Stone-von Neumann equivalence for smooth representations of the Heisenberg group

Dmitry Gourevitch (Weizmann Institute, Israel) Conference on Real Reductive Groups and Theta Correspondence, Tianyuan Mathematics Research Center j.w. R. Gomez & S. Sahi

http://www.wisdom.weizmann.ac.il/~dimagur/

July 25, 2024

The classical Stone-von Neumann theorem

Let H be a Heisenberg group with center Z, *i.e.*

$$H = W \times Z$$
,

where W is a symplectic space. Let $L \subset W$ be Lagrangian subspace, and let $P := L \times Z$. Let $\chi \neq 1 \in \widehat{Z}$, extend χ to L trivially. Let $\Omega_{\chi} = \operatorname{ind}_{P}^{H} \chi$.

Theorem (Stone-von Neumann)

Let τ be an irreducible unitary representation of H such that

$$au(z)v = \chi(z)v$$
, for all $z \in Z$.

Then $\tau \cong \Omega_{\chi}$.

Geometric basis for this theorem: denote $\widehat{P}_{\chi} := \{ \psi \in \widehat{P} \mid \psi|_Z = \chi \}$. Then $\widehat{P}_{\chi} = H/P$ and the theorem follows from Mackey imprimitivity thm.

Our version

 $H = W \times Z, \ L \subset W, \ P := L \times Z.$ Let $\widehat{Z}^{\times} := \widehat{Z} \setminus \{1\} \simeq \mathbb{R}^{\times}.$ Let $\operatorname{Rep}^{\infty}(H)$ and $\operatorname{Rep}^{\infty}(Z)$ denote the categories of smooth Fréchet representations of moderate growth. We define subcategory $\operatorname{Rep}^{\infty}(Z)^{\times} \subset \operatorname{Rep}^{\infty}(Z)$ of representations "supported on non-trivial characters". $\operatorname{Rep}^{\infty}(H)^{\times} :=$ subcategory of $\operatorname{Rep}^{\infty}(H)$ consisting of representations $\pi \ s.t. \ \pi|_{Z} \in \operatorname{Rep}^{\infty}(Z)^{\times}.$ Let

$$C: \operatorname{\mathsf{Rep}}^{\infty}(H)^{\times} \leftrightarrows \operatorname{\mathsf{Rep}}^{\infty}(Z)^{\times}: I \quad C(\tau):=\tau_L, \ I(\rho):=\operatorname{\mathsf{ind}}_P^H \rho$$

Theorem (Gomez-G.-Sahi '24)

The functors I and C are mutually quasi-inverse equivalences of categories.

Formal def. of $\operatorname{Rep}^{\infty}(Z)^{\times}$: Let $\mathfrak{z} := Lie(Z)$, $z \neq 0 \in \mathfrak{z}$.

$$\operatorname{\mathsf{Rep}}^\infty(Z)^\times := \{\rho \in \operatorname{\mathsf{Rep}}^\infty(Z) \, | \, \exists \sigma \in \operatorname{\mathsf{Rep}}^\infty(Z) \, \operatorname{s.t.} \, d\rho(z) d\sigma(z) = \operatorname{\mathsf{Id}} \}$$

Idea of proof

- Let G ∩ X. du-Cloux: a G-imprimitivity system F on a G-space X is a Fréchet space with compatible structures of a module over the algebras S(X) (with pointwise multiplication as product) and on S(G) (with convolution).
- Geometrically: G-imprimitivity system = equivariant sheaf: ∀x ∈ X have F_x, and ∀g ∈ G a continuous linear operator F_x → F_{gx}. The space F is the space of global sections of this sheaf.
- Let $\tau \in \operatorname{Rep}^{\infty}(H)^{\times}$. Using Fourier transform on $L \times Z$, τ defines an H-imprimitivity system \mathcal{F} on $\widehat{L} \times \widehat{Z}$, with the property that $L \times Z \subset H$ acts on $\mathcal{F}_{(\chi,\psi)}$ by the character (χ,ψ) , $\forall (\chi,\psi) \in \widehat{L} \times \widehat{Z}$.
- By defn of $\operatorname{Rep}^{\infty}(H)^{\times}$, \mathcal{F} is completely determined by $\mathcal{F}|_{\widehat{L}\times\widehat{Z}^{\times}}$.
- Since $0 \times \widehat{Z}^{\times} \subset \widehat{L} \times \widehat{Z}^{\times}$ is a section transversal to the action of H, the stabilizer of any point $(\chi, \psi) \in \widehat{L} \times \widehat{Z}$ is $L \times Z$, and the action on $\mathcal{F}_{(\chi,\psi)}$ by (χ, ψ) , the system really contains the same information as a sheaf on \widehat{Z}^{\times} , or equivalently a representation $\rho \in \operatorname{Rep}^{\infty}(Z)^{\times}$.

Towards a generalized Segal-Shale-Weil

Define
$$\omega \in \operatorname{Rep}^{\infty}(Z)^{\times}$$
 by $\omega := S(\widehat{Z}^{\times})$ with $f^{z}(\chi) := \chi(z)f(\chi)$.

Lemma

$$\forall V \in \operatorname{\mathsf{Rep}}^{\infty}(Z)^{\times}$$
 we have $\mathscr{O}\widehat{\otimes}V \twoheadrightarrow V$.

Define
$$\Omega := \operatorname{ind}_{P}^{H} \omega \in \operatorname{Rep}^{\infty}(H)^{\times}$$
. Then $\Omega_{\chi}^{\infty} = \Omega_{Z,\chi}$.

Lemma

$$orall au \in \operatorname{\mathsf{Rep}}^\infty({\mathcal{H}})^ imes$$
 , $ho \in \operatorname{\mathsf{Rep}}^\infty(Z)^ imes$ have

$$C(\tau) := \tau_L \cong \tau \widehat{\otimes}_H \overline{\Omega} := (\tau \widehat{\otimes} \overline{\Omega})_H, \ I(\rho) := \operatorname{ind}_P^H \rho \cong \rho \widehat{\otimes}_Z \Omega := (\rho \widehat{\otimes} \Omega)_Z$$

Proposition (Gomez-G.-Sahi '24)

There is a unique extension of Ω to a representation of $\widetilde{Sp}(W) \ltimes H$.

Generalized Segal-Shale-Weil representation

•
$$\omega \in \operatorname{Rep}^{\infty}(Z)^{\times}$$
 by $\omega := S(\widehat{Z}^{\times})$ with $f^{z}(\chi) := \chi(z)f(\chi)$.

- $\Omega := \operatorname{ind}_{P}^{H} \omega \in \operatorname{Rep}^{\infty}(H)^{\times}$ realized in functions $W \to \emptyset$.
- n := dim W/2. Introduce a basis on W s.t. L is spanned by the last n basis vectors, and the symplectic form is given in this basis by

$$J = \begin{pmatrix} 0 & \mathsf{Id} \\ - \,\mathsf{Id} & 0 \end{pmatrix}$$

- Identify the Lagrangian spanned by the first *n* coordinates with $R \cong W/L$.
- Define an operator S on the space of ϖ by

$$(S\phi)(\chi_s):=\sqrt{|s|}\phi(\chi_s)$$
, where $\chi_s(t):=\exp(2\pi i s t)$

• Define analogues of Fourier transform and its inverse on $\boldsymbol{\Omega}$ by

$$\begin{split} \mathcal{F}_{\varpi}(f)(x) &:= S^{-1} \int_{L} \varpi(-x^{t}y) f(y) dy \quad \text{and} \\ \mathcal{F}_{\varpi}^{-1}(f)(x) &:= S \int_{L} \varpi(x^{t}y) f(y) dy. \end{split}$$

Generalized Segal-Shale-Weil representation

•
$$\omega \in \operatorname{Rep}^{\infty}(Z)^{\times}$$
 by $\omega := S(\widehat{Z}^{\times})$ with $f^{z}(\chi) := \chi(z)f(\chi)$.

• $\Omega := \operatorname{ind}_{P}^{H} \omega \in \operatorname{Rep}^{\infty}(H)^{\times}$ realized in functions $W \to \emptyset$.

•
$$(S\phi)(\chi_s) := \sqrt{|s|}\phi(\chi_s)$$
, where $\chi_s(t) := \exp(2\pi i s t)$

•
$$\mathcal{F}_{\varpi}^{-1}(f)(x) := S \int_{L} \varpi(x^{t}y) f(y) dy.$$

Define $\widetilde{\mathsf{Sp}} \curvearrowright \Omega$ by:

•
$$\begin{pmatrix} A & 0 \\ 0 & (A^*)^{-1} \end{pmatrix} f(x) := \pm (\det A)^{-1/2} f(A^{-1}x)$$

• $\begin{pmatrix} \mathsf{Id} & 0 \\ C & \mathsf{Id} \end{pmatrix} f(x) := \pm \varpi(-x^t C x/2) f(x)$
• $\begin{pmatrix} 0 & \mathsf{Id} \\ -\mathsf{Id} & 0 \end{pmatrix} f(x) := \mapsto \pm i^{n/2} \mathcal{F}_{\varpi}^{-1}(f)(x)$

Proposition (Gomez-G.-Sahi '24)

This defines the unique extension of Ω to a representation of $\widetilde{Sp}(W) \ltimes H$.

Dima Gourevitch

$$\begin{aligned} \operatorname{Rep}^{\infty}(\widetilde{\operatorname{Sp}}(W) \ltimes H)_{-}^{\times} &:= \\ \{ \text{ genuine } \tau \in \operatorname{Rep}^{\infty}(\widetilde{\operatorname{Sp}}(W) \ltimes H) \text{ s.t. } \tau|_{H} \in \operatorname{Rep}^{\infty}(H)^{\times} \}. \\ C^{+} : \operatorname{Rep}^{\infty}(\widetilde{\operatorname{Sp}}(W) \ltimes H)_{-}^{\times} &\leftrightarrows \operatorname{Rep}^{\infty}(\operatorname{Sp}(W) \times Z)^{\times} : I^{+} \\ \bullet \ C^{+}(\tau) &:= \tau \widehat{\otimes}_{H} \overline{\Omega} \text{ with } \widetilde{\operatorname{Sp}}(W) \text{ acting diagonally, and } Z \text{ acting on } \tau. \\ \bullet \ I^{+}(\rho) &:= \rho \widehat{\otimes}_{Z} \Omega, \text{ with } H \text{ acting on } \Omega, \text{ and } \widetilde{\operatorname{Sp}} \text{ acting diagonally.} \end{aligned}$$

Theorem (Gomez-G.-Sahi '24)

The functors C^+ , I^+ are quasi-inverses.

$$T: \mathsf{Rep}^{\infty}(H)^{\times} \xrightarrow{C} \mathsf{Rep}^{\infty}(Z)^{\times} \xrightarrow{\mathsf{triv}} \mathsf{Rep}^{\infty}(\mathsf{Sp}(W) \times Z)^{\times} \xrightarrow{I^{+}} \mathsf{Rep}^{\infty}(\widetilde{\mathsf{Sp}}(W) \ltimes H)^{\times}_{-}$$

Theorem (Gomez-G.-Sahi '24)

The functor T is the unique right quasi-inverse of the restriction functor

$$\operatorname{\mathsf{Rep}}^{\infty}(\widetilde{\operatorname{\mathsf{Sp}}}(W) \ltimes H)^{\times}_{-} \to \operatorname{\mathsf{Rep}}^{\infty}(H)^{\times}.$$

Let dim W = 2. Let $\rho_i :=$ Taylor expansion by s of $\exp(2\pi i st)$ at s = 1, of order i.

Example (i = 2)

$$ho$$
 is two-dimensional, with $ho(t) = egin{pmatrix} \exp(2\pi it) & 2\pi it \exp(2\pi it) \\ 0 & \exp(2\pi it) \end{bmatrix}$

The action of S in this case is $\begin{pmatrix} 1 & 1/2 \\ 0 & 1 \end{pmatrix}$ and

$$\sigma \begin{pmatrix} 0 & \mathsf{Id} \\ -\mathsf{Id} & 0 \end{pmatrix} = \pm \begin{pmatrix} 1 & E \\ 0 & 1 \end{pmatrix} \mathcal{F}^{-1}, \text{ where } E = (x\partial + \partial x)/2 = x\partial + 1/2 \text{ is}$$

the symmetrized Euler operator, and $\mathcal{F}^{-1} = \mathcal{F}_1^{-1}$ is the classical inverse Fourier transform.

Example (i = 3)

ho(t) =	$\left(exp(x) \right)$	2 <i>πit</i>) 0 0	$2\pi it \exp(2 \cos \theta)$	(2πit πit)	t) —2 2	2π ² t ² ex 2πit exp exp(2	$\begin{pmatrix} xp(2\pi it) \\ p(2\pi it) \\ \pi it) \end{pmatrix}$	
The acti	ion of	S in t	his case is	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	1/2 1 0	-1/4 1/2 1). Also, in this case	
$\sigma(w =$	$\begin{pmatrix} 0\\ - Id \end{pmatrix}$	$\begin{pmatrix} Id \\ 0 \end{pmatrix}$	$) = \pm i^{1/2}$	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	E E 1 0	² /2 — E E 1	$\mathcal{F}^{/2}$ \mathcal{F}^{-1} .	
Since w	$^{2} = -$	ld th	is operato	r mus	st saua	re to $f($	$(\mathbf{x}) \mapsto if(-\mathbf{x})$	

Since $w^2 = -Id$, this operator must square to $f(x) \mapsto if(-x)$. If we do not do Fourier expansion then, squaring the operator for "Fourier transform", we get $F(x, s) \mapsto iF(-x, s)$. Deriving this identity in the variable *s*, we get generalizations of the previous examples to any order.

Infinitesimal Weil representation

Action of the Lie algebra $\mathfrak{sl}_2 = \operatorname{Span}(X, H, Y)$: We have

$$\sigma(\mathbf{Y})F(\mathbf{x},\mathbf{s}) = \frac{\partial}{\partial c} \exp(-2\pi i \mathbf{s} \mathbf{c} \mathbf{x}^2/2) F(\mathbf{x},\mathbf{s})|_{c=0} = -\pi i \mathbf{s} \mathbf{x}^2 F(\mathbf{x},\mathbf{s}).$$

$$\sigma(H)F(x,s) = \frac{\partial}{\partial c} \exp(-c/2)F(\exp(-c)x,s)|_{c=0} = -F(x,s)/2 - x\partial_x F(x,s) = -EF(x,s).$$

Conjugating the action of Y by
$$\sigma(\begin{pmatrix} 0 & \mathsf{Id} \\ -\mathsf{Id} & 0 \end{pmatrix})$$
 we get

$$\sigma(X)(F)(x,s) = -\pi i s \mathcal{F}(x^2 \mathcal{F}^{-1}(F(x,s)))(-xs), s) = (4\pi i s)^{-1} \partial_x^2 F(x,s)$$

Since $[E, x^2] = 2x^2$, $[E, \partial_x^2] = -2\partial_x^2$, and $[\partial_x^2, x^2] = 4E$, we get that $\sigma(X), \sigma(H), \sigma(Y)$ form an \mathfrak{sl}_2 -triple. If we substitute s := 1 we obtain the formulas for the classical infinitesimal Weil representation.

Action of the Lie algebra $\mathfrak{sl}_2 = \operatorname{Span}(X, H, Y)$: We have

$$\sigma(\mathbf{Y})F(\mathbf{x},\mathbf{s}) = \frac{\partial}{\partial c} \exp(-2\pi i \mathbf{s} \mathbf{c} \mathbf{x}^2/2) F(\mathbf{x},\mathbf{s})|_{c=0} = -\pi i \mathbf{s} \mathbf{x}^2 F(\mathbf{x},\mathbf{s}).$$

$$\sigma(H)F(x,s) = \frac{\partial}{\partial c} \exp(-c/2)F(\exp(-c)x,s)|_{c=0} = -F(x,s)/2 - x\partial_x F(x,s) = -EF(x,s).$$

Conjugating the action of Y by
$$\sigma(\begin{pmatrix} 0 & \mathsf{Id} \\ -\mathsf{Id} & 0 \end{pmatrix})$$
 we get

$$\sigma(X)(F)(x,s) = -\pi i s \mathcal{F}(x^2 \mathcal{F}^{-1}(F(x,s)))(-xs), s) = (4\pi i s)^{-1} \partial_x^2 F(x,s)$$

Since $[E, x^2] = 2x^2$, $[E, \partial_x^2] = -2\partial_x^2$, and $[\partial_x^2, x^2] = 4E$, we get that $\sigma(X), \sigma(H), \sigma(Y)$ form an \mathfrak{sl}_2 -triple. If we substitute s := 1 we obtain the formulas for the classical infinitesimal Weil representation.

Happy birthday, Chenbo!