Stone-von Neumann equivalence for smooth representations of the Heisenberg group

Dmitry Gourevitch (Weizmann Institute, Israel)
Conference on Real Reductive Groups and Theta Correspondence,
Tianyuan Mathematics Research Center
j.w. R. Gomez & S. Sahi

http://www.wisdom.weizmann.ac.il/~dimagur/

July 25, 2024

The classical Stone-von Neumann theorem

Let H be a Heisenberg group with center Z, *i.e.*

$$H = W \times Z$$
,

where W is a symplectic space. Let $L \subset W$ be Lagrangian subspace, and let $P := L \times Z$. Let $\chi \neq 1 \in \widehat{Z}$, extend χ to L trivially. Let $\Omega_{\chi} = \operatorname{ind}_{P}^{H} \chi$.

The classical Stone-von Neumann theorem

Let H be a Heisenberg group with center Z, *i.e.*

$$H = W \times Z$$
,

where W is a symplectic space. Let $L \subset W$ be Lagrangian subspace, and let $P := L \times Z$. Let $\chi \neq 1 \in \widehat{Z}$, extend χ to L trivially. Let $\Omega_{\chi} = \operatorname{ind}_{P}^{H} \chi$.

Theorem (Stone-von Neumann)

Let τ be an irreducible unitary representation of H such that

$$\tau(z)v=\chi(z)v$$
, for all $z\in Z$.

Then $\tau \cong \Omega_{\chi}$.

Geometric basis for this theorem: denote $\widehat{P}_{\chi}:=\{\psi\in\widehat{P}\,|\,\psi|_{Z}=\chi\}.$

Then $\widehat{P}_{\chi} = H/P$ and the theorem follows from Mackey imprimitivity thm.

July 25, 2024

 $H = W \times Z$, $L \subset W$, $P := L \times Z$. Let $\widehat{Z}^{\times} := \widehat{Z} \setminus \{1\} \simeq \mathbb{R}^{\times}$. Let $\operatorname{Rep}^{\infty}(H)$ and $\operatorname{Rep}^{\infty}(Z)$ denote the categories of smooth Fréchet representations of moderate growth.

 $H=W\times Z,\ L\subset W,\ P:=L\times Z.$ Let $\widehat{Z}^\times:=\widehat{Z}\setminus\{1\}\simeq\mathbb{R}^\times.$ Let $\operatorname{Rep}^\infty(H)$ and $\operatorname{Rep}^\infty(Z)$ denote the categories of smooth Fréchet representations of moderate growth. We define subcategory $\operatorname{Rep}^\infty(Z)^\times\subset\operatorname{Rep}^\infty(Z)$ of representations "supported on non-trivial characters". $\operatorname{Rep}^\infty(H)^\times:=\operatorname{subcategory}$ of $\operatorname{Rep}^\infty(H)$ consisting of representations π s.t. $\pi|_Z\in\operatorname{Rep}^\infty(Z)^\times.$ Let

 $H = W \times Z$, $L \subset W$, $P := L \times Z$. Let $\widehat{Z}^{\times} := \widehat{Z} \setminus \{1\} \simeq \mathbb{R}^{\times}$. Let $\operatorname{Rep}^{\infty}(H)$ and $\operatorname{Rep}^{\infty}(Z)$ denote the categories of smooth Fréchet representations of moderate growth.

We define subcategory $\operatorname{Rep}^\infty(Z)^\times\subset\operatorname{Rep}^\infty(Z)$ of representations "supported on non-trivial characters". $\operatorname{Rep}^\infty(H)^\times:=$ subcategory of $\operatorname{Rep}^\infty(H)$ consisting of representations π s.t. $\pi|_Z\in\operatorname{Rep}^\infty(Z)^\times$. Let

$$C: \operatorname{\mathsf{Rep}}^{\infty}(H)^{\times} \leftrightarrows \operatorname{\mathsf{Rep}}^{\infty}(Z)^{\times} : I \quad C(\tau) := \tau_{L}, \ I(\rho) := \operatorname{\mathsf{ind}}_{P}^{H} \rho$$

 $H=W\times Z,\ L\subset W,\ P:=L\times Z.$ Let $\widehat{Z}^{\times}:=\widehat{Z}\setminus\{1\}\simeq\mathbb{R}^{\times}.$ Let $\operatorname{Rep}^{\infty}(H)$ and $\operatorname{Rep}^{\infty}(Z)$ denote the categories of smooth Fréchet representations of moderate growth.

We define subcategory $\operatorname{Rep}^\infty(Z)^\times\subset\operatorname{Rep}^\infty(Z)$ of representations "supported on non-trivial characters". $\operatorname{Rep}^\infty(H)^\times:=$ subcategory of $\operatorname{Rep}^\infty(H)$ consisting of representations π s.t. $\pi|_Z\in\operatorname{Rep}^\infty(Z)^\times$. Let

$$C: \operatorname{\mathsf{Rep}}^\infty(H)^\times \leftrightarrows \operatorname{\mathsf{Rep}}^\infty(Z)^\times : I \quad C(\tau) := \tau_L, \ I(\rho) := \operatorname{\mathsf{ind}}_P^H \rho$$

Theorem (Gomez-G.-Sahi '24)

The functors I and C are mutually quasi-inverse equivalences of categories.

 $H = W \times Z$, $L \subset W$, $P := L \times Z$. Let $\widehat{Z}^{\times} := \widehat{Z} \setminus \{1\} \simeq \mathbb{R}^{\times}$. Let $\operatorname{Rep}^{\infty}(H)$ and $\operatorname{Rep}^{\infty}(Z)$ denote the categories of smooth Fréchet representations of moderate growth.

We define subcategory $\operatorname{Rep}^\infty(Z)^\times\subset\operatorname{Rep}^\infty(Z)$ of representations "supported on non-trivial characters". $\operatorname{Rep}^\infty(H)^\times:=$ subcategory of $\operatorname{Rep}^\infty(H)$ consisting of representations π s.t. $\pi|_Z\in\operatorname{Rep}^\infty(Z)^\times$. Let

$$C: \mathsf{Rep}^{\infty}(H)^{\times} \leftrightarrows \mathsf{Rep}^{\infty}(Z)^{\times}: I \quad C(\tau) := \tau_{L}, \ I(\rho) := \mathsf{ind}_{P}^{H} \rho$$

Theorem (Gomez-G.-Sahi '24)

The functors I and C are mutually quasi-inverse equivalences of categories.

Formal def. of $\operatorname{\mathsf{Rep}}^\infty(Z)^\times$: Let $\mathfrak{z} := \operatorname{\mathit{Lie}}(Z)$, $z \neq 0 \in \mathfrak{z}$.

$$\operatorname{\mathsf{Rep}}^\infty(Z)^\times := \{
ho \in \operatorname{\mathsf{Rep}}^\infty(Z) \, | \, \exists \sigma \in \operatorname{\mathsf{Rep}}^\infty(Z) \text{ s.t. } d\rho(z) d\sigma(z) = \operatorname{\mathsf{Id}} \}$$

• Let $G \curvearrowright X$. du-Cloux: a G-imprimitivity system \mathcal{F} on a G-space X is a Fréchet space with compatible structures of a module over the algebras $\mathcal{S}(X)$ (with pointwise multiplication as product) and on $\mathcal{S}(G)$ (with convolution).

- Let $G \curvearrowright X$. du-Cloux: a G-imprimitivity system \mathcal{F} on a G-space X is a Fréchet space with compatible structures of a module over the algebras $\mathcal{S}(X)$ (with pointwise multiplication as product) and on $\mathcal{S}(G)$ (with convolution).
- Geometrically: G-imprimitivity system = equivariant sheaf: $\forall x \in X$ have \mathcal{F}_x , and $\forall g \in G$ a continuous linear operator $\mathcal{F}_x \to \mathcal{F}_{gx}$. The space \mathcal{F} is the space of global sections of this sheaf.

- Let $G \curvearrowright X$. du-Cloux: a G-imprimitivity system \mathcal{F} on a G-space X is a Fréchet space with compatible structures of a module over the algebras $\mathcal{S}(X)$ (with pointwise multiplication as product) and on $\mathcal{S}(G)$ (with convolution).
- Geometrically: G-imprimitivity system = equivariant sheaf: $\forall x \in X$ have \mathcal{F}_x , and $\forall g \in G$ a continuous linear operator $\mathcal{F}_x \to \mathcal{F}_{gx}$. The space \mathcal{F} is the space of global sections of this sheaf.
- Let $\tau \in \operatorname{Rep}^{\infty}(H)^{\times}$. Using Fourier transform on $L \times Z$, τ defines an H-imprimitivity system \mathcal{F} on $\widehat{L} \times \widehat{Z}$, with the property that $L \times Z \subset H$ acts on $\mathcal{F}_{(\chi,\psi)}$ by the character (χ,ψ) , $\forall (\chi,\psi) \in \widehat{L} \times \widehat{Z}$.

- Let $G \curvearrowright X$. du-Cloux: a G-imprimitivity system \mathcal{F} on a G-space X is a Fréchet space with compatible structures of a module over the algebras $\mathcal{S}(X)$ (with pointwise multiplication as product) and on $\mathcal{S}(G)$ (with convolution).
- Geometrically: G-imprimitivity system = equivariant sheaf: $\forall x \in X$ have \mathcal{F}_x , and $\forall g \in G$ a continuous linear operator $\mathcal{F}_x \to \mathcal{F}_{gx}$. The space \mathcal{F} is the space of global sections of this sheaf.
- Let $\tau \in \operatorname{Rep}^{\infty}(H)^{\times}$. Using Fourier transform on $L \times Z$, τ defines an H-imprimitivity system \mathcal{F} on $\widehat{L} \times \widehat{Z}$, with the property that $L \times Z \subset H$ acts on $\mathcal{F}_{(\chi,\psi)}$ by the character (χ,ψ) , $\forall (\chi,\psi) \in \widehat{L} \times \widehat{Z}$.
- $\bullet \ \, \text{By defn of Rep}^{\infty}(H)^{\times}, \, \mathcal{F} \, \, \text{is completely determined by} \, \, \mathcal{F}|_{\widehat{L} \times \widehat{\mathcal{Z}}^{\times}}.$

- Let $G \curvearrowright X$. du-Cloux: a G-imprimitivity system \mathcal{F} on a G-space X is a Fréchet space with compatible structures of a module over the algebras $\mathcal{S}(X)$ (with pointwise multiplication as product) and on $\mathcal{S}(G)$ (with convolution).
- Geometrically: G-imprimitivity system = equivariant sheaf: $\forall x \in X$ have \mathcal{F}_x , and $\forall g \in G$ a continuous linear operator $\mathcal{F}_x \to \mathcal{F}_{gx}$. The space \mathcal{F} is the space of global sections of this sheaf.
- Let $\tau \in \operatorname{Rep}^{\infty}(H)^{\times}$. Using Fourier transform on $L \times Z$, τ defines an H-imprimitivity system \mathcal{F} on $\widehat{L} \times \widehat{Z}$, with the property that $L \times Z \subset H$ acts on $\mathcal{F}_{(\chi,\psi)}$ by the character (χ,ψ) , $\forall (\chi,\psi) \in \widehat{L} \times \widehat{Z}$.
- By defin of $\operatorname{Rep}^{\infty}(H)^{\times}$, \mathcal{F} is completely determined by $\mathcal{F}|_{\widehat{L}\times\widehat{Z}^{\times}}$.
- Since $0 \times \widehat{Z}^{\times} \subset \widehat{L} \times \widehat{Z}^{\times}$ is a section transversal to the action of H, the stabilizer of any point $(\chi, \psi) \in \widehat{L} \times \widehat{Z}$ is $L \times Z$, and the action on $\mathcal{F}_{(\chi,\psi)}$ by (χ,ψ) , the system really contains the same information as a sheaf on \widehat{Z}^{\times} , or equivalently a representation $\rho \in \operatorname{Rep}^{\infty}(Z)^{\times}$.

Towards a generalized Segal-Shale-Weil

Define $\omega \in \mathsf{Rep}^{\infty}(Z)^{\times}$ by $\omega := \mathcal{S}(\widehat{Z}^{\times})$ with $f^{z}(\chi) := \chi(z)f(\chi)$.

Lemma

 $\forall V \in \mathsf{Rep}^{\infty}(Z)^{\times} \text{ we have } \varpi \widehat{\otimes} V {\rightarrow\!\!\!\!\rightarrow} V.$

Define $\Omega := \operatorname{ind}_P^H \omega \in \operatorname{Rep}^{\infty}(H)^{\times}$. Then $\Omega_{\chi}^{\infty} = \Omega_{Z,\chi}$.

Towards a generalized Segal-Shale-Weil

Define $\omega \in \mathsf{Rep}^{\infty}(Z)^{\times}$ by $\omega := \mathcal{S}(\widehat{Z}^{\times})$ with $f^{z}(\chi) := \chi(z)f(\chi)$.

Lemma

 $\forall V \in \mathsf{Rep}^{\infty}(Z)^{\times} \text{ we have } \varpi \widehat{\otimes} V \rightarrow V.$

Define $\Omega := \operatorname{ind}_P^H \omega \in \operatorname{Rep}^{\infty}(H)^{\times}$. Then $\Omega_{\chi}^{\infty} = \Omega_{Z,\chi}$.

Lemma

 $\forall \tau \in \mathsf{Rep}^{\infty}(H)^{\times}$, $\rho \in \mathsf{Rep}^{\infty}(Z)^{\times}$ have

$$\mathcal{C}(\tau) := \tau_{L} \cong \tau \widehat{\otimes}_{H} \overline{\Omega} := (\tau \widehat{\otimes} \overline{\Omega})_{H}, \ I(\rho) := \operatorname{ind}_{P}^{H} \rho \cong \rho \widehat{\otimes}_{Z} \Omega := (\rho \widehat{\otimes} \Omega)_{Z}$$

Towards a generalized Segal-Shale-Weil

Define $\omega \in \mathsf{Rep}^\infty(Z)^\times$ by $\omega := \mathcal{S}(\widehat{Z}^\times)$ with $f^z(\chi) := \chi(z) f(\chi)$.

Lemma

 $\forall V \in \mathsf{Rep}^{\infty}(Z)^{\times} \text{ we have } \varpi \widehat{\otimes} V \twoheadrightarrow V.$

Define $\Omega := \operatorname{ind}_P^H \omega \in \operatorname{Rep}^{\infty}(H)^{\times}$. Then $\Omega_{\chi}^{\infty} = \Omega_{Z,\chi}$.

Lemma

 $\forall au \in \mathsf{Rep}^\infty(H)^{ imes}$, $ho \in \mathsf{Rep}^\infty(Z)^{ imes}$ have

$$C(\tau) := \tau_L \cong \tau \widehat{\otimes}_H \overline{\Omega} := (\tau \widehat{\otimes} \overline{\Omega})_H, \ I(\rho) := \operatorname{ind}_P^H \rho \cong \rho \widehat{\otimes}_Z \Omega := (\rho \widehat{\otimes} \Omega)_Z$$

Proposition (Gomez-G.-Sahi '24)

There is a unique extension of Ω to a representation of $\widetilde{\mathsf{Sp}}(W) \ltimes H$.

• $\omega \in \operatorname{Rep}^{\infty}(Z)^{\times}$ by $\omega := \mathcal{S}(\widehat{Z}^{\times})$ with $f^{z}(\chi) := \chi(z)f(\chi)$.

- $\omega \in \operatorname{\mathsf{Rep}}^\infty_{\ \ }(Z)^{\times}$ by $\omega := \mathcal{S}(\widehat{Z}^{\times})$ with $f^z(\chi) := \chi(z) f(\chi)$.
- $\Omega := \operatorname{ind}_P^H \omega \in \operatorname{Rep}^{\infty}(H)^{\times}$ realized in functions $W \to \omega$.

- $\omega \in \operatorname{\mathsf{Rep}}^{\infty}(Z)^{\times}$ by $\omega := \mathcal{S}(\widehat{Z}^{\times})$ with $f^{z}(\chi) := \chi(z)f(\chi)$.
- $\Omega := \operatorname{ind}_{P}^{H} \omega \in \operatorname{Rep}^{\infty}(H)^{\times}$ realized in functions $W \to \omega$.
- $n := \dim W/2$. Introduce a basis on W s.t. L is spanned by the last n basis vectors, and the symplectic form is given in this basis by

$$J = \begin{pmatrix} 0 & \mathsf{Id} \\ -\mathsf{Id} & 0 \end{pmatrix}.$$

- $\omega \in \operatorname{\mathsf{Rep}}^{\infty}(Z)^{\times}$ by $\omega := \mathcal{S}(\widehat{Z}^{\times})$ with $f^{z}(\chi) := \chi(z)f(\chi)$.
- $\Omega := \operatorname{ind}_{P}^{H} \omega \in \operatorname{Rep}^{\infty}(H)^{\times}$ realized in functions $W \to \omega$.
- $n := \dim W/2$. Introduce a basis on W s.t. L is spanned by the last n basis vectors, and the symplectic form is given in this basis by

$$J = \begin{pmatrix} 0 & \mathsf{Id} \\ -\mathsf{Id} & 0 \end{pmatrix}.$$

• Identify the Lagrangian spanned by the first n coordinates with $R \cong W/L$.

- $\omega \in \operatorname{\mathsf{Rep}}^\infty(Z)^\times$ by $\omega := \mathcal{S}(\widehat{Z}^\times)$ with $f^z(\chi) := \chi(z) f(\chi)$.
- $\Omega := \operatorname{ind}_P^H \omega \in \operatorname{\mathsf{Rep}}^\infty(H)^\times$ realized in functions $W \to \omega$.
- $n := \dim W/2$. Introduce a basis on W s.t. L is spanned by the last n basis vectors, and the symplectic form is given in this basis by

$$J = \begin{pmatrix} 0 & \mathsf{Id} \\ -\mathsf{Id} & 0 \end{pmatrix}.$$

- Identify the Lagrangian spanned by the first *n* coordinates with $R \cong W/L$.
- ullet Define an operator S on the space of ω by

$$(S\phi)(\chi_{s}):=\sqrt{|s|\phi(\chi_{s})}, ext{ where } \chi_{s}(t):=\exp(2\pi i s t)$$

- $\omega \in \operatorname{\mathsf{Rep}}^\infty_{\cdot\cdot}(Z)^{\times}$ by $\omega := \mathcal{S}(\widehat{Z}^{\times})$ with $f^z(\chi) := \chi(z) f(\chi)$.
- $\Omega := \operatorname{ind}_{P}^{H} \omega \in \operatorname{Rep}^{\infty}(H)^{\times}$ realized in functions $W \to \omega$.
- $n := \dim W/2$. Introduce a basis on W s.t. L is spanned by the last n basis vectors, and the symplectic form is given in this basis by

$$J = \begin{pmatrix} 0 & \mathsf{Id} \\ -\mathsf{Id} & 0 \end{pmatrix}.$$

- Identify the Lagrangian spanned by the first *n* coordinates with $R \cong W/L$.
- ullet Define an operator S on the space of ω by

$$(S\phi)(\chi_{s}):=\sqrt{|s|\phi(\chi_{s})}, ext{ where } \chi_{s}(t):=\exp(2\pi i s t)$$

ullet Define analogues of Fourier transform and its inverse on Ω by

$$\begin{split} \mathcal{F}_{\varpi}(f)(x) &:= S^{-1} \int_{L} \varpi(-x^{t}y) f(y) dy \quad \text{ and } \\ \mathcal{F}_{\varpi}^{-1}(f)(x) &:= S \int_{L} \varpi(x^{t}y) f(y) dy. \end{split}$$

- $\omega \in \operatorname{\mathsf{Rep}}^{\infty}(Z)^{\times}$ by $\omega := \mathcal{S}(\widehat{Z}^{\times})$ with $f^{z}(\chi) := \chi(z)f(\chi)$.
- $\Omega := \operatorname{ind}_P^H \omega \in \operatorname{\mathsf{Rep}}^\infty(H)^\times$ realized in functions $W \to \omega$.
- ullet $(S\phi)(\chi_s):=\sqrt{|s|}\phi(\chi_s)$, where $\chi_s(t):=\exp(2\pi i s t)$
- $\mathcal{F}_{\omega}^{-1}(f)(x) := S \int_{L} \varpi(x^{t}y) f(y) dy$.

- $\omega \in \operatorname{\mathsf{Rep}}^{\infty}(Z)^{\times}$ by $\omega := \mathcal{S}(\widehat{Z}^{\times})$ with $f^{z}(\chi) := \chi(z)f(\chi)$.
- $\Omega := \operatorname{ind}_P^H \omega \in \operatorname{Rep}^{\infty}(H)^{\times}$ realized in functions $W \to \omega$.
- ullet $(S\phi)(\chi_s):=\sqrt{|s|}\phi(\chi_s)$, where $\chi_s(t):=\exp(2\pi i s t)$
- $\mathcal{F}_{\omega}^{-1}(f)(x) := S \int_{L} \varpi(x^{t}y) f(y) dy$.

•
$$\begin{pmatrix} A & 0 \\ 0 & (A^*)^{-1} \end{pmatrix} f(x) := \pm (\det A)^{-1/2} f(A^{-1}x)$$

- $\omega \in \operatorname{\mathsf{Rep}}^{\infty}(Z)^{\times}$ by $\omega := \mathcal{S}(\widehat{Z}^{\times})$ with $f^{z}(\chi) := \chi(z)f(\chi)$.
- $\Omega := \operatorname{ind}_{P}^{H} \omega \in \operatorname{Rep}^{\infty}(H)^{\times}$ realized in functions $W \to \omega$.
- ullet $(S\phi)(\chi_s):=\sqrt{|s|}\phi(\chi_s)$, where $\chi_s(t):=\exp(2\pi i s t)$
- $\mathcal{F}_{\omega}^{-1}(f)(x) := S \int_{L} \omega(x^{t}y) f(y) dy$.

- $\begin{pmatrix} A & 0 \\ 0 & (A^*)^{-1} \end{pmatrix} f(x) := \pm (\det A)^{-1/2} f(A^{-1}x)$
- $\bullet \begin{pmatrix} \mathsf{Id} & 0 \\ C & \mathsf{Id} \end{pmatrix} f(x) := \pm \omega(-x^t Cx/2) f(x)$

- $\omega \in \operatorname{\mathsf{Rep}}^{\infty}(Z)^{\times}$ by $\omega := \mathcal{S}(\widehat{Z}^{\times})$ with $f^{z}(\chi) := \chi(z)f(\chi)$.
- $\Omega := \operatorname{ind}_{P}^{H} \omega \in \operatorname{Rep}^{\infty}(H)^{\times}$ realized in functions $W \to \omega$.
- $(S\phi)(\chi_s) := \sqrt{|s|}\phi(\chi_s)$, where $\chi_s(t) := \exp(2\pi i s t)$
- $\mathcal{F}_{\omega}^{-1}(f)(x) := S \int_{L} \varpi(x^{t}y) f(y) dy$.

•
$$\begin{pmatrix} A & 0 \\ 0 & (A^*)^{-1} \end{pmatrix} f(x) := \pm (\det A)^{-1/2} f(A^{-1}x)$$

•
$$\begin{pmatrix} \operatorname{Id} & 0 \\ C & \operatorname{Id} \end{pmatrix} f(x) := \pm \omega(-x^t Cx/2) f(x)$$

$$\bullet \begin{pmatrix} 0 & \mathsf{Id} \\ -\mathsf{Id} & 0 \end{pmatrix} f(x) := \mapsto \pm i^{n/2} \mathcal{F}_{\varnothing}^{-1}(f)(x)$$

- $\omega \in \operatorname{\mathsf{Rep}}^{\infty}(Z)^{\times}$ by $\omega := \mathcal{S}(\widehat{Z}^{\times})$ with $f^{z}(\chi) := \chi(z)f(\chi)$.
- $\Omega := \operatorname{ind}_{P}^{H} \omega \in \operatorname{Rep}^{\infty}(H)^{\times}$ realized in functions $W \to \omega$.
- $(S\phi)(\chi_s) := \sqrt{|s|}\phi(\chi_s)$, where $\chi_s(t) := \exp(2\pi i s t)$
- $\mathcal{F}_{\omega}^{-1}(f)(x) := S \int_{L} \varpi(x^{t}y) f(y) dy$.

•
$$\begin{pmatrix} A & 0 \\ 0 & (A^*)^{-1} \end{pmatrix} f(x) := \pm (\det A)^{-1/2} f(A^{-1}x)$$

•
$$\begin{pmatrix} \operatorname{Id} & 0 \\ C & \operatorname{Id} \end{pmatrix} f(x) := \pm \omega(-x^t Cx/2) f(x)$$

$$\bullet \begin{pmatrix} 0 & \mathsf{Id} \\ -\mathsf{Id} & 0 \end{pmatrix} f(x) := \mapsto \pm i^{n/2} \mathcal{F}_{\varnothing}^{-1}(f)(x)$$

- $\omega \in \operatorname{\mathsf{Rep}}^{\infty}(Z)^{\times}$ by $\omega := \mathcal{S}(\widehat{Z}^{\times})$ with $f^{z}(\chi) := \chi(z)f(\chi)$.
- $\Omega := \operatorname{ind}_P^H \omega \in \operatorname{Rep}^{\infty}(H)^{\times}$ realized in functions $W \to \omega$.
- ullet $(S\phi)(\chi_s):=\sqrt{|s|}\phi(\chi_s), ext{ where } \chi_s(t):=\exp(2\pi i s t)$
- $\mathcal{F}_{\varpi}^{-1}(f)(x) := S \int_{L} \varpi(x^{t}y) f(y) dy$.

Define $\widetilde{\mathsf{Sp}} \curvearrowright \Omega$ by:

•
$$\begin{pmatrix} A & 0 \\ 0 & (A^*)^{-1} \end{pmatrix} f(x) := \pm (\det A)^{-1/2} f(A^{-1}x)$$

•
$$\begin{pmatrix} \mathsf{Id} & 0 \\ C & \mathsf{Id} \end{pmatrix} f(x) := \pm \omega (-x^t Cx/2) f(x)$$

$$\bullet \ \begin{pmatrix} 0 & \mathsf{Id} \\ -\,\mathsf{Id} & 0 \end{pmatrix} f(x) := \mapsto \pm i^{n/2} \mathcal{F}_{\varnothing}^{-1}(f)(x)$$

Proposition (Gomez-G.-Sahi '24)

This defines the unique extension of Ω to a representation of $\widetilde{\mathsf{Sp}}(W) \ltimes H$.

Fourier-Jacobi equivalence

$$\begin{split} \operatorname{\mathsf{Rep}}^\infty(\widetilde{\operatorname{\mathsf{Sp}}}(W) \ltimes H)_-^\times &:= \\ \{ \ \operatorname{\mathsf{genuine}} \ \tau \in \operatorname{\mathsf{Rep}}^\infty(\widetilde{\operatorname{\mathsf{Sp}}}(W) \ltimes H) \ \operatorname{s.t.} \ \tau|_H \in \operatorname{\mathsf{Rep}}^\infty(H)^\times \}. \\ C^+ : \operatorname{\mathsf{Rep}}^\infty(\widetilde{\operatorname{\mathsf{Sp}}}(W) \ltimes H)_-^\times &\leftrightarrows \operatorname{\mathsf{Rep}}^\infty(\operatorname{\mathsf{Sp}}(W) \times Z)^\times : I^+ \end{split}$$

- $C^+(\tau) := \tau \widehat{\otimes}_H \overline{\Omega}$ with $\widetilde{\mathsf{Sp}}(W)$ acting diagonally, and Z acting on τ .
- $I^+(\rho) := \rho \widehat{\otimes}_Z \Omega$, with H acting on Ω , and $\widetilde{\mathsf{Sp}}$ acting diagonally.

Fourier-Jacobi equivalence

$$\begin{split} \operatorname{\mathsf{Rep}}^\infty(\widetilde{\operatorname{\mathsf{Sp}}}(W) \ltimes H)_-^\times &:= \\ \big\{ \ \operatorname{\mathsf{genuine}} \ \tau \in \operatorname{\mathsf{Rep}}^\infty(\widetilde{\operatorname{\mathsf{Sp}}}(W) \ltimes H) \ \operatorname{s.t.} \ \tau|_H \in \operatorname{\mathsf{Rep}}^\infty(H)^\times \big\}. \\ C^+ : \operatorname{\mathsf{Rep}}^\infty(\widetilde{\operatorname{\mathsf{Sp}}}(W) \ltimes H)_-^\times &\leftrightarrows \operatorname{\mathsf{Rep}}^\infty(\operatorname{\mathsf{Sp}}(W) \times Z)^\times : I^+ \end{split}$$

- $C^+(\tau) := \tau \widehat{\otimes}_H \overline{\Omega}$ with $\widetilde{\mathsf{Sp}}(W)$ acting diagonally, and Z acting on τ .
- $I^+(\rho) := \rho \widehat{\otimes}_Z \Omega$, with H acting on Ω , and $\widetilde{\mathsf{Sp}}$ acting diagonally.

Theorem (Gomez-G.-Sahi '24)

The functors C^+ , I^+ are quasi-inverses.

Fourier-Jacobi equivalence

$$\begin{split} \operatorname{\mathsf{Rep}}^\infty(\widetilde{\operatorname{\mathsf{Sp}}}(W) \ltimes H)^\times_- &:= \\ \big\{ \ \operatorname{\mathsf{genuine}} \ \tau \in \operatorname{\mathsf{Rep}}^\infty(\widetilde{\operatorname{\mathsf{Sp}}}(W) \ltimes H) \ \operatorname{s.t.} \ \tau|_H \in \operatorname{\mathsf{Rep}}^\infty(H)^\times \big\}. \\ C^+ &: \operatorname{\mathsf{Rep}}^\infty(\widetilde{\operatorname{\mathsf{Sp}}}(W) \ltimes H)^\times_- \leftrightarrows \operatorname{\mathsf{Rep}}^\infty(\operatorname{\mathsf{Sp}}(W) \times Z)^\times : I^+ \end{split}$$

- $C^+(\tau) := \tau \widehat{\otimes}_H \overline{\Omega}$ with $\widetilde{\mathsf{Sp}}(W)$ acting diagonally, and Z acting on τ .
- $I^+(\rho) := \rho \widehat{\otimes}_Z \Omega$, with H acting on Ω , and $\widetilde{\mathsf{Sp}}$ acting diagonally.

Theorem (Gomez-G.-Sahi '24)

The functors C^+ , I^+ are quasi-inverses.

$$T: \mathsf{Rep}^{\infty}(H)^{\times} \xrightarrow{C} \mathsf{Rep}^{\infty}(Z)^{\times} \xrightarrow{\mathsf{triv}} \mathsf{Rep}^{\infty}(\mathsf{Sp}(W) \times Z)^{\times} \xrightarrow{I^{+}} \mathsf{Rep}^{\infty}(\widetilde{\mathsf{Sp}}(W) \ltimes H)^{\times}_{-}$$

Theorem (Gomez-G.-Sahi '24)

The functor T is the unique right quasi-inverse of the restriction functor

$$\operatorname{\mathsf{Rep}}^{\infty}(\widetilde{\operatorname{\mathsf{Sp}}}(W)\ltimes H)^{\times}_{-}\to \operatorname{\mathsf{Rep}}^{\infty}(H)^{\times}.$$

Let dim W=2. Let $\rho_i:=$ Taylor expansion by s of $\exp(2\pi i s t)$ at s=1, of order i.

Example (i = 2)

$$ho$$
 is two-dimensional, with $ho(t) = egin{pmatrix} \exp(2\pi it) & 2\pi it \exp(2\pi it) \\ 0 & \exp(2\pi it) \end{pmatrix}$

The action of S in this case is $\begin{pmatrix} 1 & 1/2 \\ 0 & 1 \end{pmatrix}$ and

$$\sigma\begin{pmatrix}0&\mathrm{Id}\\-\mathrm{Id}&0\end{pmatrix}=\pm\begin{pmatrix}1&E\\0&1\end{pmatrix}\mathcal{F}^{-1}$$
, where $E=(x\partial+\partial x)/2=x\partial+1/2$ is

the symmetrized Euler operator, and $\mathcal{F}^{-1}=\mathcal{F}_1^{-1}$ is the classical inverse Fourier transform.

Example (i = 3)

$$\rho(t) = \begin{pmatrix} \exp(2\pi it) & 2\pi it \exp(2\pi it) & -2\pi^2 t^2 \exp(2\pi it) \\ 0 & \exp(2\pi it) & 2\pi it \exp(2\pi it) \\ 0 & 0 & \exp(2\pi it) \end{pmatrix}$$

Example (i = 3)

$$\rho(t) = \begin{pmatrix} \exp(2\pi it) & 2\pi it \exp(2\pi it) & -2\pi^2 t^2 \exp(2\pi it) \\ 0 & \exp(2\pi it) & 2\pi it \exp(2\pi it) \\ 0 & 0 & \exp(2\pi it) \end{pmatrix}$$

The action of S in this case is $\begin{pmatrix} 1 & 1/2 & -1/4 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1 \end{pmatrix}$. Also, in this case

$$\sigma(w = \begin{pmatrix} 0 & \mathsf{Id} \\ -\mathsf{Id} & 0 \end{pmatrix}) = \pm i^{1/2} \begin{pmatrix} 1 & E & E^2/2 - E/2 \\ 0 & 1 & E \\ 0 & 0 & 1 \end{pmatrix} \mathcal{F}^{-1}.$$

Example (i = 3)

$$\rho(t) = \begin{pmatrix} \exp(2\pi it) & 2\pi it \exp(2\pi it) & -2\pi^2 t^2 \exp(2\pi it) \\ 0 & \exp(2\pi it) & 2\pi it \exp(2\pi it) \\ 0 & 0 & \exp(2\pi it) \end{pmatrix}$$

The action of S in this case is $\begin{pmatrix} 1 & 1/2 & -1/4 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1 \end{pmatrix}$. Also, in this case

$$\sigma(w = \begin{pmatrix} 0 & \mathsf{Id} \\ -\,\mathsf{Id} & 0 \end{pmatrix}) = \pm i^{1/2} \begin{pmatrix} 1 & E & E^2/2 - E/2 \\ 0 & 1 & E \\ 0 & 0 & 1 \end{pmatrix} \mathcal{F}^{-1}.$$

Since $w^2 = -\operatorname{Id}$, this operator must square to $f(x) \mapsto if(-x)$. If we do not do Fourier expansion then, squaring the operator for "Fourier transform", we get $F(x,s) \mapsto iF(-x,s)$. Deriving this identity in the variable s, we get generalizations of the previous examples to any order.

July 25, 2024

Infinitesimal Weil representation

Action of the Lie algebra $\mathfrak{sl}_2 = \operatorname{Span}(X, H, Y)$: We have

$$\sigma(Y)F(x,s) = \frac{\partial}{\partial c} \exp(-2\pi i s c x^2/2)F(x,s)|_{c=0} = -\pi i s x^2 F(x,s).$$

Infinitesimal Weil representation

Action of the Lie algebra $\mathfrak{sl}_2 = \operatorname{Span}(X, H, Y)$: We have

$$\sigma(Y)F(x,s) = \frac{\partial}{\partial c} \exp(-2\pi i s c x^2/2)F(x,s)|_{c=0} = -\pi i s x^2 F(x,s).$$

$$\sigma(H)F(x,s) = \frac{\partial}{\partial c} \exp(-c/2)F(\exp(-c)x,s)|_{c=0} = -F(x,s)/2 - x\partial_x F(x,s) = -EF(x,s).$$

Infinitesimal Weil representation

Action of the Lie algebra $\mathfrak{sl}_2 = \operatorname{Span}(X, H, Y)$: We have

$$\sigma(Y)F(x,s) = \frac{\partial}{\partial c} \exp(-2\pi i s c x^2/2)F(x,s)|_{c=0} = -\pi i s x^2 F(x,s).$$

$$\sigma(H)F(x,s) = \frac{\partial}{\partial c} \exp(-c/2)F(\exp(-c)x,s)|_{c=0} = -F(x,s)/2 - x\partial_x F(x,s) = -EF(x,s).$$

Conjugating the action of Y by $\sigma(\begin{pmatrix} 0 & \mathrm{Id} \\ -\mathrm{Id} & 0 \end{pmatrix})$ we get

$$\sigma(X)(F)(x,s) = -\pi i s \mathcal{F}(x^2 \mathcal{F}^{-1}(F(x,s)))(-xs), s) = (4\pi i s)^{-1} \partial_x^2 F(x,s).$$

Since $[E,x^2]=2x^2$, $[E,\partial_x^2]=-2\partial_x^2$, and $[\partial_x^2,x^2]=4E$, we get that $\sigma(X)$, $\sigma(H)$, $\sigma(Y)$ form an \mathfrak{sl}_2 -triple. If we substitute s:=1 we obtain the formulas for the classical infinitesimal Weil representation.

Action of the Lie algebra $\mathfrak{sl}_2 = \operatorname{Span}(X, H, Y)$: We have

$$\sigma(Y)F(x,s) = \frac{\partial}{\partial c} \exp(-2\pi i s c x^2/2)F(x,s)|_{c=0} = -\pi i s x^2 F(x,s).$$

$$\sigma(H)F(x,s) = \frac{\partial}{\partial c} \exp(-c/2)F(\exp(-c)x,s)|_{c=0} = -F(x,s)/2 - x\partial_x F(x,s) = -EF(x,s).$$

Conjugating the action of Y by $\sigma(\begin{pmatrix} 0 & \text{Id} \\ -\text{Id} & 0 \end{pmatrix})$ we get

$$\sigma(X)(F)(x,s) = -\pi i s \mathcal{F}(x^2 \mathcal{F}^{-1}(F(x,s)))(-xs), s) = (4\pi i s)^{-1} \partial_x^2 F(x,s).$$

Since $[E, x^2] = 2x^2$, $[E, \partial_x^2] = -2\partial_x^2$, and $[\partial_x^2, x^2] = 4E$, we get that $\sigma(X)$, $\sigma(H)$, $\sigma(Y)$ form an \mathfrak{sl}_2 -triple. If we substitute s := 1 we obtain the formulas for the classical infinitesimal Weil representation.

Happy birthday, Chenbo!

