose
the rectification of U given by these embeddings. It is easy to see
that for any integers m/’, k we have

Bt = Byt~ 6B, (0)).
Indeed,

BYY = | JBE* = iz € Xu(Fu((t)|z € BEF;val(fi(x) ™) = —m/} =

= U(Bf,i;’“ N Az € X(Fe (1)) val(fi(x)) > m'}) =
= BN\ ﬂ{x € X (Fe((2)))lval(fi(x)) > m'} =

— BXE L 6Y(BY A (0)).

Fix m. By Theorem 4.2 there exists m;> m such that for any ke N
and any x € BX* we have

8(B(2)) D BY;, (8(2))-

—mq

Take m' = m; + 1. It is left show that
0 (BY, 4(0)) = 6 (BX.(0)) € BX(Z).

-m/—1

Let z € 6-1(BY;* (0)). We have to show that = € BX¥(Z). We have

—m1

0e B%(a(@l)gc §(BXF(x)).



So we have z € BX¥(x) such that 6(z) = 0. By Lemma 3.4 this
implies that = € BX"(2). Also z € Z(Fu((t))). So z € BXF(BX*n
Z), as required.

Case 2. Z is smooth.
Follows from the previous step and from the fact that the question
is local on X.

Case 3. General case
We will prove the statement by induction on dimZ. Let Z' be the
singular locus of Z. Let U’ = X ~\ Z'. Choose rectification of U’
such that each ball in U’ is contained in the corresponding ball in
X. Fix m. By the induction assumption there exist m; > m such
that for any k£ we have

BX* c BY ¥ uBSNZ)
By the previous case there exist mo > my such that for any k we
have

BY* ¢ BY*Fu BY k(U N 2))

Take m' = my. We get
BX* ¢ BY R U BN Z)) ¢

c BYFuBYF(U'nz))uBXE(Z)

c BYF U BXN(U'nZ)uBNN(Z)

C BYF U BX)(Z)
as required.

O

Theorem 4.4. Let v : X — Y be a submersion of p-rectified varieties.
Then for any m,m' € N there is M € N such that for any k we have

Yk kM X,k
o 1Supp(7*(u2}k)) <O ()

Proof.

Case 1. the p-rectifications of X and of Y are simple, v is étale and the form
on X is the pullback of the form on Y:
Take M = 1. Let wy be the form on Y given by its p-rectification.
For k € N, let wy j, :== (WY)Fek((t)) be the corresponding form on the
extension of scalars Y]ng((t)). We have

Yelbim™) = f - lwyl,
where
X,k
fly) = #{x € B h(z) =y}
Now, we have:
Y.k o ‘ _ B
Fom 1Supp(7*(ui}k)) B 1B%’k ISupp(W*(uﬁ}k)) |wy k| =

= Ly Lsupp(n) - @yl < 05 f - |y il = My (u”),
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Case 2.

Case 3.

(4.12)

Yk
o,

Case 4.

Case 5.

as required.
the p-rectifications of X and of Y are simple and ~ is étale:
Follows from the previous case and Corollary 3.6.
the rectifications of X and of Y are simple and v = ~; o 75 where
v : Y x A - Y is a projection and v, is étale:
Choose the p-rectification of Y x AJ that is coming from the u-
rectification of Y and the standard rectification of A7. Let wy  be
as above.

Fix m,m’ € N. By Proposition 3.5 (applied to the map v2) there
exists m; such that

(BEY) € BYH
By the previous case we have M; € N such that for any £ we have

Y XAk kM Xk
Fy " Lsupp(a) ey < € (02)s (l")-

By Theorem 4.2 (applied to the map v) we have mgy such that for
X,k
any z € vo(B;;") we have
BX () € (B

Take M = M; + Nmsy. We have

XAj,k . 1
72

(1) (1 ) = 9 [ il

where
9(y) : = Vol({v € (1))’ |(y,v) € B * nya(BR")}) =
= Vol({v € Fu((1)Y'|(y,v) € 12(Bn")})-
Note that by (4.12) if g(y) # 0 then
9(y) = Vol(BZ,5(0)) = 7.

Thus

: 1Supp(w*(#§;’“)) = M%’k * Isupp(g) < M%’k gl < lwy 4]  glFNme —
— OGP 7
— (71)*(,“%?&% ) 1Supp((72)*(uz}k)))£k1vm2 <

< () (M () (i) ) N2 =
The rectification of Y is simple: .
By [Sta25, Tag 039P] there is a cover X = [J!_, U; such that 7|y,
satisfy the condition of the previous case. The statement follows
now from the previous case and Corollary 3.6.

General case:
follows from the previous case and Corollary 3.6.
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5. M-SMOOTH FUNCTIONS AND MEASURES

In this subsection we give a quantitative notion for smoothness of func-
tions and measures, and prove that this notion behaves well under push. In
particular we prove Theorem F.

Definition 5.1. Let X be a rectified variety. Let m,k € N. We say that
f € C=(BXFk) is m-smooth if for any x € BXF the function Flgxr yy s
constant.

Lemma 5.2 (Criteria for m-smoothness). Let X be a rectified variety. Let
m,k € N.

(1) Let f € C(BX*) be a real valued function such that for any x €
BX* we have

min(f(BX(2))) = f(x).
Then f is m-smooth.
(2) Let f € C=(BXF) be a function such that for any x € Supp(f) we
have f|BX;,’j(z)) 1s constant. Then f is m-smooth.

Proof. Follows immediately from Lemma 3.4(2). O

Lemma 5.3. Let X be a rectified algebraic variety and U C X be an open
subset. Fix a rectification on U. Let f € C®°(BY*) be an m-smooth func-
tion. Then there is m’ such that f € C™(BX*) is an m/-smooth function.

Proof. Fix m € N. By Proposition 3.5(i) there exists m; > m such that for
any k € N we have BY* € BX:*. By Theorem 4.2 there exists m’ > m; such
that for any k € N and any = € Supp(f) € BY* we have BY¥ (z) D B (z).
By Lemma 5.2(2) this implies the assertion. O

Lemma 5.4. Let X be a rectified algebraic variety and f € O*(X). Then
for any m € N there exists m' > m such that for any k € N the function
| f11pxx on BX* is m/-smooth.

Proof. Consider f as a function to A' \ 0. By Proposition 3.5(i) there is
my > m such that for any £k € N we have

max(val( f(BX*))) < m.

By Proposition 3.5(ii) we obtain that there is my > my such that for any
k € N and any x € BX* we have

min(val(f(B%,, (x)) = f(x))) > mi.
Take m’ = msy. We obtain that for any k € N and any x € BX* the function
val(f)| px+ 1s constant. This implies the assertion. d

Lemma 5.5. Let v : X; — Xy be an open embedding of p-rectified varieties.
Then for any m € N there is m' € N such that for any k € N there is a
m/-smooth function f, € C°(BX?*) such that:

Xo.k
Velbi ™) = fi* tios
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Proof.

Case 1. The p-rectification of X; is simple: Let Xy = |JU; be the cover
of X5. Let w; be the form on U; and v be the form on X;. Let
gi = @ € 0*(Xy). Fix m € N. By Proposition 3.5(i) there is
my > m such that for any k € N we have y(BX'"*) C v(BX>*).  For
every k € N and every i, denote

Fin = 19w en| - Lgxinoy gy € CE(BL).
Then we have
(/‘g?k)lgrxnhk = fintin"

From the previous lemma (Lemma 5.4), there is ms > m; such that
for any k& € N the function f; is mge-smooth.

Let hy =), fix. We obtain:

.« (uii?’“)lgﬁl’k = hioptog .

e h; is me-smooth.
Thus,

()L pxaky = (2™ )y (Ui o) = (Y () L) = (B ™) = 7o (B v (n

Note that
Supp(hy) = U Supp(fix) = U(Bfg“k N 7—1(3,2 ik BXl kN U -1 BU k
— Bxl,k N ,y (BXQJC) — BX1,/€
m mi m

Let
fula) = {mm—%x), if 2 € Supp(7: (he))
0, otherwise
We get
() e = iz )L, e fio = five (o) v(piog™™) = 1 o v (pigg™) = 7 (o).

So it remains to show that there is m’ such that for any & the function
fx is an m’-smooth function on BX2*. This follows from the above
using Lemma 5.3.
Case 2. the general case
Follows from the previous case.

0

Lemma 5.6. Let v : X; — Xy be an étale morphism of rectified varieties.
Then for any m € N there is m’ € N such that for any k € N and any m-
smooth function g € C®°(BXv*)  the function f := v.(g) on BX2* defined
by
fly) = > g(x)
2€(y = ) Epe (O)NBRT

18 m’-smooth.
23
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Proof. WLOG assume that ¢ is real and non-negatively valued. We will use
the criterion for m-smoothness (Lemma 5.2(1)). Fix m.
By Theorem 4.1 there is m; > m such that

(5.1) Vk € N,z € BX1* the map '}/‘Bxl,k(m) is a monomorphism
G

By Theorem 4.2 there exists m’ > m; such that for any k& and any x €
BXtk we have

(5:2) V(BE, (x) > BE (v(x)).
Fix k € N. For y € BX>*_denote
Sy = (7 W) (Fe((1)))-
Fix y € BX2* and denote
{z1,..., 25} :=F, N BX*.
By (5.1) and Lemma 3.4(2), for every i,j € {1,..., N}, we have:
(5.3) BXUM () 0 B (25) = 0.

Let i € BX>F(y). We obtain

, (5.2) X (5.3)
wOW) = glx) =D D g) =
TEF =1 zesy/ﬁB)_(}n’f(:pi)
N N
> min(g(BE5 () = > g(z:) = 1(9) ()
i=1 i=1
By Lemma 5.2(1) this implies the assertion. d

Theorem 5.7. Let v : Xy — Xy be a smooth map of u-rectified vari-
eties. Then for any m € N there is m' € N such that for any k € N
and any m-smooth function g € C>°(BX*) there is an m/-smooth function
f € C2(BX") such that:

Yl guRrhy = f ot
Proof.

Case 1. v is an open embedding;:
Follows from Lemma 5.3 and Lemma 5.5.
Case 2. v is étale, both rectifications are simple and the form on X, is the
pullback of the form on Xs:
Follows from Lemma 5.6.
Case 3. v is étale, and both rectifications are simple:
Follows from the previous 2 cases.
Case 4. v is étale, and the rectification of X, is simple:

Follows from the previous case.
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Case 5. v is étale and can be written as a composition: X; — X3 — Xy
where the rectification of X3 is simple and X3 — X5 is an open
embedding:

Follows from the previous case and Case 1.

Case 6. 7 is étale and the cover of X; is obtained of covers of the preimages

of the covering sets on Xo:
Follows from the previous case.

Case 7. 7 is étale:

Follows from the previous case and Case 1.

Case 8. X; = X5 x A" ~ is the projection, the rectifications on X; are
simple, and the rectification of X; is obtained from the rectification
of X5 in the natural way:
In this case we can take m’ = m. The assertion follows from the
fact that for 2 points zy, 79 € BX2* with 2, € BX2*(z,) we have
71(g) = j3(g) for any m-smooth g € C=°(BXvk) where j; : A" — X,
are given by j;(a) = (z;,a).

Case 9. X; = X, x A" ~ is the projection, and X5 is affine:
Follows from the previous case and Case 1.

Case 10. The general case:

Follows from the previous case Case 7, Case 1 and the structure
theorem for smooth maps ([Sta25, Theorem 039Q)]).

g

6. EFFECTIVELY SURJECTIVE MAPS

In this section we introduced a version of surjectivity of a map between
algebraic varieties. We complete the proof of Theorem G, and prove Theo-
rem E - a criterion for effective surjectivity (See Theorem 6.3 below).

Definition 6.1. Let v : X — Y be a map of rectified varieties. We say
that v is effectively surjective iff for any me N there is m' € N such that for
every k € N we have

Y(By") > BY*.
From Corollary 3.6 we obtain:

Lemma 6.2. The property of a map v : X — Y being effectively surjective
does not depend of the rectifications of the varieties X and Y.

Theorem 6.3. Let v: X — Y be a smooth map of algebraic varieties that
1s onto on the level of points over any field. Then =y is effectively surjective.

For this we will need some preparations.

Lemma 6.4. Let v : X — Y be a map of algebraic varieties. Assume that
v is onto on the level of points for any field (that contains Fy). Then, Y
admits a stratification such that v admits a section for each strata.

Remark 6.5. This is a standard result which is valid over any field. For

completeness, we include its proof here.
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Proof. We will prove the statement by Noetherian Induction. So it is enough
to show that v admits a section on some nonempty open set V.C Y. Without
loss of generality we can assume that Y is irreducible and affine.

Case 1:

Case 2:

dim(Y) =0
obvious.
dim(Y) >0

Let K be the field of rational functions on Y. By the assumption,
v(K) : X(K) — Y(K) is onto. We have a canonical point y €
Y (K). This gives us a point z € X(K) such that y = y(x). So we

get a commutative diagram:
X
e
) —2-Y

We have an affine open set U C X such that z € U(K). In other
words we get a diagram

Spec(K

U—X

d y

Spec(K) —2=Y
This gives us a map Oy (U) — K. Since Oy(U) is finitely generated
over [y, the image of this map lies inside f~'Oy(Y) for some f €

Oy (Y). Let V := Y be the non vanishing locus of f. We get a
commutative diagram:

U >

S~ ‘

PN

Spec(K) Y b

This gives the requested section.

The following follows immediately from Corollary 3.6:

Lemma 6.6. Let v: X — Y be a map of algebraic varieties defined over IF,
that admits a section. Then vy is effectively surjective.

Corollary 6.7. Let v : X — Y be a smooth map of algebraic varieties
defined over Fy. Let U C Y be open and Z :=Y ~ U. Assume that Z is

smooth.

Assume also that y|,-1z) : v H(Z) = Z and 7|~ vy -7 (U) = U

are effectively surjective. Then so is 7.
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Proof. Fix an integer m. Choose a rectification of v~1(U) which is compati-
ble with the rectification on X in the following sense: For any m € Z,k € N
we have

o B, (U c Xk,
e For any x € BX* we have BZZ(U)’k@) c BXF(x).

By Corollary 3.8 there exists m; > m such that for any k& we have

(6.1) BZ¥ 5 BY*n BZF.

By the assumption there exists my > my such that for any £ € N we have

—1

(62 V(B @) 5 k.

By the Proposition 3.5 there exists mg > ms such that for any k£ we have
X,k “Z),k

(6.3) BXk > By Ak,

By the Theorem 4.2 there exists m4 > mg such that for any k£ and for any
x € BXF we have

(6.4) Y(BE,(x) D BX, (v(x)).
By the Proposition 4.3 there exists ms > my such that for any k£ we have
Yk Uk Yk
(6.5) B, (Z)U B, D B,
By the assumption there exists mg > ms such that for any k£ we have
-1
(6.6) 2By, V%) > BYE

By Lemma 3.4(1,2) for any 2 integers a,b € N we have:

(6.7) U BY (@) =Bl"nBY'(Z)

zeBY *nBLF

and
(6.8) U  BY%'(@) =BXnBY((2).
2eBXkEARY @)k
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Take m’ = mg. For any k € N we have

Lemma 3.4(1)

WB) =B DT (BN 0T @) B U By ) =

—ms3

~
Xk (- , -1,
=(B%, (v (2) N B U (B, ) D

(6.8,6.6)
D v U BXE (z) | U Bk =

= U BYF (x)u B>

o
ze'y(BZm_Zl(Z)’k)

(6-2) Yk Uk

> |J BY(x)uBYr o
zeB,Zn’lk

(6.1)

> | BYL(@)uBYro
z€BY*nBLF

(6.7)

6.7
O(BYFn B (Z) UBYF >
S BYF N (BN (Z)UBYF) D

D BYE Yk — gy,
O

Proof of Theorem 6.3. By Lemma 6.4, there is a stratification Y = J,_, Y
such that v admits a section for each strata. By Lemma 6.6 the maps
vy YY) = Y, are effectively surjective. We will show that v: X — Y
is effectively surjective by induction on the number of strata. The base
follows from Lemma 6.6. For the induction step let Yy be a closed stratum.
Let Y =Y \ Yy By the induction hypothesis, the map v~ 1(Y’) — Y is
effectively surjective. By Lemma 6.6 the map v~ 1(Y,) — Y is effectively
surjective. So, by Corollary 6.7, v is effectively surjective. U

Theorem 4.4 gives us the following:

Corollary 6.8. Let v : X — Y be a submersion of p-rectified varieties.

Assume that v is effectively surjective. Then for any m there is m' such that
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for any k € N we have
o < O ).

Proof. Fix m. Since 7 is effectively surjective there is m; such that for every
k € N we have

Y(Bk) > Byt
By Theorem 4.4, there is M such that for any k we have
Yk KM [ Xk
Hom™ 1Supp(7*(u3§’f)) <O ().

Take m’ = my + M. For any k € N we have

m’ X,k
'u%’k - Mxk'lB?é‘k < ”xk'lw(Bﬁi’“) - Mxk'lSupp(v*(#fﬁ’f)) < ko”y*(/Lﬁk) <t Vb
O
INDEX
BXk pXk 8 effectively surjective, 25
X,k
P 9
O, 7 . : . .
7], 8 rectification, rectified variety, 8
jwl, 8
m~smooth, 22 variety, 7
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