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Abstract. Let G be a reductive group over a local field F of characteristic zero, Archimedean
or not. Let X be a G-space. In this paper we study the existence of generalized Whittaker
quotients for the space of Schwartz functions on X, considered as a representation of G. We
show that the set of nilpotent elements of the dual space to the Lie algebra such that the
corresponding generalized Whittaker quotient does not vanish contains the nilpotent part of
the image of the moment map, and lies in the closure of this image. This generalizes recent
results of Prasad and Sakellaridis.

Applying our theorems to symmetric pairs (G,H) we show that there exists an infinite-
dimensional H-distinguished representation of G if and only if the real reductive group cor-
responding to the pair (G,H) is non-compact. For quasi-split G we also extend to the
Archimedean case the theorem of Prasad stating that there exists a generic H-distinguished
representation of G if and only if the real reductive group corresponding to the pair (G,H) is
quasi-split.

In the non-Archimedean case our result also gives bounds on the wave-front sets of distin-
guished representations.

1. Introduction

Let F be a local field of characteristic zero, Archimedean or not. Let G be a reductive group
defined over F , let G := G(F ) be its F -points and g be the Lie algebra of G.

If F is non-Archimedean, we denote by M(G) the category of admissible smooth finitely-
generated representations ([BZ76]). If F is Archimedean, we denote by M(G) the category of
Casselman-Wallach representations, i.e. admissible smooth finitely-generated Fréchet represen-
tations of moderate growth (see [Wall92, §11], or [Cas89]). We denote by Irr(G) the collection
of irreducible representations in M(G).

A classical theme in representation theory of reductive groups over local fields is the study of
representations distinguished with respect to a subgroup H ⊂ G. A representation π ∈ Irr(G)
is called H-distinguished if it has a non-zero H-equivariant linear functional (continuous if F
is Archimedean). Denote by Irr(G)H ⊂ Irr(G) the subcollection of H-distinguished represen-
tations. Such are the local components of distinguished automorphic representations and such
are the discrete series representations that contribute to the Plancherel decomposition of the
Hilbert space L2(X), the space of square integrable functions (or sections of density bundle)
on the G-space X = G/H.
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In this paper we offer unified approach to two seemingly unrelated questions concerning dis-
tinguished representations. The first is to clarify and generalize the relationship between dis-
tinction and genericity studied in [PrSa19] to arbitrary G-spaces over local fields, Archimedean
or not. The second is a search for a non-Archimedean analogue of the qualitative study of the
Plancherel decomposition provided by [HW17].

Regarding the first question, it was recently studied in the special case of linear periods in
[SV20] both for Archimedean and non-Archimedean fields, and for symmetric pairs over non-
Archimedean fields in [PrSa19]. It should be mentioned that the motivating example here is
the disjointness result of [HR90] showing that irreducible generic representations of GL(2n)
never have non-zero symplectic invariant functionals (see [OS08] for a complete account).

As for the second, while a description of the wavefront set of the unitary representation
L2(X) is of independent interest, it also yields a-priori bound on the wavefront of individual
irreducible unitary distinguished representation that occurs in the Plancherel decomposition.

The unification of the topics mentioned above is obtained by studying the Whittaker sup-
port ([GGS]) of the non-admissible representation of G on spaces of Schwartz functions on X.
Understanding Whittaker support allows, in the non-Archimedean case, to deduce exact in-
formation on wave front of individual distinguished representations leading to our answer to
the first question. The study of WO(S(X)), which is our smooth replacement to the problem
studied in [HW17], is carried out using the theory of invariant distributions and in particular
the orbitwise technique introduced by Gelfand-Kazhdan [GK75] in the non-Archimedean case
(and its various extensions and ramifications), that in some cases reduces the study of invariant
distributions on a space to the study of invariant distributions on each of the orbits separately.

In this language, the orbits that can support equivariant distributions are those for which a
certain character is trivial on a stabilizer of one (hence any) point in the orbit. This can be
reformulated as a condition tangling the point and the character as living in the image of a
partial moment map attached to the G-space X and the orbit. Thus, as will also be clear from
the formulation of our results, a key tool in our approach is the moment map attached to the
G-space X. An unexpected aspect of this geometric approach is that it allows us to study the
Whittaker supports of modules of the form S(X) even in cases where X is not G-homogenous.

We now turn to the results of the present paper. We need some notations. Let X be a
smooth G-variety defined over F , and let X := X(F ). Let μ : T ∗X → g∗ denote the moment
map, and let M denote the closure of its image. Note that M is a closed conical set. Let
N ⊂ g∗ denote the nilpotent cone. Let S(X) denote the space of Schwartz functions on X and
let WO(S(X)) ⊂ N denote the set of nilpotent elements ϕ such that S(X) has a generalized
Whittaker quotient corresponding to ϕ (see §2.1 below). In §3 we prove the following theorem.

Theorem A (§3). (i) We have WO(S(X)) ⊂ M∩N .
(ii) If either F is non-Archimedean or X is quasi-projective then Im μ ∩N ⊂ WO(S(X)).

Let us now consider the homogeneous case, i.e. X = G/H . In this case we have Im μ = G∙h⊥.
Here, h⊥ denotes the orthogonal complement to h in g∗, and G ∙ h⊥ denotes the image of h⊥

under the coadjoint action of G on g∗. For homogeneous X we can formulate a twisted version
of Theorem A.

Let ζ : H → F and ψ : H → F× be algebraic characters. Let dζ ∈ h∗ denote the differential
of ζ, and let Fp−1

h (dζ) ⊂ g∗ denote the linear space spanned by the preimage of dζ under the

restriction map ph : g∗ � h∗. Fix a character ξm of F× and a non-trivial unitary character ξa
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of F , and let χ be the character of H given by the product

(1) χ = (ξa ◦ ζ) ∙ (ξm ◦ ψ).

Let S(G)H,χ denote the space of χ-coinvariants in S(G) under the action of H by right multi-
plications (see (5) below).

Theorem B (§3). Let H, χ, and Fp−1
h (dζ) be as above. Then

G ∙ p−1
h (dζ) ∩N ⊂ WO(S(G)H,χ) ⊂ G ∙ Fp−1

h (dζ) ∩N .

By Frobenius reciprocity for small induction (see e.g. [BZ76, Proposition 2.29] and [GGS17,
Lemma 2.3.4]), π ∈ Irr(G) is (H,χ)-distinguished if and only if the contragredient representa-
tion π̃ is a quotient of S(G)H,χΔH

, where ΔH denotes the modular function. Since Whittaker
quotient is a right-exact functor, Theorem B implies that

(2) for any π ∈ Irr(G)H,χ, WO(π) ⊂ G ∙ h⊥ .

For the case G = GLn+k(F ) and H = GLn(F )×GLk(F ), this statement is equivalent to [SV20,
Theorem B], which is proven for all local or finite fields F of characteristic different from 2.

The inclusion (2) is especially useful for non-Archimedean F , since for them the top nilpotent
orbits in WO(π) coincide with the top nilpotent orbits in the wave-front set WF(π) by [MW87].
In §4 below we recall this notion and deduce from Theorem B the following corollary.

Corollary C (§4). Suppose that F is non-Archimedean. Let χ be a character of H that is

trivial on its unipotent radical, and let π ∈ Irr(G)H,χ. Then WF(π) ⊂ G ∙ h⊥.

This corollary was our starting point for this paper. It was inspired by the paper [HW17]

that shows that the wave-front set of L2(G/H) in the Archimedean case is G ∙ h⊥.
Another powerful Archimedean analogue of Corollary C is proven in [GS]. Namely, in [GS]

we show that if H is a spherical subgroup of G then the Zariski closure of WF coincides with
the Zariski closure of a nilpotent G-orbit in g∗(C) that intersects h⊥. We conjecture that the
same holds in the p-adic case. We refer the reader to [GS, §9] for more details on this conjecture
and its generalization, as well as some evidence and applications.

Next we ask the following question: given ϕ ∈ WO(S(G)H,χ), does there exist π ∈ Irr(G)H,χ

with ϕ ∈ WO(π)? We can answer this question for certain ϕ, and for (absolutely) spherical
subgroups H, i.e. subgroups H = H(F ) with H acting on the flag variety of G with an open
orbit. Let P be an adapted parabolic for G/H - see §5 below for this notion. For any character
χ of H, denote by χ′

P the character of P ∩ H given by

(3) χ′
P := χ|P∩HΔ

−1/2
P Δ−1

H ,

where Δ denotes the modular functions.

Proposition D (§6). Let P be an adapted parabolic of G/H such that PH is open in G and
let π = S(G)

P,Δ
−1/2
P

be the space of smooth vectors of the normalized induction IndG
P 1. Then

(i) π is irreducible and unitarizable.
(ii) WO(π) = G ∙ p⊥

(iii) Assume H is spherical, and χ is a character of H. If χ is trivial on the unipotent radical
of H and χ′

P = 1 then π ∈ Irr(G)H,χ.
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We note that if H is unimodular then ΔP = ΔH = 1, and χ′
P = χ|P (see Lemma 6.1 below).

Remark 1.1. In case X is a unimodular spherical homogeneous space and if in addition M∩
N ⊂ G ∙ p⊥ then Theorem A and Proposition D imply the exact equality

(4) WO(S(X)) = M∩N = G ∙ p⊥

We note that if G is quasi-split then [Kno90] and [PrSa19, Appendix A] imply the weaker
inclusion M∩N ⊂ G ∙ p⊥ - see Corollary 5.8 below.

Corollary E (§6). Let H ⊂ G be an algebraic subgroup, and let χ be a character of H, trivial
on its unipotent radical. Let P be an adapted parabolic of G/H.

(i) If P = G then every π ∈ Irr(G)(H,χ) is finite-dimensional.
(ii) If P 6= G, PH is open in G, H is (absolutely) spherical and χ′

P = 1
then there exists an infinite-dimensional unitarizable π ∈ Irr(G)(H,χ).

(iii) If P is a Borel subgroup of G (in particular G is quasi-split), and χ′
P = 1

then there exists a generic unitarizable π ∈ Irr(G)(H,χ).
(iv) If P is not a Borel subgroup of G then no π ∈ Irr(G)(H,χ) is generic.

For quasi-split G and spherical H, the adapted parabolic P is a Borel subgroup if and only
if the dimension of the flag variety equals dim H − dim(H ∩ Z), where Z is the center of G.
This follows from the local structure theorem (Theorem 5.3 below). In this case H is called a
minimal spherical subgroup.

Over Archimedean F , Parts (i) and (iv) follow from [KS14, Theorem 4.2]. Over non-
Archimedean F , Part (iv) was essentially shown in [PrSa19]. The emphasis in [PrSa19] is
on symmetric pairs, for which Prasad showed that some properties of distinguished represen-
tations are governed by the properties of the real reductive group given by the root system of
the symmetric pair. In support of this principle we derive the following corollary.

Corollary F (§6). Suppose that G is quasi-split and let H ⊂ G be a symmetric subgroup.
Let GH

R be the real reductive group corresponding to the symmetric pair (G,H). Then

(i) There exists a generic π ∈ Irr(G)H if and only if GH
R is quasi-split.

(ii) There exists an infinite-dimensional π ∈ Irr(G)H if and only if GH
R is not a quotient of

the product of a compact group and a torus.

Part (i) was proven in [PrSa19] for non-Archimedean local fields of arbitrary characteristic,
as well as a certain analogue for finite fields.

In [GS, §6] we apply this corollary in order to answer [PrSa19, Question 1] in many cases.

1.1. Acknowledgements. We thank Avraham Aizenbud, Itay Glazer, and Michal Zydor for
fruitful discussions. D. G. was partially supported by ERC StG 637912 and ISF 249/17.

2. Preliminaries

2.1. Smooth representations and generalized Whittaker quotients.

Notation 2.1. If F is Archimedean, we denote by Rep∞(G) the category of smooth represen-
tations of G in complex vector spaces (see e.g. [BZ76]).

If F is Archimedean, we denote by Rep∞(G) the category of smooth Fréchet representations
of G of moderate growth, as in [dCl91, §1.4].
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For any algebraic subgroup H ⊂ G and π ∈ Rep∞(G), denote by πH the space of coinvariants,
i.e. quotient of π by the intersection of kernels of all G-invariant functionals. Explicitly,

(5) πH = π/{π(g)v − v | v ∈ π, g ∈ H}

where the closure is needed only for Archimedean F . In the latter case, for connected H we
have πH = π/hCπ which in turn is equal to the quotient of H0(h, π) by the closure of zero,
where h denotes the Lie algebra of H. For any character χ of H, denote πH,χ := (π ⊗ χ)H .

Definition 2.2. Let ϕ ∈ g∗ be a nilpotent element, and let π ∈ Rep∞(G). We define the
generalized Whittaker quotient πϕ in the following way.

Choose an sl2-triple (e, h, f ) such that ϕ is given by the Killing form pairing with f . Now,
let gh1 denote the eigenspace of the adjoint action of h on g corresponding to eigenvalue 1, and
gh≥2 denote the sum of the eigenspaces with eigenvalues 2 and higher. Consider the symplectic

form ωϕ on gh1 given by ωϕ(X,Y ) := ϕ([X,Y ]) and choose a Lagrangian l for this form. Let n
be the nilpotent Lie algebra l ⊕ gh≥2 and N ⊂ G be the corresponding unipotent subgroup. Let
ηϕ denote the unitary character of N given by ϕ. Then we define πϕ := πN,ηϕ.

For more details about this definition, and the proof that it is independent of choices, we
refer the reader to [GGS, §2.5].

Definition 2.3. Let π ∈ Rep∞(G). Define WO(π) to be the set of all nilpotent elements ϕ ∈ g∗

satisfying πϕ 6= 0.

2.2. Invariant distributions. Let X be the manifold of F -points of a smooth algebraic variety
defined over F . Let S(X) denote the space of Schwartz functions on X. For non-Archimedean
F , this means the space of locally-constant compactly supported functions, see [BZ76]. For
Archimedean X, Schwartz functions are functions that decay rapidly together with all their
derivatives, see e.g. [AG08] for the precise definition. Let S∗(X) denote the linear dual space
if F is non-Archimedean, and continuous linear dual space if F is Archimedean. We refer to
elements of S∗(X) as tempered distributions. For a group H acting on X and its character χ,
we denote by S∗(X)H,χ the space of tempered distributions ξ satisfying hξ = χ(h)ξ. This space
is dual to S(G)H,χ.

Theorem 2.4. Let an F -algebraic group H act algebraically on X. Let χ be a character of H
of the form (1). Suppose that the stabilizer Hx of any point x ∈ X is unipotent.

(i) If S∗(X)H,χ 6= 0 then there exists x ∈ X such that χ|Hx = 1.
(ii) If there exists x ∈ X such that χ|Hx = 1 and one of the following holds

(a) F is non-Archimedean
(b) H is solvable and X is quasi-projective
Then S∗(X)H,χ 6= 0.

Proof. Since all algebraic characters of unipotent groups are trivial, we have ΔH |Hx = Δx = 1
for any x ∈ X. Now, (i) follows from [Ber83, §1.5] and [BZ76, §6] for non-Archimedean F , and
from [AG13, Theorem 2.2.15 and the proof of Corollary 2.2.16] for Archimedean F .

For (ii), note that the condition χ|Hx = 1 implies that the orbit Hx of x has an H-invariant
measure. The Archimedean case under the condition (iib) follows now from [GSS19, Theorem
A]. Suppose now that F is non-Archimedean, and let O be an orbit of minimal dimension
among those that have an (H,χ)-equivariant measure. Since all the stabilizers are unipotent,

http://www.math.tau.ac.il//protect /unskip /penalty /@M / /ignorespaces bernstei/Publication_list/publication_texts/Bernstein-P-invar-SLN.pdf
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and thus Zariski connected, [HS17, Theorem 1.4] implies that S∗(O)H,χ 6= 0. This in turn
implies S∗(X)H,χ 6= 0. �

To complement this theorem in the Archimedean case we will need the following one.

Theorem 2.5 (cf. [GSS19, Theorem B]). Let G be a real reductive group, and let H,N ⊂ G
be real algebraic subgroups, such that N is unipotent. Let χ be a character of H as in (1), and
let η be a unitary character of N . Assume that for some g ∈ G we have

χ|H∩Ng = ηg|H∩Ng ,

where N g = gNg−1 and ηg is the character of N g given by ηg(gxg−1) = η(x). Then

S∗(G)N×H,η×χ 6= 0.

3. Proof of Theorems A and B

Let ϕ ∈ g∗ be a nilpotent element. As in Definition 2.2, let (e, h, f ) be an sl2-triple in g
such that ϕ is given by the Killing form pairing with f . Let v := gh≥2, and let n ⊃ v be as in
Definition 2.2. Let V := Exp(v) ⊂ N := Exp(n) be the corresponding nilpotent subgroups of
G. Let ηϕ be the unitary character of N corresponding to ϕ.

Proof of Theorem A. Suppose that ϕ ∈ WO(S(X)). Then by definition of WO(S(X)), we
have S∗(X)N,ηϕ 6= 0 and thus S∗(X)V,ηϕ 6= 0 . By Theorem 2.4, this implies that there exists
x ∈ X such that ϕ vanishes on the Lie algebra vx of the stabilizer of x in V . Thus, the
restriction ϕ|v lies in the image of the moment map μV : T ∗

xX → v∗ which is the dual of the
map v→ TxX given by the differential of the action of V on X. But μV equals the composition
of μ : T ∗

xX → g∗ with the restriction g∗ → v∗:

(6) T ∗
xX

μ
→ g∗ � v∗

Thus there exists ψ ∈ M such that ψ|v = ϕ. Since the kernel of the restriction to v is (g∗)h
≥−1,

we have ψ = ϕ + ψ′, where ψ′ ∈ (g∗)h
≥−1. Let T ⊂ G be the one-dimensional torus with Lie

algebra spanned by h, and let t ∈ T with |t| < 1. Then the coadjoint action Ad∗(t) of t is given
on (g∗)h

i by ti. Define a sequence ψn ∈ g∗ by ψn := t2n Ad∗(tn)ψ. Then ψn converges to ϕ.
Since M is conic and G-invariant, ψn ∈ M. Since M is closed, we have ϕ ∈ M.

Conversely, if ϕ lies in the image of the moment map then ϕ vanishes on gx for some x ∈ X
and thus ηϕ is trivial on Nx. By Theorem 2.4 this implies S∗(X)N,ηϕ 6= 0, which by definition
means ϕ ∈ WO(S(X)). �

Let us now prove Theorem B in a similar way.

Proof of Theorem B. Suppose that ϕ ∈ WO(S(G)H,χ). Then by definition we have
S∗(G)N×H,ηϕ×χ 6= 0 and thus S∗(G)V ×H,ηϕ×χ 6= 0. By Theorem 2.4, this implies that there
exists g ∈ G such that ηϕ × χ vanishes on the stabilizer in V × H of g. Replacing ϕ by g−1 ∙ ϕ
we can assume that g is the unit element. Then the stabilizer can be identified with V ∩ H,
and we have ϕ|v∩h = dζ|v∩h. Thus there exists ψ ∈ g∗ such that ψ|v = ϕ|v and ψ|h = dζ.

Since the kernel of the restriction to v is (g∗)h
≥−1, we have ψ = ϕ+ψ′, where ψ′ ∈ (g∗)h

≥−1. Let
T ⊂ G be the one-dimensional torus with Lie algebra spanned by h, and let t ∈ T with |t| < 1.

Define a sequence ψn := t2n Ad∗(tn)ψ ∈ g∗. Then ψn → ϕ and thus ϕ ∈ G ∙ Fp−1
h (dζ) ∩N .
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Conversely, if ϕ ∈ G ∙ p−1
h (dζ) ∩N then χ|H∩Ng = ηg

ϕ|H∩Ng for some g ∈ G. By Theorem 2.5

for Archimedean F , and Theorem 2.4 for non-Archimedean F , this implies S∗(G)N×H,ηϕ×χ 6= 0
and thus ϕ ∈ WO(S(G)H,χ). �

4. Wave-front sets and the proof of Corollary C

In this section only we assume that F is non-Archimedean. Let π ∈ Irr(G). Let χπ be the
character of π. It is a generalized function on G and it defines a generalized function ξπ on a
neighborhood of zero in gn, by restriction to a neighborhood of 1 ∈ G and applying logarithm.
By [How74] and [HC77, p. 180], ξπ is a combination of Fourier transforms of G-invariant
measures of nilpotent coadjoint orbits. The measures extend to g∗ by [RR72]. Denote by
WF (π) the closure of the union of all the orbits that appear in the decomposition of ξπ with
non-zero coefficients.

Theorem 4.1 ([MW87, Proposition I.11, Theorem I.16 and Corollary I.17], and [Var14]).

For any π ∈ Irr(G) we have WF(π) = WO(π).

Proof of Corollary C. Since the Whittaker quotient is a space of coinvariants, the functor π 7→
πϕ is right-exact. If π is H-distinguished then π̃ is a quotient of S(G)H,ΔHχ and thus WO(π̃) ⊂
WO(S(G)H,ΔHχ). Note that the image of the moment map of G/H is G ∙ h⊥. Thus Theorem

B implies WO(S(G)H,ΔHχ) ⊂ G ∙ h⊥. By Theorem 4.1 we have WF(π̃) = WO(π̃). It is easy to
see that WF(π̃) = −WF(π). Altogether we obtain

WF(π) = −WF(π̃) = −WO(π̃) ⊂ −WO(S(G)H,ΔHχ) ⊂ G ∙ h⊥

�

5. Preliminaries on the geometry of X

In this section we will identify the algebraic groups and algebraic varieties with their points
over the algebraic closure F of F . We will view the F -points of the varieties as subsets invariant
under the absolute Galois group Gal(F/F ). As for the Lie algebra, we will use the notation g
to denote its F -points (as in the rest of the paper), and g(F ) will denote the points over the
algebraic closure. We start with several definitions and a theorem from [KnKr].

Definition 5.1. An F -group is called elementary if it is connected and all F -rational elements
are semi-simple. An elementary radical is the subgroup generated by F -rational unipotent
elements. It is the smallest normal subgroup with elementary quotient. If H = LU is a Levi
decomposition of an F -group H then Hel = LelU, where Lel ⊂ L is the product of all non-
anisotropic simple factors.

Note that a group over an algebraically closed field is elementary if and only if it is a torus.

Definition 5.2. Fix a minimal F -parabolic subgroup P0 of G. The F -adapted parabolic P of
X that includes P0 is defined by

(7) P := {g ∈ G | gP0x = P0x for x in a dense open subset of X}

We denote the F -points of P by P . We will call P an adapted parabolic of X.
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Most of the statements in [KnKr] deal with F -dense varieties. They are applicable to our
case, since we assume X to be irreducible, X to be non-empty, and F to be a local field. Under
these assumptions, [Pop14, §1.A.2 and Proposition 2.6] implies that X is F -dense, i.e. X is
Zariski dense in X.

Theorem 5.3 (Local structure theorem, [KnKr, Corollary 4.6]). Let P = LU be a Levi decom-
position of an adapted parabolic of X. Then there exists a smooth affine L-subvariety Xel ⊂ X
such that

(i) Lel acts trivially on Xel, all the L-orbits on Xel are closed, and the categorical quotient
Xel → Xel//L is a locally trivial bundle in etale topology.

(ii) The natural morphism

(8) U × Xel = P ×L Xel → X

is an open embedding.

Recall that we denote by N the nilpotent cone of g∗ and by M the closure of the image of
the moment map of X.

Corollary 5.4. If P = G then M∩N = {0}.

It is easy to see from the definition, that any subgroup of an elementary group is reductive.
Thus Theorem 5.3 implies the following corollary.

Corollary 5.5. There exists an open dense P -invariant subset X0 of X such that the stabilizer
in P of any point in X0 is reductive.

Theorem 5.3 holds over any field of characteristic zero. It was first proven for algebraically
closed fields in [BLV86]. We can therefore consider the adapted parabolic of X over the algebraic
closure F and compare it to P.

Proposition 5.6 ([KnKr, Proposition 9.1]). Let B ⊂ P0 be a Borel subgroup of G, and let Q
be the adapted parabolic subgroup of X that includes B. Then P = P0Q.

Let Q− = MU− be a parabolic subgroup of G opposite to Q (where M = Q ∩ Q−), let
Ms be the stabilizer in M of a point in Xel (where Xel comes from Theorem 5.3 applied over
F ), and let S be the preimage of Ms under the projection Q− �M. Let us now consider the
moment map over the algebraic closure μ : T ∗X → g(F )∗. Let s and q− denote the Lie algebras
of S and Q−.

Theorem 5.7 ([PrSa19, Appendix A] using [Kno90, Satz 5.4]).

μ(T ∗X) = G ∙ s⊥

Corollary 5.8. We have

M∩N ⊂ μ(T ∗X)(F ) ∩N = (G ∙ (q−)⊥)(F )

Proof. Since M/Ms is elementary over F , it is a torus. Thus the nilpotent elements of s⊥ lie
in (q−)⊥. The corollary follows now from Theorem 5.7. �

Note that the Killing form identifies (q−)⊥ with u−.
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6. Proof of Proposition D and Corollaries E and F

Proof of Proposition D. (i) is a well-known consequence of Bruhat theory, see [KV96, §4] for
the Archimedean case. The non-Archimedean case is proven analogously.

(ii) follows from Theorem B. Indeed, we take ζ to de trivial and ξm ◦ ψ to be Δ
−1/2
P . Then

p−1
h (dζ) = p⊥. Since G ∙ p⊥ is closed and lies in N , we obtain that

G ∙ p−1
h (dζ) ∩N = G ∙ p⊥ = G ∙ Fp−1

h (dζ) ∩N .

By Theorem B we obtain G ∙ p⊥ = WO(S(G)
P,Δ

−1/2
P

) = WO(π).

For (iii) note that P ∩H is the stabilizer of the coset [1] ∈ G/H , that lies in an open P -orbit.
Thus, by Corollary 5.5, P ∩ H is reductive, and thus ΔP∩H = 1.

(iii) follows now from [GSS19, Proposition D]. More precisely, [GSS19, Proposition D] is the
case of trivial χ, but the general case is proven in the same way. �

Proof of Corollary E. (i) Let π ∈ Irr(G)H . Present G as a finite quotient of Z × K × M ,
where Z,K,M are reductive groups with Z commutative, K compact and M generated by its
unipotent elements. Then π ∈ Irr(Z×K×M), and we can assume G = Z×K×M . Since P = G,
Theorem B and Corollary 5.4 imply that WO(π̃) = {0}. Thus [GGS, Theorem C] implies that
M acts locally finitely on π. Now, Z acts on π by scalars by the Schur-Dixmier lemma, and π
has a K-finite-vector. Since π is irreducible, we obtain that it is finite-dimensional.
(ii) follows from Proposition D.
(iii) Let π := IndG

P 1. As explained in the proof of Proposition D(i,ii), π is irreducible and
generic. As before, P ∩ H is reductive and thus is unimodular. By [GSS19, Corollary C],
π ∈ Irr(G)H,χ. Again, [GSS19, Corollary C] is the case of trivial χ, but the general case is
proven in the same way.
(iv) If G is not quasi-split then it has no generic representations. If G is quasi-split then by
Theorem B, Proposition 5.6 and Corollary 5.8 we have WO(π̃) ⊂ M∩N ⊂ G ∙ p⊥. If P is not
a Borel subgroup then p⊥ has no regular nilpotent elements, and thus neither has WO( π̃). �

Lemma 6.1. If PH is open in G and ΔH = 1 then ΔP |P∩H = 1.

Proof. Since ΔH = 1, there exists a G-invariant measure on G/H . The restriction of this
measure to PH/H ∼= P/(P ∩ H) is P -invariant. Thus ΔP |P∩H = ΔP∩H . But ΔP∩H = 1. �

Proof of Corollary F. Let θ be the involution of G such that H = Gθ. Let P be an adapted
parabolic for G/H such that PH is open in G. Since H is reductive, ΔH = 1. By Lemma
6.1, ΔP |P∩H = 1. Thus, by Corollary E, the existence of generic π ∈ Irr(G)H is equivalent to
P being a Borel, and the non-existence of infinite-dimensional π ∈ Irr(G)H is equivalent to P
being G. Now, P = G if and only if G/H is a torus, which in turn is equivalent to GH

R being a
quotient of the product of a compact group and a torus. This proves (ii). To prove (i), we use
the fact that P is a Borel if and only if there exists a θ-split Borel. The existence of a θ-split
Borel is equivalent to GH

R being quasi-split by [PrSa19]. �
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