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1. Basic definitions and Schur’s lemmas

Definition 1.1. A group G is a set with a binary operation G × G → G, called multi-
plication, such that

(1) ∀f, g, h ∈ G.(fg)h = f(gh)
(2) ∃1 ∈ Gs.t.∀g ∈ G, 1g = g1 = g
(3) ∀g ∈ G, ∃g−1 ∈ Gs.t. gg−1 = g−1g = 1

A morphism of groups φ : G → H is a function φ : G → H s.t. φ(g1g2) =
φ(g1)φ(g2) ∀g1, g2 ∈ G.

Example 1.2. Z - the group of integers, Z/nZ = the cyclic group of order n, Sym(X)-
the group of all bijections from X to itself. Also denoted by Symn or Sn if X has n
elements. If V is a vector space of dimension n over a field F then we denote by GL(V )
or by GL(n, F ) the group of all invertible linear transformations from V to itself.

Definition 1.3. A G-set (a,X) is a set X together with a morphism of groups a : G →
Sym(X). We also say that G acts on X via a, and that a is an action of G on X. We
will sometimes omit the a or the X from the notation. Also, we will sometimes write gx
for a(g)x.
A morphism of G-sets ν : (a,X) → (b, Y ) is a function ν : X → Y such that
ν(a(g)x) = b(g)ν(x), ∀g ∈ G, x ∈ X.
Denote by XG the set of fixed points of G in X, i.e. XG := {x ∈ X : gx = x ∀g ∈ G}.
For a point x ∈ X denote by Gx := StabG(x) := {g ∈ G : gx = x} the stabilizer of x
in G and by Gx := {gx : g ∈ G} the orbit of x.
An action of G on X is called free if all stabilizers are trivial and transitive if Gx = X
for some (and hence every) x ∈ X.

Example 1.4.

(1) Sym(X) acts on X.
(2) GL(V ) acts on V .
(3) G × G acts on G by (g1, g2) ∙ h = g1hg−1

2 . This gives rise to 3 actions of G on
itself, corresponding to 3 embeddings of G to G × G: left, right and diagonal.

Definition 1.5. Let H be a subgroup of G. Define an equivalence relation on G by g1 ∼ g2

iff g−1
1 g2 ∈ H. We will denote the set of equivalence classes by G/H and denote the

equivalence class of g by gH. Then G/H has a natural action of G defined by g1(g2H) :=
(g1g2)H. We call it the set of right H-cosets in G.
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If the subgroup H is normal, i.e. satisfies ghg−1 ∈ H ∀g ∈ G, h ∈ H then G/H has a
natural group structure defined by (g1H)(g2H) := g1g2H.

Proposition 1.6. (1) |G| = |G/H| ∙ |H|, where | | denotes the size of a set.
(2) Any transitive G-set X is isomorphic the set of cosets G/Gx where x ∈ X is any

point.
(3) Any G-set is a disjoint union of transitive G-sets (its orbits).

Many important groups have natural actions that are straightforward from their defi-
nitions. Many theorems on groups and their subgroups come from actions of G on itself
or on coset spaces G/H . G-sets are important, and one can use geometry to study them.
However, one cannot ”compute” in G-sets. In order to compute, one needs some algebraic
structure, e.g. a vector space.

Definition 1.7. A representation of a group G over a field F consists of a vector space
V over F and a morphism of groups π : G → GL(V ). We will denote the representation
by (G, π, V ) or (π, V ) or π or V . The dimension of V is called the dimension of the
representation. A one-dimensional representation is called a character. A morphism
of representations φ : (π, V ) → (τ,W ) is a linear map φ : V → W that is a morphism of
G-sets, i.e. such that φ(π(g)v) = τ(g)φ(v), ∀g ∈ G, v ∈ V .

Here are some examples of characters.

Example 1.8.

(1) The trivial character (of any group): χ(g) = 1 for all g.
(2) The sign character of Sn (sign of permutation).
(3) The determinant for GL(n, F ).

Here are some examples of representations.

Example 1.9.

(1) The zero representation (of any group): V = 0, GL(V ) has one element.
(2) SO(2,R) acts on R2 by rotations.
(3) GL(V ) acts on V .
(4) Sym(X) acts on the space F (X) of all functions X → F .

Exercise 1.10. Let π, τ ∈ Rep(G) and let φ : π → τ be a morphism of representations
which is an isomorphism of linear spaces. Show that φ is an isomorphism of representa-
tions. In other words, show that the linear inverse φ−1 is also a morphism of representa-
tions.

Definition 1.11. Let (π, V ) and (τ,W ) be representations of G (over the same field F ).
Define a representation of G on the direct sum V ⊕ W by g(v, w) := (π(g)v, τ (g)w).

Define a dual or contragredient representation (π∗, V ∗) by

(π∗(g)φ)(v) := φ(π(g−1)v).

Let (σ, U) be a representation of H (over F ). Define a representation of G×H on the
tensor product V ⊗ U by (g, h)(v ⊗ u) := π(g)v ⊗ σ(h)u.
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In particular, if G = H then π ⊗ σ is a representation of G × G, which also becomes
a representation of G using the diagonal embedding Δ : G ↪→ G × G. This enables us to
define an action of G on HomF (V, U) = V ∗ ⊗ U .

Exercise 1.12. Check that HomF (V, U)G = HomG(π, σ).

Definition 1.13. A subrepresentation of (G, π, V ) is a G-invariant subspace of V ,
with induced action of G.

Example 1.14. Any representation has (at least) 2 subrepresentations : 0 and V .

Definition 1.15. A representation is called irreducible if it has only 2 subrepresenta-
tions.

Example 1.16.

(1) Any character is irreducible
(2) The action of SO(2,R) on R2 by rotations is irreducible, while the action of R×

on R2 by homotheties is not.

Exercise 1.17. Every irreducible representation of a finite group is finite dimensional.

In the next lecture we will show that every representation is a direct sum of irreducible
ones, and for a given group there is a finite number of isomorphism classes of irreps (unlike
prime numbers). Thus, the main goals of representation theory are to classify all irre-
ducible representations of a given group (up to isomorphism) and given a representation
to find its decomposition to irreducible ones.

The most important properties of irreducible representations are Schur’s lemmas.

Lemma 1.18. Let ρ and σ be irreps of a group G.

(1) Any non-zero morphism φ : ρ → σ is an isomorphism.
(2) If the field F is algebraically closed and ρ is finite-dimensional then Hom(ρ, ρ) =

F ∙ Id.

Proof. (1) Ker φ is a subrepresentation of ρ and Im φ is a subrepresentation of σ.
(2) Let ϕ ∈ Hom(ρ, ρ) and λ be an eigenvalue of ϕ. Since ϕ − λId is not invertible, (1)
implies that it is zero. �

Corollary 1.19. Every irrep of a finite commutative group over an algebraically closed
field is one-dimensional.

Exercise 1.20. Every irrep of a commutative group over R is at most 2-dimensional.
Give an example of a 2-dimensional irrep.

Exercise 1.21. Let (π1, V1), (π2, V2) be irreps of a group G. Consider the direct sum
(π, V ) of these representations. The space V has four G-invariant coordinate subspaces
0, V1, V2, V . Show that the representations π1 and π2 are isomorphic if and only if there
exists a non-coordinate G-invariant subspace in V (i.e. a subspace distinct from the four
subspaces listed above).
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2. Existence and uniqueness of decomposition to irreducibles,
intertwining numbers and the group algebra.

From now on we consider only finite groups.

Definition 2.1 (Exercise). A representation π is called completely reducible if one of the
following equivalent conditions holds.

(1) π is a direct sum of irreducible representations.
(2) For every subrepresentation τ ⊂ π there exists another subrepresentation τ ′ ⊂ π

such that π = τ ⊕ τ ′.

Note that an irreducible representation is completely reducible :-).

Theorem 2.2 (Weyl-Mashke). Suppose that |G| is not zero in F . Then every represen-
tation (π, V ) of G over F is completely reducible.

Proof. Let τ ⊂ π. It is enough to find a G-invariant linear projection on τ . We take
any linear projection on τ and average it. Namely, we take a linear map p : V → V
s.t. p2 = p and Im p = τ and replace it by p′ := |G|−1

∑
g∈G π(g)pπ(g−1). Check that

p′2 = p′, Im p′ = τ and p′ is G-invariant. �

The idea of averaging is very important. It always gives something G-invariant, but
sometimes produces zero. It already takes advantage of linearity of our subject - we would
not be able to do such a thing with G-sets.

The assumptions that G is finite and |G| is not zero in F are necessary, as shown by
the following example.

Example 2.3. Define A ∈ Mat2(F ) by A =

(
1 1
0 1

)

. Let the group Z act on F 2 by

π(n) := An. Then this representation is not completely reducible.
If charF = p then the same example gives a representation of the finite group Z/pZ.

From now on we assume charF = 0 and F is algebraically closed. Also, we consider
only finite-dimensional representations.

Corollary 2.4. Any matrix A with An = Id is diagonalizable.

In order to prove uniqueness of the decomposition we introduce a very important notion,
called intertwining number.

Notation 2.5. We denote by Rep(G) the collection of all representations of G and by
Irr(G) the set of isomorphism classes of irreducible representations of G. In the next
lecture we will show that the set Irr(G) is finite.

Definition 2.6. Let π, τ ∈ Rep(G). Define the intertwining number of π and τ by
〈π, τ 〉 := dim HomG(π, τ ).

Lemma 2.7. The ”form” 〈∙, ∙〉 is ”bilinear and symmetric”. Namely

(1) 〈π1 ⊕ π2, τ〉 = 〈π1, τ〉 + 〈π2, τ〉
(2) 〈π, τ1 ⊕ τ2〉 = 〈π, τ1〉 + 〈π, τ2〉
(3) 〈

⊕
aiπi,

⊕
bjτj〉 =

∑
i

∑
j aibj〈πi, τj〉,

where ai and bj are natural numbers or zeros.
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(4) If πi are irreducible, and ai and bi are natural numbers or zeros then
〈
⊕

aiπi,
⊕

biπi〉 =
∑

i aibi

(5) 〈π, τ 〉 = 〈τ, π〉

Proof. (1)-(2) are obvious and imply (3), which in turn implies (4) using Schur’s lemmas.
Complete reducibility + (4) implies (5). �

Note that we just proved that the spaces HomG(π, τ ) and HomG(τ, π) are equidimen-
sional and hence isomorphic, but we have no natural isomorphism between them.

Corollary 2.8. The decomposition of any representation to a direct sum of irreducible
ones is unique. The multiplicity with which an irrep σ appears in a representation π equals
〈σ, π〉.

Corollary 2.9. A representation π is irreducible if and only if 〈π, π〉 = 1.

For a vector space V denote End(V ) := Hom(V, V ). Note that End(V ) = V ⊗ V ∗.
Thus, let us study some properties of actions on tensor products.

Let π ∈ Rep(G) and τ ∈ Rep(H).

Exercise 2.10. Show that (π ⊗ τ)|G = (dim τ)π and (π ⊗ τ)|H = (dim π)τ .

Notation 2.11. For a representation V denote by V G the space of G-invariant vectors.

Exercise 2.12. Show that (π ⊗ τ)G×H = πG ⊗ τH .

Lemma 2.13. Let ρ ∈ Irr(G) and σ ∈ Irr(H). Then ρ ⊗ σ ∈ Irr(G × H).

Proof.

EndG×H(ρ⊗σ) = (EndF (ρ⊗σ))G×H = (ρ∗⊗σ⊗σ∗⊗ ρ)G×H = (ρ∗⊗ ρ⊗σ⊗σ∗)G×H =

(ρ∗ ⊗ ρ)G ⊗ (σ ⊗ σ∗)H = EndF (ρ)G ⊗ EndF (σ)H = EndG(ρ) ⊗ EndH(σ).

Thus, 〈ρ ⊗ σ, ρ ⊗ σ〉 = 〈ρ, ρ〉〈σ, σ〉 = 1. �

Exercise 2.14. Prove that every irrep of G × H can be obtained in this way.

Corollary 2.15. If ρ ∈ Irr(G) then EndF (ρ) ∈ Irr(G × G).

Definition 2.16 (Group algebra). Define the group algebra A(G) of G to be the algebra
spanned over F by the symbols δg, g ∈ G with multiplication defined by δgδh = δgh. Note
that this is an associative non-commutative (unless G is commutative) algebra with unit
(equal to δ1). We can also view it as the algebra of functions from G to F , or the algebra
of measures on G, with multiplication given by convolution:

f ∗ h(g) :=
∑

x∈G

f(gx−1)h(x)

We define a representation of G × G on A(G) by (g1, g2)δx := δg1xg−1
2

∀x ∈ G or,

equivalently, ((g1, g2)f)(x) := f(g−1
1 xg2) ∀f ∈ A(G), x ∈ G. This representation is called

the regular representation of G. Its restrictions on first and second coordinate of G×G
are called the left regular and right regular representations respectively.

Definition 2.17. A representation of an algebra with unit A on a vector space V is a
morphism of algebras with unit A → End(V ).



6 DMITRY GOUREVITCH

Exercise 2.18. A representation (π, V ) of G defines a representation of A(G) on V and
vice versa.

Lemma 2.19. If ρ ∈ Irr(G) then the natural morphism of algebras A(G) → EndF (ρ) is
onto.

Proof. EndF (ρ) is an irrep of G × G and the image of this morphism is a non-zero sub-
representation. �

3. Decomposition of the regular representation. Corollaries on number
and dimensions of irreducible representations. Examples for small

symmetric groups

Lemma 3.1. Let V be a vector space. Then 〈A,B〉 := Tr(AB) defines a non-degenerate
symmetric bilinear form on End(V ). Moreover, if V is a representation of G then this
form is invariant with respect to the diagonal action of G. This form is called the trace
form.

Theorem 3.2. The natural morphism

φ : A(G) →
∏

σ∈Irr(G)

EndF (σ)

given on each coordinate σ by

φσ(f) := σ(f) =
∑

g∈G

f(g)σ(g)

is an isomorphism of algebras and of representations of G × G.

Proof. (1) It is easy to see that φ is a morphism of algebras and of representations of
G × G. Thus it is enough to show that φ is one to one and onto.

(2) Suppose f ∈ Ker φ ⊂ A(G). Then f acts by zero on any irreducible representation
of G and thus on any representation of G. Thus, f acts by zero on A(G), but
fδ1 = f and thus f = 0.

(3) Define a morphism ψ :
⊕

σ∈Irr(G) EndF (σ) → A(G) in the following way. For

A ∈ End(σ) let ψ(A)(g) := Tr(σ(g−1)A), and continue by linearity to the direct
sum. Let us show that the composition φψ is an embedding of

⊕
σ∈Irr(G) EndF (σ)

into
∏

σ∈Irr(G) EndF (σ).

Indeed, let σ, ρ ∈ Irr(G) and let φψρ
σ : EndF (σ) → EndF (ρ) be the projection to

EndF (ρ) of the restriction to σ of φψ. Since φψρ
σ is a morphism of representations

of G × G, that are irreducible by Corollary 2.15, Schur’s lemma implies that it
is constant if σ ' ρ and zero otherwise. The constant is non-zero, since φ is an
embedding, and ψ|EndF (σ) is an embedding by Lemmas 2.19 and 3.1. Thus φψ is
a direct sum of embeddings, and thus is an embedding.

Thus ψ is an embedding. This implies that Irr G is a finite set.
(4) Now, by (3) the R.H.S. is finite dimensional and its dimension is at most the

dimension of L.H.S, and by (2), φ is one to one. Thus φ is an isomorphism.
�
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Corollary 3.3. (1) Irr(G) is finite and
∑

σIrr(G)

(dim σ)2 = |G|.

(2) | Irr(G)| equals the number of conjugacy classes in G.

Proof. (1): both are equal to the dimension of A(G).
(2): both are equal to the dimension of the center of A(G). �

Example 3.4. If G is commutative then | Irr(G)| = |G| and all irreps are characters.

This example and Theorem 3.2 show that representation theory is in some sense
Fourier analysis on non-commutative groups.

The main goal of representation theory is to classify all irreducible representations of a
given group G. For complex representations of simple finite groups this has been achieved
in the 20th centaury, together with the classification of such groups.

We will now consider small symmetric groups, but first we will prove an important
general lemma.

Lemma 3.5. Let X and Y be G-sets. Then 〈F (X), F (Y )〉 equals the number of orbits of
G in X × Y under the diagonal action.

Proof. Using the basis of δ-functions on F (X) we have a natural isomorphism

HomF (F (X), F (Y )) ∼= F (X × Y )

as representations of G × G, and thus as representations of ΔG. Thus

HomG(F (X), F (Y )) = HomF (F (X), F (Y ))ΔG ∼= F (X × Y )ΔG ∼= F ((X × Y )/ΔG),

where (X × Y )/ΔG is the set of ΔG-orbits. Thus the dimension is the number of orbits.
�

Definition 3.6. X is called double-transitive if ΔG has 2 orbits on X × X.

In other words, for any 2 pairs (x, y), (x′, y′) ∈ X × X with x 6= y and x′ 6= y′ there
exists g ∈ G s.t. gx = x′ and gy = y′.

Corollary 3.7. If the action of G on X is double-transitive then F0(X) is irreducible.

Proof. F (X) = F ⊕ F0(X), thus if 〈F (X), F (X)〉 = 2 then 〈F0(X), F0(X)〉 = 1. �

Example 3.8. Classification of Irr(S2).
S2 acts on {1, 2}. We have decomposition to irreps F ({1, 2}) = F ⊕ F0({1, 2}). Since S2

is of size 2, we found all irreps. In fact, F0({1, 2}) is the sign character.

Example 3.9. Classification of Irr(S3).

S3 acts double-transitively on {1, 2, 3}. Thus ρ := F0({1, 2, 3}) is irreducible. We also
have the trivial representation and the sign character. Since S3 has 3 conjugacy classes,
this is all. We can also check this using dimensions: 22 + 12 + 12 = 3!.
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Example 3.10. Classification of Irr(S4).
S4 acts double-transitively on X := {1, 2, 3, 4}. Thus ρ := F0({1, 2, 3, 4}) is irreducible.
We also have the trivial representation and the sign character. S4 has 5 conjugacy classes,
thus there are two more irreps. The sums of squares of their dimensions is 4!−12−12−32 =
13. Thus the dimensions of the missing irreps are 2 and 3.

Let Y be the set of subsets of X of size 2. Then S4 has 3 orbits on Y × Y : the
diagonal orbit, pairs with one common element, and pairs without common elements.
Geometrically, X can be viewed as vertices of a tetrahedron, and Y as its edges.
Thus, by the lemma, F (Y ) is the sum of 3 non-isomorphic irreps.
One of them is the trivial rep. Is ρ inside? To see this we compute 〈F (X), F (Y )〉. Since
S4 has has two orbits on X × Y , 〈F (X), F (Y )〉 = 2 and they have 2 irreps in common.
Since F (X) = F ⊕ ρ, we get that F (Y ) includes ρ with multiplicity one.
Thus F (Y ) = F ⊕ ρ ⊕ τ , where τ is a 2-dimensional irrep.
We miss a 3-dimensional irrep. I claim that it is sgn ∙ρ. We just need to check that it is
not isomorphic to ρ. We can check this on a simple permutation (12), using trace.
Indeed, the trace of the action of (12) on F (X) is 2, and thus Tr ρ(12) = 1. On the other
hand, Tr(sgn(12) ∙ ρ(12)) = −1, and thus these reps are not isomorphic.

Exercise 3.11. τ ∼= sgn ∙τ

4. Isotypic components; Characters, Schur orthogonality relations

4.1. Isotypic components.

Definition 4.1. A representation is called isotypic if it is a direct sum of isomorphic
irreducible representations.

Exercise 4.2. The following are equivalent:

(1) π is isotypic
(2) All irreducible subrepresentations of π are isomorphic
(3) If π ' ω ⊕ τ with 〈ω, τ 〉 = 0 then either ω = 0 or τ = 0.

Theorem 4.3. Let (π, V ) ∈ Rep(G). Then there exists a unique set of subrepresenta-

tions Vi such that V =
⊕k

i=1 Vi, Vi are isotypic, and 〈Vi, Vj〉 = 0. Moreover, for any

subrepresentation W ⊂ V , we have W =
⊕k

i=1(W ∩ Vi).

Proof. By induction. Existence is easy. Uniqueness follows from the ”moreover” part.
To prove the ”moreover” part, fix a decomposition V =

⊕
Vi, let W ⊂ V and consider

the decomposition W =
⊕

Wi where Wi has the same type as Vi, or is zero. Then
W ∩ Vi ⊂ Wi. On the other hand, Wi has zero projection on Vj , for j 6= i and thus
Wi ⊂ Vi. Thus Wi = Vi ∩ W . �

The Vi are called the isotypic components of π.

Definition 4.4. If all isotypic components of π are irreducible then π is called multiplicity
free.

Lemma 4.5 (Easy). Every intertwining operator L ∈ HomG(π, π) preserves each isotypic
component. In particular, if π is multiplicity free then L is scalar on each Vi.
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Exercise 4.6. Barak has got a game for his birthday. In the game there was a cube
with digits 1,...,6 on its faces, distributed somehow, not in the standard way. Each time
he played with his friends and lost, he blamed the cube and modified it by replacing the
number on every face by the average of the numbers written on the 4 neighbors of the face
during the game round. What numbers will be written on the faces after 10 losses?

Solution. Let V denote the 6-dimensional space of functions on the set X of faces of the
cube and L denote the ”averaging on neighbors” operator. Of course, we can guess that
the answer will be approximately the constant function 3 .5. However, to know how precise
this approximation is we will need to diagonalize L and representation theory will help
us.

Let G denote the group of motions of the cube and consider V as its representation.
Then G has 3 orbits on X ×X, thus 〈V, V 〉 = 3 and thus V is a sum of 3 non-isomorphic
irreducible representations. One is, of course, the 1-dimensional space V1 of constant
functions. The other is the 2-dimensional space V2 of ”symmetric” functions with zero
sum, namely functions that have the same value on opposite faces (and zero sum). The
third is the 3-dimensional space V3 of ”anti-symmetric” functions.

The operator L commutes with the group action and thus acts by a scalar λi on each
Vi. Taking convenient vectors from each Vi we get λ1 = 1, λ2 = −1/2, λ3 = 0. Note

that V has the natural form 〈f, g〉 :=
∑

f(x)g(x), which is G-invariant and thus can be
used to compute projections to Vi. Let ξ be the original function given by (1, 2, 3, 4, 5, 6).
Then its projection ξ1 to V1 is the constant function 3.5. The length of the projection to
V2 is at most

√
2((3.5 − 1)2 + (3.5 − 2)2 + (3.5 − 3)2) =

√
17.5 and thus |L10(ξ) − ξ1| ≤√

17.5/210 < 0, 005. �

Exercise 4.7. Classify all irreducible representations of the group G from the solution of
the last exercise.

Hint. Use the action of G on faces, edges, vertices and main diagonals of the cube, and
on regular tetrahedra inscribed in the cube.

4.2. Characters.

Definition 4.8. Let (π, V ) ∈ Rep(G). Define a function χπ on G by χπ(g) := Tr π(g).

Lemma 4.9.

(1) If π w τ then χπ = χτ .
(2) χπ(hgh−1) = χπ(g), i.e. χπ ∈ Z(A(G)).
(3) χπ⊕τ = χπ + χτ .
(4) χπ⊗τ = χπχτ .
(5) χπ(g−1) = χπ∗(g).

This lemma immediately follows from the corresponding properties of trace.

Definition 4.10. Define a bilinear form on A(G) by

〈f, h〉 := |G|−1
∑

g∈G

f(g)h(g−1)

Exercise 4.11. This form is bilinear, symmetric and non-degenerate.
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4.3. Schur orthogonality relations.

Theorem 4.12 (Schur orthogonality relations).

〈χπ, χτ 〉 = 〈π, τ 〉

Proof. Let us first prove for the case when π is the trivial representation. Then
Hom(π, τ ) = τG. Define p : τ → τG by p := 1/|G|

∑
τ(g). Then Im p = τG and

p|τG = Id, i.e. p is a projection on τG. Thus, dim τG = Tr(p). On the other hand,

Tr(p) = 1/|G|
∑

Tr(τ(g)) = 1/|G|
∑

g∈G

χτ (g) = 1/|G|
∑

χπ(g−1)χτ (g) = 〈χπ, χτ 〉

Now we will repeat the same argument for the general case, using the following exercise.

Exercise 4.13. Let L, V be finite-dimensional linear spaces and let X ∈ End V, Y ∈
End L. Define ΨX,Y : Hom(L, V ) → Hom(L, V ) by ΨX,Y (A) := XAY . Then Tr ΨX,Y =
Tr X Tr Y .

Hint There are (at least) two ways to solve this:
1) There is a ”free’ proof with tensor calculus.
2) In coordinates, (Y EijX)ij = YiiXjj .

Now, let V be the space of π and L be the space of τ . Then HomG(π, τ ) = Hom(V, L)G.
For any g ∈ G define Q(g) : Hom(V, L) → Hom(V, L) by Q(g)(A) := τ(g)Aπ(g−1). Then
1/|G|

∑
g∈G Q(g) is a projector from Hom(V, L) onto HomG(π, τ ) = Hom(V, L)G. Thus

〈π, τ 〉 = dim HomG(π, τ ) = Tr(1/|G|
∑

g∈G

Q(g)) = 1/|G|
∑

g∈G

χτ (g)χπ(g−1) = 〈χπ, χτ 〉

�

Corollary 4.14. The character is a full invariant of a representation.

Proof. π =
⊕

ρ∈Irr G mρρ, and mρ are determined by mρ = 〈π, ρ〉 = 〈χπ, χρ〉. �

Corollary 4.15. Characters of irreducible representations form an orthonormal basis for
Z(A(G)).

Proof. By Lemma 4.9, characters of irreducible representations belong to Z(A(G)). By
the theorem and Schur’s lemmas, they form an orthonormal set. By Corollary 3.3 their
number is equal to dim Z(A(G)). Thus, they form an orthonormal basis. �

Lemma 4.16. If F = C then χπ(g−1) = χπ(g). Thus, on characters of representations,

the form 〈 , 〉 coincides with the scalar product defined by 〈f, h〉′ = |G|−1
∑

g∈G f(g)h(g).

Proof. As we showed some time ago, π has an invariant scalar product and thus π∗ ' π.
Now, χπ(g−1) = χπ∗(g) = χπ(g) = χπ(g). �

Remark 4.17. Characters of representations span Z(A(G)). However, the forms 〈 , 〉
and 〈 , 〉′ cannot coincide on Z(A(G)) since one of them is bilinear, and the other is
sesquilinear.
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4.4. Dimensions of irreps divide the order of the group.

Proposition 4.18. Let ρ ∈ Irr(G) and let zρ = (dim ρ/|G|)
∑

g∈G χρ(g
−1)δg.

Then ρ(zρ) = Id and σ(zρ) = 0 for any σ � ρ ∈ Irr(G).

Proof. Let ω ∈ Irr(G). Then, by the second Schur’s lemma, ω(zρ) is a scalar. Now,
Tr ω(zρ) = dim ρ/|G|

∑
g∈G χρ(g

−1)χω(g) = dim ρ ∙ 〈ρ, ω〉. Thus, ω(zρ) = Id if ρ ' ω and

ω(zρ) = 0 otherwise. �

Corollary 4.19. The inverse of the map A(G) '
⊕

ρ∈Irr(G) EndF (ρ) is given on the

coordinate EndF (ρ) by T 7→ fT (g) = (dim ρ/|G|) Tr(Tρ(g−1)).

Corollary 4.20. ∀ρ ∈ Irr(G), dim ρ divides |G|.

For the proof we will need

Definition 4.21. A lattice is an abelian group without torsion.

Theorem 4.22 (from commutative algebra). Any finitely generated lattice L has a basis,
i.e. L ' Zn. In other words, ∃l1, ..., ln ∈ L s.t. ∀l ∈ L, ∃! {ai} s.t. l =

∑
aili, li ∈ Z.

Lemma 4.23. Let V be a vector space over Q, and let L < V be a finitely generated
lattice. Let T : V → V s.t. T (L) ⊂ L. Suppose that T 2 = qT . Then q ∈ Z.

Proof. Fix a basis (l1, ..., ln) for L. Take x ∈ L and let y := Tx. Then Ty = qy and
T ky = qky ∀k ≥ 1. Thus q is rational, and any power of the denominator of q divides all
the coordinates of y. Thus q ∈ Z. �

We note that V can be infinite-dimensional.

Proof of Corollary 4.20. Apply the previous lemma to the following setting: V := A(G),
vieweed as a vector space over Q, T := convolution with

∑
χρ(g

−1)δg, q = |G|/ dim ρ and

L := lattice generated by {ξδg : ξ is a root of unity of order |G|}.

Let us show that the conditions of Lemma 4.23 are satisfied. We have T/q = zρ, and by
Corollary 4.19, z2

ρ = zρ. Thus (T/q)2 = T/q and T 2 = qT . Next, for any g ∈ G, we have

ρ(g)|G| = 1, and thus all the eigenvalues of ρ(g) are roots of unity of order |G|. Thus, for
any g, χρ(g) is an integer combination of roots of unity, and thus zρ ∈ L. It is easy to see
that L is closed under convolution, and thus T (L) ⊂ L. �

5. Classification of representations of symmetric groups

Let X be a set of size n and G = Sym(X) = Sn.

Lemma 5.1. Conjugacy classes in Sn = partitions of n, i.e. sets (α1, ..., αk) of natural
numbers s.t. α1 + ... + αk = n and α1 ≥ ... ≥ αk.

One can draw partitions using Young diagrams. That is, we draw a figure of boxes, in
which raw i consists of αi boxes.

Example 5.2. , ,
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Let us now find an irreducible representation for each partition α = (α1, ..., αk). Denote
by Xα the set of all decompositions of the set X to subsets X1, .., Xk s.t. |Xi| = αi. Each
such decomposition can be pictured by a Young tableau. A Young tableau is a distribution
of numbers 1 . . . n into a Young diagram such that the numbers in each row are increasing
(some sources give different meaning to this word).

Example 5.3.

1 2 3
4 7 8
5 6 ,

1 5 6
2 3 8
4 7 ,

1 2 3 4 5
6 7 8 ,

1 2 6 7 8
3 4 5

Note that

|Xα| =
n!

α1!α2! . . . αk!

Definition 5.4. Tα := F (Xα), T ′
α := sgn ∙ Tα.

Introduce a partial ordering on partitions by λ ≤ μ iff
∑j

i=1 λi ≤
∑j

i=1 μi ∀1 ≤ j ≤ n.
Graphically, one obtains smaller partitions by moving boxes down.

Example 5.5. > > ,

while and are incomparable.

Example 5.6.

∗

= and

∗

= .

Definition 5.7. Denote by α∗ the transposed partition given by α∗
i := |{j : αj ≥ i}|.

Exercise 5.8. (1) α∗ is a partition and (α∗)∗ = α.
(2) α ≤ β ⇔ α∗ ≥ β∗.

Graphically, one obtains α∗ by exchanging the rows with the columns.

Lemma 5.9 (Exc). If X,Y are finite G-sets and χ is a character of G then the inter-
twining number 〈πX , χπY 〉 equals to the number of G-orbits O under the diagonal action
on the set X × Y such that for any point z ∈ O, the restriction χ|Gz of χ to the stabilizer
Gz of z is trivial.

Proof. As in the case χ = 1 that was proved earlier,

〈πX , χπY 〉 = dim HomG(πX , πY ) = dim F (X × Y )G,

where the action of G is by f g(x, y) = χ(g−1)f(g−1x, g−1y). Let z = (x, y) ∈ X × Y . If
χ is not trivial on Gz then every f ∈ F (X × Y )G vanishes on z. If χ is trivial on Gz,
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then there exists a unique function δGz ∈ F (X × Y )G that vanishes outside the orbit of
z, and on the orbit of z is given by δGz(gz) = χ(g−1). These functions form a basis for
F (X ×Y )G, and thus the number of orbits with trivial restriction χ|Gz equals F (X ×Y )G

which in turn equals 〈πX , χπY 〉. �

Theorem 5.10. Let α and β be partitions of n. Then

〈Tα, T ′
β〉 =

{
0, α 
 β∗;
1, α = β∗.

By the lemma, the theorem is equivalent to computation of the number of G-orbits on
Xα ×Xβ such that the sgn is trivial on the centralizer of any point of the orbit. We leave
this computation as a difficult combinatorial exercise.

The theorem implies the following corollary.

Corollary 5.11. Let α and β be partitions of n. Then

(i) The representations Tα and T ′
α∗ have a unique joint irreducible component, that we

will denote by Uα.
(ii) If Uα ' Uβ then α = β.

Proof. Part (i) follows from 〈Tα, T ′
β〉 = 1. For pat (ii), if Uα ' Uβ then Uα is a common

irreducible component of Tα and T ′
β∗ . Thus 〈Tα, T ′

β∗〉 > 0, which by Theorem 5.10 implies
α ≤ (β∗)∗ = β. Also, Uα is also a common irreducible component of T ′

α∗ and Tβ. Thus
〈Tβ, T ′

α∗〉 > 0, which by Theorem 5.10 implies β ≤ (α∗)∗ = α. Together we obtain
α = β. �

Corollary 5.12. Every σ ∈ Irr(Sn) is isomorphic to Uα for some unique α.

Proof. Let P (n) denote the number of partitions of n. It also equals the number of
conjugacy classes in Sn and thus equals | Irr(Sn)|. Since Uα 6' Uβ for α 6= β, the Uα

constitute P (n) pairwise non-isomorphic irreducible representations, and thus exhaust all
irreducible representations of Sn. �

We have thus obtained a classification of all irreducible representations of Sn. This
classification is not very satisfying, but a long and detailed study of the intertwining
operator between Tα and T ′

α∗ will lead to a (quite long) expression for the character of
Uα. We will give here a formula for dim Uα, that we will prove later using Gelfand pairs:

dim Uα =
n!
∏

i<j(li − lj)

l1!...lk!
,

where li = αi + k − i, i = 1, ..., k.

6. Commutative groups: Fourier transform.

Let G be a finite commutative group. Then, by the second Schur’s lemma all irreducible
representations are 1-dimensional (characters). Their number is equal to |G|. Actually,
the characters form a group: (χ ∙ ψ)(g) := χ(g)ψ(g). It is called the (Pontryagin) dual

group Ĝ. This group is not canonically isomorphic to G, but G u ̂̂G canonically.
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Now, we constructed an isomorphism A(G) u
⊕

End(σ). For commutative G it be-

comes F : A(G) ∼= F (Ĝ), where the multiplication in F (Ĝ) is pointwise. It is called
Fourier transform. To see why let us write the explicit formula.

F(f)(χ) =
∑

g∈G

f(g)χ(g)

By Schur orthogonality relations, we know that the characters form an orthonormal basis
for A(G) and thus f can be reconstructed from F(f) by

f(g) = |G|−1
∑

χ∈Ĝ

F(f)(χ)χ(g)−1

since F(f)(χ) is exactly the χ−1-coordinate of f . This formula is called Fourier inversion

formula. It also shows that F(F(f))(g) = |G|−1f(g−1), under the identification G u ̂̂G.
To make things more familiar, let take F = C. Then we have χ−1 = χ. Let us consider

G = Z/nZ and choose a non-trivial character ψ by ψ(k) := exp( 2πik
n

). Then for c ∈ Z/nZ
we have another character is given by a 7→ ψ(ca), and all characters of G are of this form.

This gives an identification of G with Ĝ and the familiar formulas for Fourier transform.

The same thing happens for G = R, but analysis comes in. For G = S1, Ĝ = Z and
Fourier transform becomes Fourier series.

Application. Multiplication of numbers.
Remark. The isomorphism A(G) u

⊕
End(σ) for non-commutative groups can be

viewed as a generalization of Fourier transform.

7. Induction of representations

We are looking for a way of ”lifting” representations of a subgroup H < G to represen-
tations of G. In other words, we are looking for a ”functor” IndG

H : Rep(H) → Rep(G).
Let us first find the trace (character) of IndG

H(π). We have a natural map ResG
H :

Z(A(G)) → Z(A(H)). On both algebras we have a natural non-degenerate bilinear form.
Let us define IndG

H : Z(A(H)) → Z(A(G)) as the conjugate to ResG
H w.r. to these forms.

For any g ∈ G let Cg denote the conjugacy class of g and δCg denote the function which
equals |Cg|−1 on Cg and zero outside Cg. Then the functions of this form span Z(A(G)).
Let χ ∈ Z(A(H)). Since IndG

H(χ) := (ResG
H)∗(χ) is defined in terms on scalar product

with other functions, we would like to express its value at every point using scalar product.
Since IndG

H(χ) is invariant to conjugation, we have

IndG
H(χ)(g) =

∑

x∈Cg

IndG
H(χ)(x)δCg(x) =

∑

x∈G

IndG
H(χ)(x)δCg(x) = |G|〈IndG

H(χ), δCg−1 〉

Now, using IndG
H(χ) := (ResG

H)∗(χ) we obtain

IndG
H(χ)(g) = |G|〈IndG

H(χ), δCg−1 〉G = |G|〈χ, δCg−1 |H〉H =
|G|

|H||Cg|

∑

h∈Cg∩H

χ(h)

As we know, this defines IndG
H(π) uniquely (up to isomorphism). One only has to show

existence now. However, before doing this let us check the meaning of induction by
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evaluating IndG
H(χπ) on another (generating) subset of Z(A(G)) - the one formed by

characters of representations.

〈τ, IndG
H(π)〉 = 〈χτ , IndG

H(χπ)〉G = 〈ResG
Hχτ , χπ〉H = 〈ResG

Hτ, π〉

This very important formula is called Frobenius reciprocity. First of all, it shows that
IndG

H(χπ) is the character of a representation. It also defines induction uniquely and in
fact could be guessed without considering characters since in means that IndG

H(π) is the
”free representation of G generated by π”. Similar definitions work for the free group,
free module etc.

Let us now construct IndG
H(π). First let us consider several examples

Example 7.1. (1) H = {e}, IndG
H(F ) = F (G).

(2) For any H, IndG
H(F ) = F (G/H).

(3) For any character χ of H, IndG
H(χ) = {f ∈ F (G) : f(gh) = χ(h)−1f(g)}.

(4) For any H-set X, the free G-set generated by X is the set of H-orbits in G × X
under the action h(g, x) := (gh−1, hx).

Based on these we define, for any (π, V ) ∈ Rep(H),

IndG
H(π) = {f ∈ F (G, V ) : f(gh) = π(h−1)f(g)},

where F (G, V ) denotes all the functions from G to V with the usual action of G, i.e.
IndG

H(π)(g)f(g′) = f(g−1g′).
Moreover, this construction is functorial. This means that for π1, π2 ∈ Rep(H) and

φ ∈ HomH(π1, π2) we define IndG
H(φ) : IndG

H(π1) → IndG
H(π2) by IndG

H(φ)(f)(g) = φ(f(g)),
and this preserves composition.

Lemma 7.2. The above construction satisfies Frobenius reciprocity. More precisely, for
any π ∈ Rep(H) and τ ∈ Rep(G) there is a canonical isomorphism

HomG(τ, IndG
H(π)) ' HomH(τ |H , π)

Proof. To build the isomorphism let φ : τ → IndG
H(π). Then its image is given by

ψ(w) = (φ(w))(e), where w ∈ τ , and e ∈ G is the identity element. The inverse morphism
maps ψ ∈ HomH(τ |H , π) to φ ∈ HomG(τ, IndG

H(π)) defined by φ(w)(g) := ψ(g−1w). �

Exercise 7.3. (1) For H < G and π1, π2 ∈ Rep(H),

IndG
H(π1 ⊕ π2) = IndG

H(π1) ⊕ IndG
H(π2).

(2) For H1 < H2 < G and π ∈ Rep(H),

IndG
H2

IndH2
H1

π = IndG
H1

π

Exercise 7.4. Repeat Exercise 4.6 for a dodecahedron.

Hint. Let G be the symmetry group of the dodecahedron, and H be the stabilizer of a
face. Then the set of faces is G/H , and we consider the space of functions F (G/H) as a
representation of G. It is the induction of the trivial representation: F (G/H) = IndG

H 1.
As in the case of the cube, the averaging operator L is an intertwining operator. As in
the cube again, one can show that F (G/H) is a multiplicity free representation, and thus
L diagonalizes - it acts by a scalar on each irreducible subrepresentation of F (G/H). We
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want to find those scalars. By Frobenius reciprocity, every irreducible subrepresentation
has an H-invariant vector. Compute L on such vectors. �

Induction can be best described using equivariant sheaves.

7.1. Induction and equivariant sheaves. In this section we will use two topological
notions: vector bundles and equivariant sheaves. Since we consider only finite sets with
discrete topology, in our case these notions become much simpler.

Intuitively, a sheaf is a continuous family of vector spaces, parameterized by points of a
given topological space X. If we demand that all the spaces have the same dimension we
will get a vector bundle. In our case, these are precisely the definitions, and we require
the dimensions to be finite.

We will denote sheaves by Gothic letters, mainly F . Let F be a sheaf over X. The
vector space corresponding to x ∈ X is called the fiber of F at x and denoted Fx. The
disjoint union of all fibers is called the total space of F and we denote it by T (F).
Note that we have a natural map T (F) → X, and that T (F), together with the map
T (F) → X defines F uniquely.

A morphism of sheaves φ : F → G over the same space X is a collection of linear maps
φx : Fx → Gx, one for each x ∈ X.

For any (open) subset U ⊂ X, we define F(U) :=
⊕

x∈U Fx. This space is called the
space of sections of F on U since it is precisely the space of sections of T (F) → X on U .
The space F(X) is called the space of global sections and sometimes denoted Γ(F).

Now, for a (continuous) map ν : X → Y define ν∗ : Sh(X) → Sh(Y ) and ν∗ : Sh(Y ) →
Sh(X) by

ν∗(F)(U) := F(ν−1(U)) and(ν∗(G))x := Gν(x),

where F ∈ Sh(X) and G ∈ Sh(Y ).

Exercise 7.5. Let ν : X → Y and let F1,F2 ∈ Sh(X), G1,G2 ∈ Sh(Y ), φ : F1 → F2, ψ :
G1 → G2. Define natural maps ν∗(φ) : ν∗(F1) → ν∗(F2) and ν∗(ψ) : ν∗(G1) → ν∗(G2).

Definition 7.6. Let X be a G-set and F be a sheaf over X. A G-equivariant structure
on F is a G-set structure on the total space T (F) such that the natural map T (F) → X
is a morphism of G-sets, and for every g ∈ G and x ∈ X, the map Fx → Fgx given by
the action of g on T (F) is linear.

Exercise 7.7. The following structures on F are equivalent:

(1) An equivariant structure
(2) For any x ∈ X and g ∈ G - a linear map π(g)x : Fx → Fgx such that for g1, g2 ∈ G,

π(g1g2)x = π(g1)g2x ◦ π(g2)x.
(3) An isomorphism of sheaves α : a∗(F) ≈ p∗2(F), where p2, a : G × X → X are the

projection to the second coordinate and the action respectively, that satisfies the
following condition:

(*) Consider the set Z = G × G × X and two morphisms q, b : Z → X, defined
by q(g, g′, x) = x and b(g, g′, x) = gg′x. The morphism α induces two morphisms
of sheaves β, γ : q∗(F) → b∗(F). The condition on α is that these two morphisms
are equal.
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Definition 7.8. Let F ,H ∈ ShG(X). Then a morphism of equivariant sheaves F → H
is a morphism of sheaves such that the corresponding map of total spaces T (F) → T (H)
is a morphism of G-sets.

Exercise 7.9. Give the definition of a morphism of equivariant sheaves in two other
realizations of equivariant sheaves.

We have the following obvious lemma.

Lemma 7.10. Let X = X1

∐
X2 be a disjoint union of G-sets. Then

ShG(X) = ShG(X1) ⊕ ShG(X2).

Definition 7.11. For an equivariant sheaf F on X, define the action of G on the space
of global sections F(X) by (gf)(x) := g(f(g−1x)), where f : X → TF is a global section.

Corollary 7.12. If F ∈ ShG(X) and F(X) is irreducible then either F(X1) = 0 or
F(X2) = 0.

Let us now study sheaves over a transitive G-set, G/H .

Lemma 7.13. There is a natural equivalence ShG(G/H) ∼= Rep(H).

Proof. Given a sheaf on G/H , we take its fiber at the coset H. To a representation (π, V )
of H, we put in correspondence the vector bundle Ind(π) whose total space is the set of
H-orbits in G × V under the action h ∙ (g, v) := (gh−1, π(h)v). The action of G on the
total space is given by left multiplication.

Let us show that these two functors are indeed inverse to each other. One direction
is easy: Ind(π)H is identified with π by sending each equivalence class of pairs (h, v) to
the unique representative of the form (1, v). Checking the action of H: h(1, v) = (h, v) ∼
(1, π(h)v).

To the other direction, let F be a G-equivariant sheaf on G/H , and let π := FH . Then
we have a natural map Ind(π) → F given on the total spaces by (g, v) 7→ gv1, where v1

denotes the image of v in the total space TF (recall that TF is a union of fibers, and
therefore π = FH is naturally a subset). This map is well-defined, since (gh, π(h−1)v) 7→
ghh−1v = gv. It is easy to see that the map commutes with the projections to G/H . It is
left to check that the map is a bijection. It preserves fibers, is clearly a bijection on the
fibers at H, therefore on the fibers at any other point, and therefore everywhere. �

To describe the fibers of Ind(π) at every point, choose a representative gi for every coset
and let Ind(π)giH be the representation (πgi , V ) of giHg−1

i given by πgi(gihg−1
i ) = π(h).

The map Ind(π)H → Ind(π)giH given by gi is the identity map, and all other maps are
compositions of the above 2 types.

Exercise 7.14. Ind(π)(G/H) = IndG
H(π).

Let xi be a set of representatives of G-orbits on X and Gi be the stabilizers in G of xi.
Then the above discussion defines an equivalence ShG(X) '

⊕
i Rep(Gi).
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8. Mackey theory

Let N < G be a normal subgroup. Let π ∈ Rep(G) and let π|N =
⊕

σ∈Irr(N) πσ be the

decomposition of π|N to isotypic components. For any representation (ρ, V ) of N , and
g ∈ G we have a new representation (ρg, V ) of N by ρg(n)v := ρ(gng−1)v. Note that
gng−1 ∈ N . This defines an action of G on Irr(N).

The decomposition of π|N to isotypic components defines an equivalence

Rep(G) ' Shspec
G (Irr(N)),

where by Shspec
G (Irr(N)) we mean the sheaves on Irr(N) such that the fiber at each point

ρ is an isotypic representation of N of type ρ. Let σi be a set of representatives of orbits
of G on Irr(N) and Si be the stabilizers in G of σi. Then Rep(G) '

⊕
i Repspec(Si), where

Repspec(Si) denotes the category of representations whose restrictions to N are isotypic
of type σi. In particular, if σ ∈ Irrspec(Si) then IndG

Si
(σ) ∈ Irr(G), and any irreducible

representation of G is obtained in this way.

Corollary 8.1. Let π ∈ Irr(G). Then either π|N is isotypic of type (ρ, V ) and ρg ≈ ρ for
all g ∈ G, or there exists a subgroup N < H $ G and an irreducible representation τ of

H such that π = IndG
H(τ).

Proof. By the discussion above, π =
⊕k

i=1 IndG
Si

σi. Since π is irreducible, k = 1. If
S1 = G then for ρ = σ1 we have that π|N is isotypic of type (ρ, V ) and ρg ≈ ρ for all
g ∈ G. If S1 6= G let H := S1 and τ := σ1. Then π = IndG

H(τ). �

Note that in the first case we get a projective representation of G on V , i.e. a group
homomorphism G → GL(V )/scalars. Indeed, for any g ∈ G, ρ is isomorphic to ρg. This
isomorphism is a linear operator on V . Denote it by τ(g). To be a representation, τ(gh)
should equal τ(g)τ(h). We do not have this equality, but both are intertwining operators
from ρ to ρgh. Thus, by the second Schur’s lemma, their ratio is a scalar. Thus τ defines
a projective representation.

Now suppose that N is commutative and G = S nN .

Exercise 8.2. For any π ∈ Irr(G), dim π ≤ |S|.

Now, consider

P2(Fq) :=

{(
a b
0 1

)

: a ∈ F×
q , b ∈ Fq

}

Example 8.3. Note that P2 = F×
q n Fq. There are 2 orbits of F×

q on the dual group F̂q

(consisting of characters): the zero and the non-zero orbit. The stabilizers are F×
q and the

trivial group respectively. Fix a non-trivial character ψ of Fq. Then there are q irreducible

representations of P2: IndP2
Fq

(ψ) and q − 1 characters of F×
q , continued trivially to P2.

Let us now extend this example to Pn = GLn−1(Fq) n Fn−1
q . All the non-trivial

characters of Fn−1
q are conjugate under GLn−1(Fq) to the character ψn−1 defined by

ψn−1(a1, . . . , an−1) = ψ(an−1). Furthermore, the stabilizer of ψn−1 is Pn−1.
This enables to reduce the classification of the irreducible representations of Pn to the

classifications of all irreducible representations of GLk(Fq) for all k < n in the following
way. Let π ∈ Irr(Pn). If π|Fn−1

q
is isotypic then it is a multiple of the trivial character,
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since the trivial character is the only invariant character. If this is indeed the case, then
π|GLn−1(Fq) is irreducible.

If π|Fn−1
q

is not isotypic then it includes all non-trivial characters, because they are all

conjugate under GLn−1(Fq). Thus π ∼= IndPn
Qn

(ρ ⊗ ψn−1), where Qn = Pn−1 n Fn−1
q , and

ρ ∈ Irr(Pn−1). To classify ρ we continue by induction: restrict it to Fn−2
q and so on.

Eventually we “drop” to the GLk side for some k < n.
To summarize: for any π ∈ Irr(Pn) there exist 0 ≤ k < n and ρ ∈ Irr(GLk(Fq)) s.t.

π ∼= IndPn

Rk
n
(ρ ⊗ 1k ⊗ ψk+1 ⊗ ψk+2 ⊗ ∙ ∙ ∙ ⊗ ψn−1),

where
Rk

n := GLk(Fq)n (Fk
q ⊕ F

k+1
q ⊕ Fk+2

q ⊕ ∙ ∙ ∙ ⊕ Fn−1
q )

For example,

R2
5(Fq) =














∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 ∗
0 0 0 0 1














Now, let G be a general finite group and K,H < G be two subgroups and π ∈ Rep(H).
Let us study (IndG

H(π))|K using equivariant sheaves. We know that IndG
H(π) is the space

of global sections of the equivariant sheaf IndG
H(π) on G/H . Clearly, the orbits of K in

G/H are the double-cosets K\G/H . Note that

IndG
H(π)(KgH) =

⊕

k∈K/(K∩gHg−1)

πkg = IndK
K∩gHg−1(πg)

Thus,

Theorem 8.4.
IndG

H(π)|K =
⊕

KgH∈K\G/H

IndK
K∩gHg−1(πg)

Corollary 8.5. (i) 〈IndG
H(π), IndG

K(τ)〉G =
∑

KgH∈K\G/H〈π
g, τ〉K∩Hg

(ii) IndG
H(π) is irreducible if and only if π is irreducible and 〈π, πg〉H∩Hg = 0 for any

g /∈ H.

Proof. (i)

〈IndG
H(π), IndG

K(τ)〉G = 〈IndG
H(π), τ〉K =

∑

KgH∈K\G/H

〈IndK
K∩Hg(πg), τ〉K =

∑

KgH∈K\G/H

〈πg, τ〉K∩Hg

(ii) IndG
H(π) is irreducible if and only if 〈IndG

H(π), IndG
H(π)〉 = 1. By part (i),

〈IndG
H(π), IndG

H(π)〉G =
∑

HgH∈H\G/H

〈πg, π〉H∩Hg

Now, for g = 1, 〈πg, π〉H∩Hg = 〈π, π〉H ≥ 1. Thus, IndG
H(π) is irreducible if and only if

〈π, π〉H = 1 and 〈π, πg〉H∩Hg = 0 for any g /∈ H. �
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9. Monomial representations, Heisenberg group, Weil representation

We have seen in the last lecture that induction enables to construct many irreducible
representations. Today we will see an extreme case of that: any irreducible representation
of a nilpotent group is induced from a character.

We will use a lemma from last time:

Lemma 9.1. Let N C G be a normal subgroup. Let π ∈ Irr(G). Then either π|N
is isotypic of some type (ρ, V ) and ρg ≈ ρ for all g ∈ G, or there exists a subgroup
N < H $ G and an irreducible representation τ of H such that π = IndG

H(τ).

Note that in the first case we get a projective representation of G on V , i.e. a group
homomorphism G → GL(V )/scalars.

Definition 9.2. A representation induced from a (1-dimensional) character of a subgroup
is called monomial.

Definition 9.3. Let us call a group G c-solvable(which means cyclicly solvable) if there
exists a sequence of normal subgroups N0 < N1 < ... < Nk = G starting with the trivial
subgroup N0 such that each quotient group Ni/Ni−1 is cyclic.

Exercise 9.4. Show that any subgroup and quotient group of a c-solvable group is c-
solvable. Show that any finite nilpotent group is c-solvable.

Theorem 9.5. Let G be a c-solvable finite group. Then any irreducible representation π
of G is monomial.

Proof. We prove the theorem by induction on the order of G. If the group is commutative
the theorem is clear.

Suppose that the group is not commutative. We may also suppose that the representa-
tion π is faithful, i.e. no group element acts trivially. Now, let Z < G denote the center.
Choose a normal cyclic subgroup C < G/Z and lift it to a normal commutative subgroup
N < G. Since N is not central, there exist a ∈ N and b ∈ G such that a 6= bab−1, thus
π(a) 6= π(bab−1).

By Lemma 9.1, either π|N is isotypic and isomorphic to πb|N , or π is induced from some
proper subgroup of G. Since N is commutative, if π|N is isotypic then all elements of N
act on π by scalars. But π(a) 6= π(bab−1) and thus π|N is not isomorphic to πb|N . Thus
π is induced from some subgroup. By the induction hypotheses the representation of the
subgroup is monomial, and by transitivity of induction π is monomial. �

Exercise 9.6. Suppose we know that a group G has a commutative normal subgroup N
such that the group G/N is c-solvable. Show that any irreducible representation σ of G is
monomial.

Definition 9.7. The Heisenberg group is the group of upper uni-triangular 3 by 3 matrices
(over some field which we will take to be Fq).




1 x z
0 1 y
0 0 1



 ∙




1 x′ z′

0 1 y′

0 0 1



 =




1 x + x′ z + z′ + xy′

0 1 y + y′

0 0 1




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Let us classify all irreps of H. First of all, on every irrep the center Z ∼= Fq acts
by some character. If the character is trivial, we get an irreducible representation of V -
there are q2 such representations and they are all 1-dimensional. Now, suppose the central
character is χ 6= 1.

Theorem 9.8. There exists a unique irreducible representation ρχ of H with central
character χ, and it has dimension q.

Proof. Define a normal commutative subgroup D = {(x, y, z) ∈ H : x = 0}. Extend χ
trivially to D and define ρχ := IndH

D(χ). The irreducibility and uniqueness follow from
the above Mackey analysis.

Indeed, for irreducibility we use Corollary 8.5. Let g = (x, y, z) ∈ G with x 6= 0. Then,
for any (0, y′, z′) ∈ D, χg((0, y′, z′) = χ(z′)χ(xy′). Since x 6= 0 and χ 6= 1, there exists y′

such that χ(xy′) 6= 1 and thus 〈χ, χg〉D = 0.
To show uniqueness, let σ ∈ Irr(H) and consider σ|D. By Lemma 9.1, either σ|D is

isotypic, or σ is induced from some proper subgroup which includes D. In the first case,
D acts on σ by scalars, and (0, y′, z′) and (0, y′, z′ + xy′) act by the same scalar for any
x, y′, z′ ∈ Fq. However, this implies χ(xy′) = 1 for all x, y′ ∈ Fq which contradicts χ 6= 1.
Thus σ is induced from a representation τ of some proper subgroup which includes D. If
this subgroup is bigger than D we apply the same argument to show that τ is induced
from a smaller subgroup. Eventually, we get that σ = IndH

D χ′ where χ′|Z = χ. Since H
conjugates any such character χ′ to χ, we obtain σ ' ρχ.

Another option is to deduce irreducibility directly from the construction of induction,
and uniqueness will follow from the dimension count (sum of squares of dimensions).

Explicit construction of ρχ: (x, y, z) acts on F (Fq) by

(x, y, z)f(x′) = χ(z)χ(x′y)f(x′ − x).

�

Here is another description of the Heisenberg group. The center of H is Fq (the corner
of the matrix). The other two entries (x, y) form a 2-dimensional vector space V over
Fq, and on this vector space we define a form ω((x1, y1), (x2, y2)) := x1y2 − x2y1. It is
anti-symmetric and non-degenerate. Now, H is isomorphic to {v, z : v ∈ V, z ∈ Fq} with
group law given by

(v, z)(v′, z′) = (v + v′, z + z′ +
1

2
ω(v, v′))

The isomorphism is given by

(x, y, z) 7→ ((x, y), z + 2−1/2xy).

Now, note that the group SL2(Fq) of 2 by 2 matrices with determinant 1 acts on H
by automorphisms through its action on V = F2

q and trivial action on Z. Thus, it maps
ρχ to itself. This defines a projective representation of SL2(Fq) on F (Fq). In fact, this
representation can be lifted to an honest representation in the following way:
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ρχ

(
a 0
0 a−1

)

f(x) =

(
a

p

)

f(a−1x); ρχ

(
1 0
b 1

)

f(x) = χ

(
1

2
bx2

)

f(x);

ρχ

(
0 1
−1 0

)

f = −
i(q−1)/2

√
q

FT (f),

where q = pn, p 6= 2, and
(

a
p

)
denotes the Legendre symbol, and FT denotes the Fourier

transform.
Theorem 9.8 generalizes to representations of higher Heisenberg groups

Hn := (Fn
q × Fn

q )n Fq.

The Weil representation in this case is a projective representation representation of the
symplectic group Sp2n(Fq).

An analogous theory holds over the reals (instead of Fq), but the Weil representation
stays a projective representation even for n = 2 and does not lift to an ”honest” represen-
tation. The analog of Theorem 9.8 for Hn(R) is called the Stone-von-Neumann theorem.

10. Gelfand Pairs with applications to representations of symmetric
groups

Let H < G be finite groups.

Definition 10.1. (G,H) is called a Gelfand pair if for every π ∈ Irr(G), dim πH ≤ 1.

Exercise 10.2. (i) (G × G, ΔG) is a Gelfand pair.
(ii) If G is commutative then (G,H) is a Gelfand pair for any subgroup H ⊂ G.
(iii) If H ⊂ G is normal then (G,H) is a Gelfand pair if and only if G/H is commutative.
(iv) (S3, S2) is a Gelfand pair.

Lemma 10.3. (G,H) is a Gelfand pair if and only if F (G/H) is a multiplicity free
representation of G.

Proof. Note that F (G/H) = IndG
H(F ) and that HomH(F, π) = πH . Using the Frobenius

reciprocity we have
dim πH = 〈F, π〉H = 〈IndG

H(F ), π〉G
�

Corollary 10.4. (Sn+1, Sn) is a Gelfand pair.

Theorem 10.5. (G,H) is a Gelfand pair if and only if the convolution algebra A(G)H×H

of functions on G that are constant on H double cosets is commutative.

For the proof we will need the following lemma.

Lemma 10.6. For any π ∈ Rep(G), EndF (π)H×H ∼= EndF (πH).

Proof. Define eH ∈ A(G)H×H by

eH(g) :=

{
|H|−1 g ∈ H

0 g /∈ H
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Then π(eH) is a projector π → πH , and

EndF (π)H×H = {T ∈ EndF (π) |eHT = T = TeH}

Thus, any T ∈ EndF (π) is determined by its restriction to πH by

π
π(eH)
� πH → πH ⊂ π,

and any linear operator on πH defines T ∈ EndF (π) in this way. �

Proof of Theorem 10.5. We have an isomorphism of algebras and of representations of
G × G:

A(G) ∼=
⊕

π∈Irr(G)

EndF (π)

Passing to H × H-fixed vectors we obtain

A(G)H×H ∼=
⊕

π∈Irr(G)

EndF (π)H×H ∼=
⊕

π∈Irr(G)

EndF (πH),

where the last equality is by the previous lemma.
Since EndF (πH) is commutative if and only if πH is one-dimensional, the theorem

follows. �

Remark 10.7. This topic belongs to ”relative representation theory”, namely harmonic
analysis on G/H (while the usual representation theory is harmonic analysis on G). We
see that Gelfand property replaces Schur’s lemma for relative representation theory. This
explains why it is important.

That theorem is great, since this reduces a statement on representations that we maybe
do not know yet to an explicit statement on commutativity of algebras, that we can check
by a direct computation. However, Gelfand and (independently) Selberg invented a trick
that allows to avoid even that computation.

Lemma 10.8. Suppose we have a bijection σ : G → G s.t. σ(gh) = σ(h)σ(g). Suppose
also that σ preserves all H double-cosets. Then A(G)H×H is commutative and thus (G,H)
is a Gelfand pair.

Proof. σ acts as identity on A(G)H×H , but changes order of multiplication. Thus, this
algebra is commutative. �

This lemma is obvious but very useful.

Exercise 10.9. Prove (Sn+2, Sn × S2) is a Gelfand pair.

One can formulate a stronger property.

Definition 10.10. (G,H) is called a strong Gelfand pair if for every π ∈ Irr(G) and
τ ∈ Irr(H), 〈π|H , τ〉 ≤ 1.

Theorem 10.11. The following are equivalent:

(1) (G,H) is a strong Gelfand pair
(2) (G × H, ΔH) is a Gelfand pair.
(3) For any τ ∈ Irr(H), IndG

H(τ) is a multiplicity free representation of G.
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(4) The convolution algebra A(G)Ad(H) of functions on G that are constant on H-
conjugacy classes is commutative

Proof. (1) ⇔ (3) by Frobenius reciprocity. For (1) ⇔ (2) note that every irreducible
representation of G × H has the form π∗ ⊗ τ ∼= HomF (π, τ ) where π ∈ Irr(G) and
τ ∈ Irr(H). For (1) ⇔ (4) note that

A(G × H)ΔH×ΔH ∼= A(G)Ad(H).

Indeed, this isomorphism is restriction to G × {1}. To see the invariance, let f ′ be the
restriction of f . Then f ′(hgh−1) = f(hgh−1, 1) = f(hg, h) = f(g, 1). The equivalence (1)
⇔ (4) follows now from Theorem 10.5. �

This theorem gives the following version of Gelfand - Selberg trick for strong Gelfand
pairs:

Lemma 10.12. Suppose we have a bijection σ : G → G that satisfies σ(gh) = σ(h)σ(g)
and preserves all H-conjugacy classes, i.e. that ∀g ∈ G ∃h ∈ H s.t. σ(g) = hgh−1. Then
A(G)Ad(H) is commutative and thus (G,H) is a strong Gelfand pair.

Corollary 10.13. (Sn+1, Sn) is a strong Gelfand pair.

Proof. Let σ(g) := g−1. By the lemma, it is enough to show that every permutation is
conjugate under Sn to its inverse. Conjugation under Sn is equivalent to reenumeration of
the elements 1, . . . n. To invert the permutation, we decompose it into a product of cycles,
and re-enumerate within each cycle to go backwards. One of the cycles will include the
number n + 1 which we are not allowed to touch, but we can fix it and re-enumerate the
rest. �

Now we see that (Sn, Sn−1) is actually a strong Gelfand pair. We use this in the
following way. Take π ∈ Irr(Sn). Then π|Sn−1 is multiplicity free and thus has a canonical
decomposition to a direct sum of irreducible subrepresentations. Take each of those
subrepresentations, restrict it to Sn−2 and so on. At the end, we get a decomposition of
π to a direct sum of lines, i.e. a canonical bases up to multiplication by constants. It is
very nice to have a canonical basis.

11. Brauer Induction Theorem

Fix a finite group G.

Definition 11.1. Let C(G) ⊂ F (G) denote the subalgebra of conjugation-invariant func-
tions, and R(G) ⊂ C(G) denote the subring generated by characters of representations.

For a subgroup E ⊂ G denote by IndG
E : C(E) → C(G) the linear map adjoint to

restriction ResG
E : C(G) → C(E) (see §7).

Note that for τ ∈ Rep(E) we have IndG
E(χτ ) = χIndG

E τ . Note also that χπ⊕τ = χπ + χτ

and χπ⊗τ = χπ ∙ χτ . Thus one can view R(G) as the ring generated by the semi-ring of
all representations of G.

Exercise 11.2. (1) R(G) is generated (over Z) by characters of irreducible represen-
tations.

(2) For any f ∈ R(G), there exists representations π and τ such that f = χπ − χτ .
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Definition 11.3. Let p be a prime number. A finite group E is called p-elementary if
E = Cm × S, where Cm is a cyclic group of order m prime to p, and S is a p-group. E
is called elementary if it is p-elementary for some p.

Our goal in this section is to prove

Theorem 11.4 (Brauer Induction Theorem). The (additive) group R(G) is spanned by
functions of the form IndG

E(χ), where E ⊂ G is an elementary subgroup and χ is a one-
dimensional representation of E.

We will now make several reductions. First of all, define

Exercise 11.5. Demonstrate the Brower Induction Theorem for S3. Namely, show how
the character of each of the irreducible representations from the classification in section
3 can be expressed as an integer linear combination of inductions of characters of cyclic
subgroups (in this case all elementary subgroups are cyclic).

I(G) :=
∑

elementary E

IndG
E(R(E)) ⊂ R(G).

Lemma 11.6. The subset I(G) is an ideal and if 1 ∈ I(G) then Theorem 11.4 holds.

Proof. To see that I(G) is an ideal let π ∈ Rep(G) and σ, ρ ∈ Rep(E). Then

IndG
E(σ ⊕ ρ) = IndG

E(σ) ⊕ IndG
E(ρ) and π ⊗ IndG

E(σ) = IndG
E(π|E ⊗ σ).

Now, if 1 ∈ I(G) then I(G) = R(G). On the other hand, every elementary E is
nilpotent, thus (by Theorem 9.5), every representation of E is induced from a character
of some subgroup E ′ ⊂ E. Thus R(G) is spanned by functions of the form IndG

E′ χ. �

Definition 11.7. A character system Q is a correspondence which assigns to every finite
group H a subring Q(H) of the algebra C(H) such that for any pair H < H ′ we have

IndH′

H (Q(H)) ⊂ Q(H ′), ResH′

H (Q(H ′)) ⊂ Q(H).

Example 11.8. (i) Q(H) = R(H).
(ii) Q(H) = C(H).
(iii) Q(H) = CZ(H), the subring of integer-valued functions.

Notation 11.9. Let n be the order of G, and μn ⊂ F be the group of n-th roots of 1. Let
Λ denote the subring of F generated by μn. Define a character system RΛ by

RΛ(H) := Λ ∙ R(H) ⊂ C(H).

Denote also

IΛ(G) :=
∑

elementary E

IndG
E(RΛ(E)) ⊂ RΛ(G).

Lemma 11.10. If 1 ∈ IΛ(G) then Theorem 11.4 holds.

For the proof we will need the following exercise.

Exercise 11.11. There exists a homomorphism of groups ν : Λ → Z with ν(1) = 1.
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Proof of Lemma 11.10. Let ν be as in the exercise. Notice that for any group H there
exists a unique morphism of groups νH : RΛ(H) → R(H) such that ν(λr) = ν(λ)r, ∀λ ∈
Λ, r ∈ R(H). This is true since R(H) has a basis ρ1, . . . , ρr of irreps, which stays a basis in
C(H). Clearly the system of morphisms νH is compatible with restriction and induction.
In particular, ν(IΛ(G)) ⊂ I(G). Thus, if 1 ∈ IΛ(G) then 1 ∈ I(G) and Theorem 11.4
holds by Lemma 11.6. �

Consider the character system Q(H) = RΛ(H) ∩ CZ(H) and define

J :=
∑

elementary E

IndG
E(Q(E)) ⊂ IΛ(G).

By Lemma 11.10 it is enough to show that 1 ∈ J . To prove this we will use the following
exercise.

Exercise 11.12. Let L ' Zr be a lattice, and A < B < L be subgroups. Suppose that
A + pNL = B + pNL for all primes p and all positive integers N . Then A = B.

Lemma 11.13. Suppose that for every prime p there exists a function f ∈ J such that
for every g ∈ G, f(g) is prime to p. Then Theorem 11.4 holds.

Proof. Since J ⊂ IΛ(G), Lemma 11.10 implies that if 1 ∈ J then Theorem 11.4 holds. Let
A := J, L := CZ(G) and B be the subgroup of L generated by A and 1. We have to show
that A = B. Fix a prime number p and a positive integer N . Fix a function f ∈ J such
that for every g ∈ G, f(g) is prime to p. Then pN |(f pN−1(p−1) − 1). Thus 1 ∈ A + pNL
for every N and p, thus A = B and 1 ∈ J . �

From now on we fix a prime number p. To construct f as in Lemma 11.13 we will need
the following definition and (difficult) exercise.

Definition 11.14. An element g ∈ G is called p-regular if ord(g) is prime to p and
p-singular if ord(g) is a power of p.

Exercise 11.15 (Jordan decomposition). Every element of G can be uniquely written as
g = grgs = gsgr, where gr is p-regular and gs is p-singular.

Note that the uniqueness of Jordan decomposition implies that the maps g 7→ gr and
g 7→ gs are compatible with morphisms of groups. In particular, they map conjugacy
classes into conjugacy classes.

Lemma 11.16. Suppose that for any p-regular element a ∈ G there exists a function
fa ∈ J such that for any x ∈ G with xr conjugate to a, fa(x) is prime to p, and for any
x ∈ G with xr not conjugate to a, fa(x) is 0. Then there exists a function f ∈ J such
that for every g ∈ G, f(g) is prime to p.

Proof. Take f to be the sum of the functions fa, when a runs over a system of represen-
tatives of p-regular conjugacy classes. �

Now fix a p-regular a ∈ G, set m := ord(a) and let D be the cyclic subgroup generated
by a. Denote by Z(a) the centralizer of a, fix a p-Sylov subgroup S of Z(a) and set
E = D×S ⊂ Z(a). It is easy to see that E is an elementary subgroup and the projection
pr : E → D coincides with the map x 7→ xr. Define a function ϕ ∈ C(E) by

ϕ(x) = 0 if pr(x) 6= a and ϕ(x) = m if pr(x) = a.
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Lemma 11.17. The function ϕ lies in Q(E).

Proof. First of all, ϕ takes integer values. Also, we can write it in the form

ϕ = m
∑

χ

χ(a−1)χ′,

where the sum is taken over all characters χ of the group D and χ′ is the character of E
defined by χ′ = χ(pr(x)). Since the coefficients χ(a−1) lie in Λ we see that ϕ ∈ RΛ(E),
and thus ϕ ∈ Q(E). �

Proposition 11.18. The induction fa := IndG
E(ϕ) satisfies the conditions of Lemma

11.16.

Theorem 11.4 follows now from Lemma 11.17, Proposition 11.18, Lemma 11.16 and
Lemma 11.13.
For the proof of Proposition 11.18 we will need one more exercise.

Exercise 11.19. Let Y be a finite set, t be a p-singular element in the group Sym(Y ) of
bijections of Y onto itself, and X be the set of fixed points of t. Then p divides |Y | − |X|.

Proof of Proposition 11.18. Let ϕ! denote the extension of ϕ to G by 0. Then by the
definition of IndG

E : C(E) → C(G) we have

(1) fa(x) =
∑

g∈G/E

ϕ!(g
−1xg).

Let x ∈ G. If xr is not conjugate to a then all the terms in the sum are 0 by definition
of ϕ. Assume now that xr is conjugate to a. Conjugating x we can assume xr = a. It
is clear that in the sum (1) above, non-zero contribution is given only by terms g with
(g−1xg)r = a. Since (g−1xg)r = g−1xrg = g−1ag, this implies g ∈ Z(a). Thus

(2) fa(x) =
∑

g∈Z(a)/E

ϕ!(g
−1xg).

Denote Y := Z(a)/E, X := {g ∈ Y | g−1xsg ∈ S}, where xs is the singular part of x.
From (2) we have fa(x) = m|X|. It is left to show that |X| is prime to p. Note that an
element g ∈ Y belongs to X if and only if xsg ∈ gE. In other words, X is the fixed point
set of the left action of xs on Y . Since |Y | is prime to p, we get that so is |X|, by Exercise
11.19. �

12. Representations of topological groups - basic notions

Definition 12.1. A topological group is a topological space which is also a group such
that the multiplication map G × G → G and the inversion map G → G are continuous.

We will consider only locally compact Hausdorff topological groups. Mostly just com-
pact groups.

Examples of compact groups:

(1) A finite group with discrete topology.
(2) A circle. More generally: SO(n,R) or O(n,R).
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Examples of non-compact locally compact groups: R, C, SL(2,R), GL(n,R), O(n,C).
From now on we fix the ground field F to be C.

Definition 12.2. A continuous representation of G is a linear representation of G in
a Banach space V over C such that the natural map G × V → V is continuous. A
morphism of continuous representation is a bounded operator between the corresponding
Banach spaces that commutes with the group action.

Example 12.3. The regular representation of any compact group K in the Banach space
C(K) of continuous functions on K with the maximum norm.

We can also consider a representation in square-integrable functions, but for that we
need a measure.

Theorem 12.4 (Haar). There exists a unique, up to multiplicative constant, measure on
G which is invariant under left shifts.

This measure is called the Haar measure and denoted by dg.

Corollary 12.5. (1) There exists a character ΔG of G, called the modular character,
such that Rgdg = ΔG(g)dg, where Rg denotes the right shift.

(2) If G is compact, ΔG is trivial.

Now we can define another regular representation: L2(G).

Definition 12.6. A representation is called irreducible if it has no continuous subrepre-
sentations. In other words, every non-zero G-invariant subspace is dense.

For finite-dimensional continuous representations Schur’s lemmas still hold, with the
same proofs.

Definition 12.7. A unitary representation is a representation of G in a Hilbert space H
with G-invariant scalar product. A representation is called unitarizable if it is isomorphic
to a unitary representation.

Example 12.8. L2(G) is a unitary representation, with the invariant scalar product

〈f, h〉 =

∫

g∈G

f(g)h(g)dg

As in the finite group case, we have:

Lemma 12.9. Unitary representations are completely reducible.

From now on, let K be a compact group.

Lemma 12.10. For any representation (π, V ) of K in a Banach space V we have a
natural projection V → V K - by averaging.

Lemma 12.11. Any representation of K in a Hilbert space is unitarizable. In particular,
every finite-dimensional representation is unitarizable.

However, C(K) (continuous functions with maximal norm) is not unitarizable. L2(K)
is unitarizable.

All the statements about finite-dimensional representations of finite groups that we had
carry over to the compact case, except, of course, those involving the order of the group.
Note that every finite-dimensional vector space has a unique structure of a Hilbert space.
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13. The Peter-Weyl theorem and its corollaries

Let Irrf (K) denote the set of finite-dimensional irreducible representations. We will
later show that these are all the irreducible representations.

The analog of the statement about the decomposition of the regular representation is
the Peter-Weyl theorem.

Theorem 13.1 (Peter-Weyl).

L2(K) '
⊕̂

ρ∈Irrf (K)
EndC(ρ)

The map in one direction is defined by matrix coefficients: Mρ,A(g) = Tr(Aρ(g−1)).
The action map, in the other direction, is defined only on C(K):

ρ(f)v :=

∫

G

f(g)ρ(g)vdg

To define the action map, we do not need ρ to be finite-dimensional. I am not sure we
will have time to prove this theorem.

In particular, characters of non-isomorphic irreducible representations are orthogonal.

Corollary 13.2.
⊕

ρ∈Irrf (K) End(ρ) is dense in C(K).

This follows from the Stone-Weierstrass theorem:

Theorem 13.3 (Stone-Weierstrass). Let K be a compact (Hausdorff) topological space
and A < C(K) be a subalgebra with 1 that separates points and is closed under complex
conjugation. Then A is dense in C(K).

This implies the previous corollary since matrix coefficients form an algebra: sum is
given by direct sum, and product by tensor product.

Definition 13.4. Let (π, V ) be a continuous representation of K and ρ be an irreducible
finite-dimensional representation. Define a Banach space Mρ(π) := HomK(ρ, π) and a
continuous representation πρ := ρ ⊗ HomK(ρ, π). Note that πρ has a natural embedding
to π.

The πρ could be zero.

Exercise 13.5. Let ρ ∈ Irrf (K) and embed EndC(ρ) into C(K) using the matrix co-
efficient map. Let π be any continuous representation of K. Then πρ is the image of
EndC(ρ) ⊗ π under the action map C(K) ⊗ π → π given by f ⊗ v → π(f)v.

From the last Corollary we obtain

Corollary 13.6.
⊕

ρ∈Irrf (K) πρ is dense in π.

Proof. We can assume that π is generated by one vector. Now, approximate the delta-
function by continuous functions, and act on them on this vector. More precisely, we first
choose a δ-sequence , i.e. a sequence fn ∈ C(K) with

∫
fn = 1 for any n and Suppfn

shrinking to {1} ⊂ K. Next, one can show that for any vector v, π(fn)v → v. This
shows that the map C(K) ⊗ π → π given by f ⊗ v 7→ π(f)v has dense image. By the
previous corollary, its restriction to (

⊕
ρ∈Irrf (K) EndC(ρ)) ⊗ π still has a dense image. By

the previous exercise, this image is
⊕

ρ∈Irrf (K) πρ. �
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Corollary 13.7. All irreducible representations of K are finite-dimensional.

Proof. Let π be an irrep of K. By the previous corollary, πρ 6= 0 for some ρ ∈ Irrf (K).
Thus the multiplicity space Mρ(π) := HomG(ρ, π) does not vanish. Thus ρ embeds into
π. Since π is irreducible, this embedding has a dense image. Since finite-dimensional
subspaces of Banach spaces are closed, this implies that π ∼= ρ, and thus π is finite-
dimensional. �

Corollary 13.8. For any π and irreducible ρ, we have a natural projection π�πρ, given
by π(χρ).

Thus, we have
⊕

ρ∈Irr(K) πρ ⊂ π ⊂
∏

ρ∈Irr(K) πρ. This implies

Corollary 13.9. If (π,H) is a unitary representation then π =
⊕̂

ρ∈Irr(K)πρ.

However, for Banach space representations we do not have such a decomposition, even
for C(S1).

One can define induction IndG
H(π) in a similar to the finite group case: consider H-

equivariant continuous functions from G to π. If π is unitary, one can also consider a
“unitary induction”: square-integrable functions from G to π. This will be a unitary
representation. The proper notion of equivariant sheaf is missing in general, but Mackey
theory holds for unitary inductions of unitary representations.

If G/H is not compact, one can also consider a ”small induction”: continuous functions
from G to π with compact support modulo H. This case is quite difficult to study, so
people prefer to consider co-compact subgroups, for example the subgroup of upper-
triangular matrices in GL(n,R).

If H is compact, one has a nice theory of Gelfand pairs. If not, one can also say
something, but it becomes very delicate. I have several results in this case.

14. Harmonic analysis on the sphere and an application to integral
geometry

Let Sn−1 ⊂ Rn denote the sphere of radius 1 and center at the origin. The group SO(n)
of rotations in Rn acts transitively on Sn−1, and the stabilizer of a point is SO(n − 1).
Harmonic analysis on Sn−1 means the study of L2(Sn−1) as a representation of SO(n).
The case n = 2 is the Fourier analysis, and in this section we generalize it. We will
find the decomposition of L2(Sn−1) to irreducible representations and use it to prove the
following theorem.

Theorem 14.1. Every closed convex central-symmetric body in Rn is uniquely determined
by the areas of its projections on all hyperplanes.

This theorem is equivalent to the following one:

Theorem 14.2. Every closed convex central-symmetric body in Rn is uniquely determined
by the areas of its intersections with all hyperplanes (passing through the origin).

Let us show their equivalence.
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Definition 14.3. Call two closed convex central-symmetric bodies K,K ′ ⊂ Rn dual if

sup
y∈K′

〈x, y〉 ≤ 1 ⇔ x ∈ K,

where 〈x, y〉 denotes the standard scalar product in Rn. Note this condition is equivalent
to the condition

sup
x∈K

〈x, y〉 ≤ 1 ⇔ y ∈ K ′.

The equivalence now follows from the following exercise.

Exercise 14.4. Let Rn−1 ⊂ Rn be a hyperplane and p denote the projection to Rn−1.
Show that if K is dual to K ′ in Rn then Rn−1 ∩ K is dual to p(K ′) in Rn−1.

Let us now prove Theorem 14.2. For simplicity, take n = 3 and denote S := S2 ⊂ R3.
For any convex central-symmetric body K, define a function fK on S by fK(x) = 1/2r2

x,
where r is the length of the segment which is the intersection of K with the line passing
through the origin and x. Note that fK is an even function which completely determines
K.

Exercise 14.5. Let P ⊂ R3 be a plane. Then

Area(K ∩ P ) =

∫

S∩P

fK(x)dx

Thus, Theorem 14.2 follows from the statement that an even function on the sphere is
uniquely determined by its integrals on all the big circles. Denote by L+(S) the subrep-
resentation consisting of even functions, and by J the morphism L2(S) → L2

+(S) given
by

Jf(x) :=

∫

Cx

f(y)dy,

where Cx denotes the big circle with epicenter in x. By the Peter-Weyl theorem and
Schur’s lemmas, we know that L+(S) is a completed direct sum or irreducible represen-
tations and J is scalar on each summand. Let us find this decomposition.

Denote by Pn the space of all functions on S that are restrictions of homogeneous
polynomials of degree n in R3, with the addition of the zero function.

Exercise 14.6. Pn ⊂ Pn+2 and dim Pn = (n + 1)(n + 2)/2.

Let Hn denote the orthogonal complement to Pn−2 in Pn (under the natural scalar
product in L2(S)).

Remark 14.7. One can identify Hn with the space of homogeneous harmonic polynomials
of degree n in R3. Harmonic means that the vanish under the Laplace operator

Δ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

.

Thus, the functions in Hn are called ’spherical harmonics’.
However, we will not use this identification.

Lemma 14.8.

L2(S) =
⊕̂∞

n=0
Hn, L2

+(S) =
⊕̂∞

n=0
H2n
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Proof. Clearly, Hn are invariant, orthogonal and their sum is the union of all Pn. This
union separates points of S, thus, by the Stone-Weierstrass theorem, is dense in C(S) and
thus in L2(S). Clearly, Hn ⊂ L+(S) if and only if n is even. �

Let us now show that Hn is irreducible. Let SO(2) ⊂ SO(3) denote the subgroup of
rotations with respect to the z axis and identify S = SO(3)/SO(2).

Exercise 14.9. Show that dim(Pn)SO(2) = [n/2] + 1

Hint. Show that (Pn)SO(2) is spanned by zn, zn−2(x2 + y2), ..., zn−2[n/2](x2 + y2)[n/2]. �

Now, note that by Frobenius reciprocity every irreducible subrepresentation of L2(S)
has an SO(2)-invariant vector. This proves

Lemma 14.10. Hn are irreducible.

This finishes the harmonic analysis problem. To prove the integral geometry theorem,
it is left to compute the eigenvalues of J . For this we can pick any function in each Hn

that is convenient to us. We choose the SO(2)-invariant function, which is also called the
n-th Legandre polynomial:

Ln(z) =
dn

dzn
((z2 − 1)n).

Exercise 14.11. Ln ∈ Hn.

Hint. Show that for any SO(2)-invariant function f on S we have
∫

S
f(x)dx =

∫ 1

−1
2πzf(z)dz, deduce that 〈f1, f2〉 =

∫ 1

−1
2πzf1(z)f2(z)dz and use integration by parts

to show that Ln(z) is orthogonal to all polynomials in z of degree smaller than n. �

Now, let λn be the eigenvalue of J on Hn. Then JLn = λnLn and in particular JLn(1) =
λnLn(1). In addition, from the definitions of J and of Ln we see that JLn(1) = 2πLn(0).
Altogether, we get

λnLn(1) = 2πLn(0).

The values Ln(1) and Ln(0) are easy to compute:

Ln(1) = −
dn

dzn
((z − 1)n(z + 1)n)|z=1 = n!2n,

L2k+1(0) = 0, L2k(0) = (2k)!

(
2k

k

)

.

Thus,

λ2k+1 = 0 and λ2k = 2π
(2k − 1)!!

(2k)!!
.

This gives an explicit formula for the inverse of J on L+(S) and proves Theorem 14.2.

Remark 14.12. Theorem 14.2 and the proof we discussed generalizes to higher dimen-
sions. However, for S2 ⊂ R3 there is one special property: every irreducible represen-
tation of SO(3) is isomorphic to one of the Hn. Thus we have a classification of all
irreducible representations of SO(3). Also, we get that L2(S2) includes each irreducible
representation exactly one time (unlike L2(SO(3) which includes each π dim π times).
Such representations are called ”models”.
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15. Proof of the Peter-Weyl theorem

Recall that the theorem states

L2(K) '
⊕̂

ρ∈Irrf (K)
EndC(ρ)

The map in one direction is defined by matrix coefficients: Mρ,A(g) = Tr(Aρ(g−1)).
The action map, in the other direction, is defined only on C(K):

ρ(f)v :=

∫

K

f(g)ρ(g)vdg

Let (ρ, V ) be a finite-dimensional continuous irreducible representation of K and let Cρ ⊂
L2(K) denote the image of the matrix coefficients map Mρ : EndC(V ) → C(K). Note
that EndC(V ) is an irreducible representation of K ×K, thus Mρ has no kernel and thus
defines an isomorphism EndC(V ) ' Cρ. Note also that as a representation of K, Cρ is
isotypic of type ρ and thus Cρ and Cσ are orthogonal for ρ � σ. Up to some analytic
details that we will not deal with in this course, it is left to show that

⊕
ρ∈Irrf (K) Cρ is

dense in L2(K). We do that in several steps.

Lemma 15.1. Every subrepresentation W ⊂ L2(K) isomorphic to ρ lies inside Cρ.

Proof. We can suppose that all the functions in W have value at 1 ∈ G. Indeed, every
L2 function has a value almost everywhere. Choose a basis for W . It will be finite, and
thus there will be a point k ∈ K at which all the basis elements have a value. Acting by
k−1 we obtain another basis, consisting of functions that have values at 1. Thus, so do
all their linear combinations, i.e. all the vectors in W .

Now, evaluation at 1 defines a linear functional δ1 ∈ W ∗. Consider f⊗δ1 ∈ EndC(W ) '
EndC(ρ). Explicitly, it is given by (f⊗δ1)(h) := h(1)f ∈ W . Note that f = Mf⊗δ. Indeed,

Mf⊗δ1(g) = Tr(f ⊗ δ1ρ(g−1)) = 〈δ1, ρ(g−1)f〉 = (ρ(g−1)f)(1) = f(g)

Thus f ∈ Cρ. �

Lemma 15.2. Every closed non-zero subspace of L ⊂ L2(K) which is invariant under
K×K, has a non-zero finite-dimensional subspace which is invariant under the left action
of K.

Those two lemmas imply that
⊕

ρ∈Irrf (K) Cρ is dense in L2(K). Indeed, suppose it is

not dense. Then it has a non-zero orthogonal complement L′. By Lemma 15.2, L′ has
a finite-dimensional subrepresentation W . Then W has a subrepresentation (ρ, V ) for
some ρ ∈ Irrf (K). By Lemma 15.1, V ⊂ Cρ, but by definition V is orthogonal to Cρ -
contradiction. This completes the proof of the theorem. �

We still need to prove Lemma 15.2. This is the hardest lemma in this section, and it
uses spectral theory for compact self-adjoint operators on Hilbert spaces. That is, we will
use the following definition and theorems.

Definition 15.3. Let B be a Banach space, and A : B → B be a continuous linear
operator. A is called compact if the image of the unit ball under A is compact.
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Definition 15.4. Let K be a compact topological space, and F ∈ C(K × K). Then F
defines an continuous operator AF : L2(K) → L2(K) by AF (h)(k) :=

∫
x∈K

F (k, x)h(x)dx.
We say that the operator AF is given by the kernel F .

Theorem 15.5. For any kernel F , the operator AF is compact.

Theorem 15.6 (Fredholm). (i) For any compact operator on a Banach space, all
eigenspaces corresponding to non-zero eigenvalues are finite-dimensional.

(ii) Any compact self-adjoint operator on a Hilbert space H is diagonalizable. That is,
the space decomposes to a completed direct sum of eigenspaces.

The reason for (i) is that on infinite-dimensional spaces, unit balls are not compact,
and thus non-zero scalar operators are not compact operators. Recall that the invariant
scalar product on L2(K) is given by

〈f, h〉 =

∫

g∈K

f(g)h(g)dg

Proof of Lemma 15.2. Consider the right action of K on L2(K). Since the left and the
right actions commute, this defines an intertwining operator R(f) : L2(K) → L2(K) for
any f ∈ C(K). Explicitly:

(R(f)h)(x) =

∫

g∈K

f(g)h(xg)dg =

∫

g∈K

f(x−1g)h(g)dg.

This operator is compact, since it is given by a compact kernel F (x, g) = f(x−1g). The

adjoint operator is R(f ∗) where f ∗(g) = f(g−1). Since L is right K-invariant, it is also
invariant under R(f). Now, for any v ∈ L we can find f ∈ C(K) such that f = f ∗

and R(f)v 6= 0. Then R(f) is compact and self-adjoint and thus L can be decomposed
to a completed direct sum of eigenspaces of R(f), and all eigenspaces except the kernel
are finite-dimensional. Since R(f) is non-zero, there exists a non-zero finite-dimensional
eigenspace. It is invariant under the left action of K, since this action commutes with
R(f). �

16. Representations of SL2(Fq), GL2(Fq), and GLn(Fq)

16.1. Principal series representations - Solutions of Exercise 9.3.

Exercise 16.1. Let G := SL(2,Fq) be the group of 2 × 2 matrices with entries in Fq and
determinant 1. Let X := F2

q \ 0. Consider the representation of G on F (X), where F is
some algebraically closed field of characteristic zero (e.g. F = C). For any character χ
of the multiplicative group F×

q , let

Vχ := {f ∈ F (X) s.t. f (λx) = χ(λ)f(x)}

Let Δ denote the standard anti-symmetric bilinear form on F 2. Define a linear operator
T : F (X) → F (X) by

Tf(x) :=
∑

{y s.t. Δ(x,y)=1}

f(y).

Show that

(a) Vχ is a subrepresentation of F (X) and F (X) =
⊕

χ Vχ
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(b) T is an intertwining operator (=morphism of representations) and T maps Vχ into
Vχ−1.

(c) 〈F (X), F (X)〉 = 2q − 2.
(d) Vχ is irreducible if χ 6= χ−1 and is a sum of 2 non-isomorphic irreducible components

if χ = χ−1. Find the 2 components. Note that if q is odd there are only two χ with
χ = χ−1, and if q is even there is only one: χ = 1.

(e) Vχ ' Vψ if and only if χ = ψ±1.
(f) T is invertible
(g) The sum of squares of the dimensions of the irreducible representations we found is

q(q − 1)(q + 3)/2, which is approximately |G|/2.

The Vχ are called principal series representations and T is called the standard inter-
twining operator.

Solution sketch. (a) This is the decomposition to eigenspaces of the scaling operator.
Since this operator commutes with the action of G, the eigenspaces are invariant.

(b) a direct computation.
(c) By Lemma 3.5, 〈F (X), F (X)〉 = # of G-orbits on X × X. Since G preserves the

anti-symmetric form 〈 , 〉 by definition, this form is constant on every orbit. For every
c ∈ Fq, let Xc = {(x, y) ∈ X ×X |〈x , y〉 = c}. It is easy to check that for c 6= 0 it is a
single orbit, while X0 = {(x, dx) ∈ X ×X | d ∈ F×

q }, and thus consists of q − 1 orbits.
Altogether we get 2q − 2 orbits.

(d) We have 〈Vχ, Vχ〉 ≥ 1 ∀χ. It is easy to see that T does not vanish on any Vχ and that
T 6= Id if χ = χ−1. Thus for such χ we have 〈Vχ, Vχ〉 ≥ 2, and for other χ we have
〈Vχ, Vχ−1〉 ≥ 1. Since we have

〈F (X), F (X)〉 =
⊕

χ,ψ

〈Vχ, Vψ〉 = 2(q − 1),

necessarily 〈Vχ, Vψ〉 =






1 χ 6= χ−1, ψ ∈ {χ, χ−1}
2 ψ = χ = χ−1

0 ψ 6= χ±1

(e) Again, if we would have 〈Vχ, Vψ〉 > 0 for χ 6= ψ±1, 〈F (X), F (X)〉 would be bigger.
(f) We check this separately on each Vχ. If χ 6= χ−1 this follows from Schur’s lemma. If

χ = χ−1, we compute that T 2 = qχ(−1).
(g) We have dim Vχ = (q2 − 1)/(q− 1) = q +1 for every χ. If χ 6= χ−1 this representation

is irreducible. If χ = 1 then Vχ = F ⊕ V 0
χ . Otherwise, from T 2 = qχ(−1) we obtain

that Tr(T ) = 0, and thus Vχ decomposes into two irreducible representations of equal
dimensions. Summing all the squares we obtain q(q − 1)(q + 3)/2 (there was a typo
in the assignment).

�

Let us note that X = G/U , where U =

{(
1 ∗
0 1

)}

, and thus F (X) ∼= IndG
U F .

Furthermore, Vχ
∼= IndG

B χ, where B =

{(
t ∗
0 t−1

)}

, and χ defines a character of B by

applying it to t.
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The remaining irreducible representations cannot be imbedded into F (X) ∼= IndG
U F and

thus, by Frobenius reciprocity, satisfy πU = 0. Such representations are called cuspidal.
Let us describe them we switch in the similar case G = GL2(Fq).

16.2. On representations of GL2(Fq). In this case B =

{(
t ∗
0 s

)}

, while U is the

same. The principal series representations are now described by characters χ of B that
in turn are given by pairs of characters of F×

q . If the two characters in the pair are not

the same then Vχ := IndG
B χ is irreducible, and otherwise it is the sum of a 1-dimensional

representation and another one called the Steinberg representation. All other irreducible
representations are again called cuspidal.

From an exercise similar to 9.3 we get

Theorem 16.2. The irreducible representations of G are:

(1) The q − 1 1-dim rep-s ψ ◦ det, ψ : F×
q → F×

(2) The q − 1 q-dim rep-s St ⊗ ψ ◦ det, ψ : F×
q → F×

(3) the (q − 1)(q − 2)/2 principal series representations, each of dimension (q + 1).
(4) The (q2 − q)/2 irreducible cuspidal representations, each of dimension q − 1.

The fact that cuspidal representations have dimension q − 1 follows from the next
lemma.

Lemma 16.3. The restriction to B of any irreducible cuspidal representation is isomor-
phic to IndB

UZ ψχ, where Z is the center of G (scalar matrices), χ is a character of Z,
and ψ is a non-trivial character of U .

This follows from the next exercise.

Exercise 16.4. The following is a complete classification of the irreducible representations
of B:

(a) (q − 1)2 one-dimensional representations.
(b) q−1 representations of dimension q−1 of the form IndB

UZ ψχ- one for each character
χ of Z.

Hint. B is c-solvable.

Corollary 16.5. All the cuspidal representations lie in IndG
U ψ.

The representation IndG
U ψ is called Gelfand-Graev model. For p-adic groups it is called

Whittaker model. One can show that it is multiplicity free using a slight modification
of the Gelfand pairs technique. But it includes not only cuspidal representations. It
also includes all the Steinberg representations, and all the irreducible principal series
representations.

Let us describe the cuspidals further. Identify V ∼= F2
q with Fq2 . Let T := F2

q \ {0}.
Then multiplication by any t ∈ T is a linear operator on V . This defines an embedding
of T into G. Let ψ be a non-trivial character of U , and let φ be a character of T with
φ 6= φ, where φ is its Galois image. Let Z denote the center of G.

Theorem 16.6. (1) IndG
ZU (φ|Z)ψ ∼= IndG

T φ⊕ πφ for an irreducible q − 1-dimensional
cuspidal representation πφ of G.
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(2) πφ
∼= πφ′ ⇐⇒ φ′ ∈ {φ, φ}

(3) The {πφ} are all the irreducible cuspidal representations.

Proof. (3) follows from (1) and (2). To prove them let χφ denote the difference of char-
acters of IndG

ZU φ|Zψ and IndG
T φ. A direct computation shows that 〈χφ, χφ〉 = 1, χφ(1) =

q − 1, and 〈χφ, χφ′〉 = 1 ⇐⇒ φ′ ∈ {φ, φ}. �

16.3. On irreducible representations of GLn(Fq). For G = GLn(Fq), one defines
standard parabolic subgroups to be the subgroups consisting of block upper-triangular
matrices for blocks of given size. The subgroup of just upper-triangular matrices is called
B. It decomposes B = HU , where H =diagonal matrices, and U=matrices with 1 on the
diagonal. A representation is called cuspidal if it cannot be embedded into IndG

P π where
P is standard parabolic, and π is a representation of P on which the subgroup N ⊂ P ,
consisting of matrices with Id in the blocks, acts trivially.

All irreducible representations are described by “cuspidal data”: Let P = MN , where
M= block-diagonal matrices. Then M = GLn1 × ∙ ∙ ∙ × GLnk

. Cuspidal data is this M
plus irreducible cuspidal representations πi of GLni

.

Exercise 16.7. Let Pn = GLn−1(Fq) n Fn−1
q , and let π be an irreducible cuspidal repre-

sentation of G. Then π|Pn
∼= IndPn

U ψ, where ψ is defined by summing the elements just
above the diagonal.

I explained this orally using this picture:








∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 ∗
0 0 0 0 1









and the fact that πN = 0 for any parabolic subgroup P = MN .

Corollary 16.8. Any irreducible cuspidal π lies in IndG
U ψ

The representation IndG
U ψ is called the Whittaker model. It is multiplicity free. This

can be shown using the technique of Gelfand pairs, slightly modified to take are of the
character ψ. This character helps - we need the fact that its centralizer in H is only Z.
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