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Abstract. For a real reductive groupG, the center z(U(g)) of the universal enveloping
algebra of the Lie algebra g of G acts on the space of distributions on G. This action

proved to be very useful (see e.g. [HC63, HC65, Sha74, Bar03]).

Over non-Archimedean local fields, one can replace the action of z(U(g)) by the
action of the Bernstein center z of G, i.e. the center of the category of smooth repre-

sentations. However, this action is not well studied. In this paper we provide some

tools to work with this action and prove the following results.
• The wavefront set of any z-finite distribution ξ on G over any point g ∈ G lies

inside the nilpotent cone of T ∗
gG
∼= g.

• Let H1, H2 ⊂ G be symmetric subgroups. Consider the space J of H1 × H2-
invariant distributions on G. We prove that the z-finite distributions in J form

a dense subspace. In fact we prove this result in wider generality, where the
groups Hi are spherical subgroups of certain type and the invariance condition

is replaced by equivariance.

Further we apply those results to density and regularity of relative characters.
The first result can be viewed as a version of Howe’s expansion of characters.

The second result can be viewed as a spherical space analog of a classical theorem

on density of characters of finite length representations. It can also be viewed as a
spectral version of Bernstein’s localization principle.

In the Archimedean case, the first result is well-known and the second remains

open.
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1. Introduction

Let G be a reductive group defined over a non-Archimedean local field F . Let G :=
G(F ) be the corresponding l-group and let S(G) be the space of locally constant compactly
supported functions on G. Let z := z(G) := EndG×G(S(G)) denote the Bernstein center
(see Section 2.2). The action of z on S(G) gives rise to the dual action on the space of
distributions S∗(G).

In this paper we study z-finite distributions, i.e. distributions ξ such that dim(z·ξ) <∞.

1.1. Wavefront set of z-finite distributions. Our first result concerns the wavefront
set of such distributions. For x ∈ G let WFx(ξ) denote the intersection of the wavefront
set of ξ with the cotangent space T ∗xG (see Section 5.1).

In Section 5 we prove

Theorem A. Suppose that F has characteristic zero. Let ξ ∈ S∗(G) be a z-finite distri-
bution. Then for any x ∈ G we have

(1) WFx(ξ) ⊂ N
where N ⊂ g∗ is the nilpotent cone, and we identify the Lie algebra g with TxG using the
right action1.

Our main tool is the theory of special balls. This theory was developed for G = GLn in
[Say02] (where these balls were called fuzzy balls), using some ideas from [How74, How77].
In Section 5.2 and appendix A we recall the relevant part of this theory and adapt it to
general reductive groups.

Remark B. We need the characteristic zero assumption since we use the exponentiation
map in order to identify a neighborhood of zero in g with a neighborhood of the unit
element in G. For G = GLn one can use the map X 7→ Id +X (as in [Say02]) and drop
the assumption on the characteristic. It is likely that for other classical groups one can
use the Cayley map, and considerably weaken the assumption on the characteristic. The
general case can be possibly treated using [AS09, Appendix A].

1Since N is invariant by conjugation it does not matter whether we use the right or the left action.
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1.2. Density of z-finite distributions. The next results of this paper depend on closed
subgroups of G. We will require some conditions on these subgroups. We will describe
those conditions in Definition H below. If a subgroup H ⊂ G satisfies these conditions
we will call the pair (G,H) a pair of finite type. Conjecturally, if F has characteristic
zero then this holds for all spherical pairs. As explained below in Section 1.5.1, many
cases of this conjecture follow from Appendix B and [AAG12, Theorem A], based on [SV,
Theorem 5.1.5], and [Del10]. Those cases include all symmetric pairs of reductive groups.

Theorem C (see Section 4 below). Let H1, H2 ⊂ G be two (closed) subgroups and χi be
characters of Hi. Consider the two-sided action of H1 ×H2 on G and let

I := S∗(G)(H1×H2,χ1×χ2)

be the space of (H1×H2, χ1×χ2)-equivariant distributions on G. Note that the Bernstein
center z acts on I. Assume that the pairs (G,Hi) are of finite type.

Then the space of z-finite distributions in I is dense in I.

1.3. Applications. In this subsection we continue to work in the notation and assump-
tions of Theorem C.

Important examples of z-finite distributions in I are (H1×H2, χ1×χ2)-relative charac-
ters of finite length representations (see Definition 3.2.1). It turns out that those examples
are exhaustive. Namely, we have the following proposition.

Proposition D (see Section 3 below). Any z-finite distribution in I is an (H1×H2, χ1×
χ2)-relative character of some finite length representation of G.

Together with Theorem C it implies

Corollary E. The space of (H1 ×H2, χ1 × χ2)-relative characters of finite length repre-
sentations of G is dense in I.

Theorem A provides a simple proof of the easy part of Harish-Chandra’s regularity
theorem [HC81, How77], namely the regularity of the character on the set of regular semi-
simple elements. In Section 5.6 we generalize this result to the realm of spherical pairs.
For that, we introduce the notion of H1 × H2-cotoric elements and prove the following
result.

Corollary F. Suppose that F has characteristic zero, and Hi are F -points of algebraic
groups Hi ⊂ G. Let ξ ∈ I be a z-finite distribution. Then ξ is smooth in the neighborhood
of any H1 ×H2-cotoric element.

This results generalizes the main result of [RR96, §5], since if H :=H1 = H2 is a sym-
metric subgroup then the H-regular semisimple elements are cotoric (see Lemma 5.6.2).

Combining Theorems A and C we obtain the following tool to study invariant distri-
butions:

Corollary G. The subspace of distributions in I whose wavefront set at any point is
contained in the nilpotent cone in the dual Lie algebra g∗ is dense in I.

1.4. Related results. The germ at the unit element of the character of an irreducible
representation of G can be presented as a linear combination of Fourier transforms of
invariant measures of nilpotent orbits. This was shown in [How74] for G = GLn and
in [HC78] for general G. This cannot be naively generalized to the case of symmetric
pairs, since the nilpotent orbital integrals are not defined for symmetric spaces in general.
However, in [RR96, §7] it is shown that the germ at the unit element of a relative character
is a Fourier transform of a distribution supported on the nilpotent cone.

Theorem A can be viewed as a version of these results, which gives less information
but works in wider generality. Namely, it implies that the germ of any relative character
of any finite length representation is a Fourier transform of a distribution supported near
the nilpotent cone.

http://www.ams.org/journals/tran/2010-362-02/home.html
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Distributions arising in representation theory are often z-finite. In the Archimedean
case (where z means the center of the universal enveloping algebra of the Lie algebra) this
was widely exploited. For example it was used to prove the Harish-Chandra regularity
theorem ([HC63, HC65]), uniqueness of Whittaker models ([Sha74]) and Kirillov’s con-
jecture ([Bar03]). Recently, it was used in [JSZ11] to prove uniqueness of Ginzburg-Rallis
models and in [AG15] to show non-vanishing of Bessel-like functions. However, in the
non-Archimedean case there were no tools that use finiteness of distributions under the
Bernstein center. This work provides such a tool.

A classical result (see [DKV84, §A.2] and [Kaz86, Appendix]) says that characters of
finite length representations span a dense subspace of the space of conjugation-invariant
distributions on G. One can view Corollary E as the relative counterpart of this result.

One can attempt to generalize Theorem C in the following direction. Let an l-group G
act on an l-space X, and let E be a G-equivariant sheaf on X. Let a complex commutative
algebra A act on S(X, E). Let I := S∗(X, E)G be the space of invariant distributional
sections of E . Assume that A preserves I. Is the space of A-finite distributions in I dense
in I? Another important special case of this question is the case when A = S(Y ) where
Y is some l-space and the action of A on S(X) is given by a map from X to Y and G
acts on the fibers of this map. In this case the positive answer is given by Bernstein’s
localization principle [Ber84, §1.4]. Thus, one can view Theorem C as a spectral version
of Bernstein’s localization principle.

The Archimedean analogs of Theorem C as well as of Bernstein’s localization principle
are not known in general.

1.5. Tools developed in this paper.

1.5.1. Pairs of finite type.

Definition H. Let H < G be a closed subgroup and χ be its character. We say that the
pair (G,H) has finite type if for any character χ of H and any compact open subgroup

K < G, the module (indGH χ)K over the Hecke algebra HK(G) is finitely generated. Here,

indGH χ denotes the compact induction.

In Appendix B we give the following criterion for pairs to be of finite type.

Theorem I (cf. Theorem B.0.2). Let H be a closed subgroup of G. Let P be a minimal
parabolic subgroup of G and P = P(F ). Suppose that H has finitely many orbits on G/P .
Suppose that for any irreducible smooth representation ρ of G and any character χ of H
we have

(2) dim HomH(ρ|H , χ) <∞.

Then the pair (G,H) is of finite type.

Remark J.

(1) In fact, Theorem B.0.2 gives a more precise statement, which deduces finite gen-

eration of (indGH χ)K from formula (2) for a specific character derived from χ.
One can strengthen other results of this paper in a similar way. However, this
will require longer bookkeeping that we chose to avoid.

(2) An incomplete version of Theorem B.0.2 appeared in [AAG12], see Remark B.0.3
for more details.

(3) The condition (2) is proven in [Del10] and [SV, Theorem 5.1.5] for many cases,
including arbitrary symmetric pairs over a field with characteristic different from
2.

http://www.math.tau.ac.il/\protect \unskip \penalty \@M \ \ignorespaces bernstei/Publication_list/publication_texts/Bernstein-P-invar-SLN.pdf
http://www.ams.org/journals/tran/2010-362-02/home.html
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1.5.2. Representations generated by z-finite distributions. In order to prove Proposition D
we prove the following lemma:

Lemma K (see Section 3). Let (G,H) be a pair of finite type. Let χ be a character of
H. Consider the left action of H on G and let ξ ∈ S∗(G)(H,χ) be an (H,χ)-equivariant
z-finite distribution. Then both S(G) ∗ ξ and ξ ∗ S(G) are finite length representations of
G.

This lemma implies the following corollary:

Corollary L. Let ξ ∈ S∗(G) be a z-finite distribution. Then S(G) ∗ ξ ∗ S(G) is a finite
length representation of G×G.

1.5.3. Fuzzy balls. The theory of special balls was developed in [Say02] based on [How74,
How77] for G = GLn. This theory implies that any irreducible representation is anni-
hilated by a certain collection of elements of the Hecke algebra. In Section 5.2 and ap-
pendix A we adapt this statement to representations of a general reductive group (see
Theorem 5.2.6).

1.5.4. Relations between convolution and exponentiation. The exponentiation maps an
open neighborhood U of zero in the Lie algebra of G to G. This gives rise to a map
of the algebra S(U) of smooth compactly supported functions on U (with respect to
convolution) to the Hecke algebra of G. Unfortunately, this map is not a homomorphism.
In Proposition 5.3.4 we show that it does behave as a homomorphism on certain pairs of
functions.

1.6. Idea of the proof.

1.6.1. Sketch of the proof of Theorem A. We first analyze the representation generated
by ξ under the two-sided action of the Hecke algebra H(G), which has finite length by
Corollary L. Then we use the theory of special balls, that produces, for any finite length
representation, a large collection of elements in the Hecke algebra H(G) that annihilate
it. Those elements will also annihilate ξ. In other words, for certain eB ∈ H(G) we have
the following vanishing of convolutions

(3) eB ∗ ξ = 0

Next we want to linearize this information. For this we use the exponentiation map and
Proposition 5.3.4. Unfortunately, Proposition 5.3.4 is not directly applicable to the pair
(eB , ξ). However, we use the vanishing (3) to construct other vanishing convolutions, to
which Proposition 5.3.4 is applicable. Thus we get that certain convolutions on the Lie
algebra vanish. Those vanishings imply the desired restriction on the wave front set.

1.6.2. Sketch of the proof of Theorem C. Let us assume for simplicity that χi are trivial
and Hi are unimodular. To prove Theorem C we first note that I is dual to the space
S(G)H1×H2

of (H1 ×H2)-coinvariants of S(G). We can decompose S(G) to a direct sum
with respect to Bernstein blocks. This leads to a decomposition of S(G)H1×H2

. The finite
type assumption implies that each summand is finitely generated over z. Thus Artin-Rees
Lemma and Hilbert’s Nullstellensatz imply that the space of z-finite functionals on those
summands is dense in the space of arbitrary functionals.

For technical reasons, it is more convenient to work with unions of Bernstein blocks
which correspond to compact open subgroups of G than with individual Bernstein blocks.

1.7. Future applications. We believe that Corollary G can be used in order to prove
the following analog of Harish-Chandra’s density theorem [HC78, Theorem 3.1].
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Conjecture M. Suppose that G is quasisplit. Let B be a Borel subgroup of G, U be the
nilradical of B, ψ be a non-degenerate character of U , H ⊂ G be a reductive spherical
subgroup and X = G/H. Let O be the union of all open B-orbits in X.

Then the sum of the one-dimensional spaces S∗(Ux)U,ψ, where x ranges over O, is
dense in S∗(X)U,ψ.

In the subsequent paper [AGK14] we prove a non-Archimedean analog of [AG15], which
we consider as a step towards this conjecture. Namely, we use Theorem A in order to
prove that under certain conditions on H any z-finite distribution ξ ∈ S∗(X)U,ψ which is
supported in the complement to O vanishes.

In the subsequent work [AGM] we prove that the set of cotoric elements is open and
dense in G if H1, H2 are spherical subgroups. By Corollary F this implies that H1 ×H2-
relative characters are smooth almost everywhere. In fact, in [AGM] we show that the
dimension of the variety

S = {(g, α) ∈ G× g∗ | α is nilpotent, 〈α, h1〉 = 0, 〈α,Ad∗(g)(h2)〉 = 0} ⊂ T ∗G
equals the dimension of G. Theorem A implies that the wavefront set of any H1 × H2-
relative character lies in S. Thus we obtain a certain version of holonomicity for relative
characters.

1.8. Structure of the paper. In Section 2 we give the necessary preliminaries on the
Bernstein center.

In Section 3 we prove Lemma K and deduce Proposition D.
In Section 4 we prove Theorem C.
In Section 5 we prove Theorem A. In Sections 5.1 and 5.2 we give the necessary prelim-

inaries on wavefront set and on special balls. In Section 5.3 we deduce Theorem A from
two main ingredients, which we prove in Sections 5.4 and 5.5. In Section 5.4 we prove the
vanishing (3). In Section 5.5 we prove Proposition 5.3.4 that states that exponentiation
commutes with convolution in certain cases. In Section 5.6 we prove Corollary F and
Lemma 5.6.2, which allows to specialize Corollary F to the symmetric pair case and thus
obtain a generalization of [RR96, §5].

In Appendix A we prove the statements on special balls that were formulated without
proof in Section 5.2.

In Appendix B we prove Theorem I.

1.9. Acknowledgements. We thank Moshe Baruch for motivating questions, Nir Avni
and Erez Lapid for fruitful discussions, Joseph Bernstein for useful remarks and Yuval
Flicker for careful proofreading.

A.A. was partially supported by NSF grant DMS-1100943, ISF grant 687/13, BSF
grant 2012247, and a Minerva foundation grant.;

D.G. was partially supported by ISF grant 756/12, ERC StG grant 637912, and a
Minerva foundation grant.

E.S. was partially supported by ISF grant 1138/10, and ERC grant 291612.

2. Preliminaries

2.1. Conventions. The following conventions will be used throughout the paper.

• Fix a non-Archimedean local field F .
• All the algebraic groups and algebraic varieties that we consider are defined over
F . We will use bold letters, e.g. G,X to denote algebraic groups and varieties de-
fined over F , and their non-bold versions to denote the F -points of these varieties,
considered as l-spaces or F -analytic manifolds (in the sense of [Ser64]).

• We will use capital Latin letters to denote F -analytic groups and algebraic groups,
and the corresponding Gothic letters to denote their Lie algebras.

• For an l-group H
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– let M(H) denote the category of smooth representations of H.
– Let ∆H denote the modular character of H, i.e. the quotient of the right

Haar measure by the left one.
– If H acts on an l-space X and x ∈ X, we denote by Hx the stabilizer of x.
– If V is a representation of H we denote by VH the space of coinvariants

VH := V/(Span{v − hv | v ∈ V, h ∈ H}).
• Fix a reductive group G.
• For a sheaf F of C-vector spaces on an l-space X we denote by S(X,F) the space

of compactly-supported sections and by S∗(X,F) the dual space.
• For a compact open subgroup K < G we denote by HK(G) the corresponding

Hecke algebra.

2.2. Bernstein center. In this subsection we review the basics of the theory of the
Bernstein center from [BD84].

Definition 2.2.1. The Bernstein center z := z(G) is the algebra of endomorphisms of the
identity functor of the category M(G) of smooth representations of G.

Definition 2.2.2. Let K < G be a compact open subgroup. For V ∈ M(G) denote by
V (K) the subrepresentation generated by its K-fixed vectors. Denote also

MK(G) := {V ∈M(G) |V = V (K)}
and

MK(G)⊥ := {V ∈M(G) |V K = 0}.
We have a functor PK(V ) := V K from M(G) to the category M(HK(G)) of modules

over HK(G). We call K a splitting subgroup if the category M(G) is the direct sum of
the categories MK(G) and MK(G)⊥, and the functor PK :MK(G)→M(HK(G)) is an
equivalence of categories.

Remark 2.2.3. Recall that an abelian category A is a direct sum of two abelian subcate-
gories B and C, if every object of A is isomorphic to a direct sum of an object in B and
an object in C, and, furthermore, that there are no non-trivial morphisms between objects
of B and C.

Theorem 2.2.4 ([BD84]).

(1) The center of the algebra EndG(S(G)) of G-endomorphisms of S(G) is the algebra
EndG×G(S(G)) and the natural morphism from z to this center is an isomorphism.

(2) The set of splitting subgroups defines a basis at 1 for the topology of G.
(3) For any splitting open compact subgroup K ⊂ G we have

(a) The center z(HK(G)) of the K-Hecke algebra is a direct summand of the
Bernstein center z. In particular, the natural map z→ z(HK(G)) is onto.

(b) The algebra HK(G) is finitely generated as a module over its center z(HK(G)),
and thus also over z.

(c) The algebra z(HK(G)) is finitely generated over C and has no nilpotents.

3. z-finite distributions and relative characters

3.1. Finite length representations, z-finite distributions and proof of Lemma K.
We start with several criteria for admissibility of smooth representations. For these criteria
we will need the following definition.

Definition 3.1.1. We say that a smooth representation π of G is

• locally finitely generated if for any compact open subgroup K ⊂ G the module πK

is finitely generated over the Hecke algebra HK(G),
• z-finite if there exists an ideal I ⊂ z of finite codimension that acts by zero on π.

http://www.math.tau.ac.il/\protect \unskip \penalty \@M \ \ignorespaces bernstei/Publication_list/publication_texts/Bern_Center.pdf
http://www.math.tau.ac.il/\protect \unskip \penalty \@M \ \ignorespaces bernstei/Publication_list/publication_texts/Bern_Center.pdf
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Lemma 3.1.2. Let π ∈ M(G) be a z-finite smooth representation. Assume that for any
compact open subgroup K ⊂ G the space πK is finite-dimensional. Then π has finite
length.

Proof. It is enough to show that π ⊂ MK(G) for some splitting subgroup K ⊂ G. Let
I ⊂ z be an ideal of finite codimension that acts by zero on π. For any splitting K denote
by iK ⊂ z the idempotent that acts by identity on MK(G) and by zero on MK(G)⊥.
Let jK be the image of iK in z/I. Since z/I is finite-dimensional there exists a splitting

K such that jK = jK′ for any splitting subgroup K ′ ⊂ K, thus πK
′ ⊂ π(K′) = π(K) and

thus, by Theorem 2.2.4(2), π = π(K). �

Corollary 3.1.3. Any z-finite locally finitely generated π ∈M(G) has finite length.

Proof. By Lemma 3.1.2 and Theorem 2.2.4(2) it is enough to show that πK is finite-
dimensional for any splitting subgroup K ⊂ G. This follows from Theorem 2.2.4(3a,3b).

�

Proposition 3.1.4. Let π ∈M(G) be locally finitely generated. Then

(i) any z-finite quotient ρ of π has finite length,
(ii) any z-finite subrepresentation ρ of π̃ is has finite length.

Proof. Part (i) follows from Corollary 3.1.3. To prove part (ii) denote by ρ⊥ ⊂ π the joint

kernel of all the functionals in ρ. Then ρ ⊂ (ρ⊥)⊥ ∼= π̃/ρ⊥. Since π/ρ⊥ has finite length
by part (i), we get that ρ has finite length. �

Proof of Lemma K.

(i) Proof that S(G) ∗ ξ has finite length.
Consider the natural epimorphism S(G) � S(G) ∗ ξ. It is easy to see that there

exists a character χ′ of H such that this epimorphism factors through indGH(χ′).

Since (G,H) has finite type, indGH(χ′) is locally finitely generated and thus, by
Proposition 3.1.4(i), S(G) ∗ ξ has finite length.

(ii) Proof that ξ ∗ S(G) has finite length.
LetG act on itself by g·x = xg−1. This gives rise to an action ofG on S∗(G)(H,χ). Let
F be the natural equivariant sheaf on X = G/H such that S∗(G)(H,χ) ∼= S∗(X,F).
Consider ξ as an element in S∗(X,F). Then

ξ ∗ S(G) ↪→ ˜S(X,F) = ˜indGH(χ′′)

for some character χ′′ of H, and Proposition 3.1.4(ii) implies that ξ ∗S(G) has finite
length.

�

3.2. Relative characters and proof of Proposition D.
Let us recall the definition of relative character.

Definition 3.2.1. Let (π, V ) be a finite length representation of G. Let (π̃, Ṽ ) be its
smooth contragredient. Let H1, H2 ⊂ G be subgroups and χ1, χ2 be their characters. Let

l1 ∈ (V ∗)H1,χ
−1
1 and l2 ∈ (Ṽ ∗)H2,χ

−1
2 be equivariant functionals. The relative character

Ξπl1,l2 ∈ H(G)∗ is the generalized function on G given by

(4) Ξπl1,l2(f) := 〈l2, π∗(f)l1〉.
We refer to such relative characters as (H1 ×H2, χ1 × χ2)-relative characters of π.

Since we can identify I with the space (H(G)∗)H1×H2,χ1×χ2 of invariant generalized
functions, we can consider the relative character as an element in I.

Lemma 3.2.2 (see Appendix B.2). Let (G,H) be a pair of finite type. Let V be a finite
length representation of G and χ be a character of H. Then dimV(H,χ) <∞.
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Proof of Proposition D. Let ξ ∈ I. Consider the pullback of ξ to G × G under the mul-
tiplication map. This gives us a G-invariant bilinear form B on H(G). Let L be its left
kernel and R be its right kernel, M := L\H(G) and N := H(G)/R. We consider the right
G-module M as a left one using the anti-involution g 7→ g−1. We get a non-degenerate
pairing between M and N . Lemma K implies that M and N have finite length and
thus M = Ñ . We can consider the form B as an element in (MH1,χ1 ⊗ NH2,χ2)∗. Since
the pairs (G,Hi) are of finite type, Lemma 3.2.2 implies that MH1,χ1

and NH2,χ2
are

finite-dimensional and thus

(MH1,χ1 ⊗NH2,χ2)∗ ∼= (MH1,χ1)∗ ⊗ (NH2,χ2)∗ ∼= (M∗)H1,χ
−1
1 ⊗ (N∗)H2,χ

−1
2 .

Therefore B defines an element in (M∗)H1,χ
−1
1 ⊗ (N∗)H2,χ

−1
2 which can be written in the

form B =
∑k
i=1 l

i
1 ⊗ li2. Let

l1 := (l11, . . . , l
k
1) ∈ ((Mk)∗)H1,χ

−1
1 , l2 := (l12, . . . , l

k
2) ∈ ((Nk)∗)H2,χ

−1
2 .

It is easy to see that

ξ =

k∑
i=1

ΞMli1,li2
= ΞM

k

l1,l2 .

�

4. Density of z-finite distributions

For the proof of Theorem C we will need the following lemma.

Lemma 4.0.1. Let H < G be a closed subgroup and χ be a character of H. Then there
exists a character χ′ of H such that for any V ∈M(G) and any splitting subgroup K ⊂ G
(see Definition 2.2.2) we have

(V (K))(H,χ)
∼= (indGH χ

′)K ⊗HK(G) V
K .

Here we consider the left HK(G)-module (indGH χ
′)K as a right one using the anti-involution

g 7→ g−1.

Proof. First note that V (K) ∼= H(G) ⊗HK(G) V
K , where the action of G is given by the

left action on H(G). Let H act on G from the left and G act on itself by g · x = xg−1.
This gives an action of G on H(G)(H,χ). It is easy to see that we have an isomorphism

H(G)(H,χ)
∼= (indGH χ

′) for some character χ′ of H. Now

(V (K))(H,χ)
∼= H(G)(H,χ) ⊗HK(G) V

K ∼= indGH χ
′ ⊗HK(G) V

K ∼= (indGH χ
′)K ⊗HK(G) V

K .

�

Lemma 4.0.2. Let A be a unital commutative algebra finitely generated over C. Let M
be a finitely generated A-module, and M∗ denote the space of all C-linear functionals on
M . Then the space of A-finite vectors in M∗ is dense in M∗.

Proof. It is enough to show that the intersection of the kernels of all A-finite functionals
on M is zero. Let v be an element of this intersection, m ⊂ A be any maximal ideal and i
be any integer. Then M/miM is finite-dimensional over C and thus any functional on it
defines an A-finite functional on M . Such a functional vanishes on v, and thus the image
of v in M/miM is zero. We conclude that v belongs to the space

⋂
m

⋂
i(m

iM), which is
zero by the Artin-Rees lemma. �

Proof of Theorem C. Denote Xi := G/Hi. For some line bundle F1 on X1 we have

I ∼= S∗(X1,F1)(H2,χ2) ∼= (S(X1,F1)(H2,χ
−1
2 ))

∗.

Thus it is enough to show that for any f ∈ S(X1,F1)(H2,χ
−1
2 ) such that 〈ξ, f〉 = 0 for

any z-finite distribution ξ ∈ I, we have f = 0. Let f be like that. Let K < G be a
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splitting open compact subgroup that fixes a representative of f in S(X1,F1). Note that

V := S(X1,F1) = indGH1
χ′1 for some character χ′1 of H1 . Since K is a splitting subgroup,

V (K) is a direct summand of V as a G-representation. Hence M := (V (K))(H2,χ
−1
2 ) is

a direct summand of V(H2,χ
−1
2 ) as a z-module which contains f . Therefore it is enough

to show that the space of z-finite vectors in M∗ (which by Theorem 2.2.4(3a) equals the
space of z(HK(G))-finite vectors in M∗) is dense in M∗. By Lemma 4.0.1, there exists a
character χ′2 of H2 such that

M = (indGH2
χ′2)K ⊗HK(G) V

K = (indGH2
χ′2)K ⊗HK

(indGH1
χ′1)K ,

where we consider the left HK(G)-module (indGH2
χ′2)K as a right one using the anti-

involution g 7→ g−1. The assumption implies that (indGHi
χ′i)

K are finitely generated over
HK(G). By Theorem 2.2.4(3b) this implies that they are also finitely generated over
z(HK(G)). Thus M is also finitely generated over z(HK(G)). The assertion follows now
from Lemma 4.0.2 in view of Theorem 2.2.4(3c). �

5. Wavefront set of z-finite distributions and the proof of Theorem A

In this section we assume that F has characteristic zero.

5.1. Preliminaries on wave front set. In this section we give an overview of the
theory of the wave front set as developed by D. Heifetz [Hei85], following L. Hörmander
(see [Hör90, §8]). For simplicity we ignore here the difference between distributions and
generalized functions.

Definition 5.1.1.

(1) Let V be a finite-dimensional vector space over F . Let f ∈ C∞(V ∗) and w0 ∈
V ∗. We say that f vanishes asymptotically in the direction of w0 if there exists
ρ ∈ S(V ∗) with ρ(w0) 6= 0 such that the function φ ∈ C∞(V ∗ × F ) defined by
φ(w, λ) := f(λw) · ρ(w) is compactly supported.

(2) Let U ⊂ V be an open set and ξ ∈ S∗(U). Let x0 ∈ U and w0 ∈ V ∗. We say
that ξ is smooth at (x0, w0) if there exists a compactly supported non-negative
function ρ ∈ S(V ) with ρ(x0) 6= 0 such that the Fourier transform F∗(ρ · ξ)
vanishes asymptotically in the direction of w0.

(3) The complement in T ∗U of the set of smooth pairs (x0, w0) of ξ is called the wave
front set of ξ and denoted by WF (ξ).

(4) For a point x ∈ U we denote WFx(ξ) := WF (ξ) ∩ T ∗xU .

Remark 5.1.2. Heifetz defined WFΛ(ξ) for any open subgroup Λ of F× of finite index.
Our definition above is slightly different from the definition in [Hei85]. They relate by

WF (ξ)− (U × {0}) = WFF×(ξ).

Proposition 5.1.3 (see [Hör90, Theorem 8.2.4] and [Hei85, Theorem 2.8]). Let U ⊂ Fm
and V ⊂ Fn be open subsets. Suppose that f : U → V is an analytic submersion2. Then
for any ξ ∈ S∗(V ), we have

WF (f∗(ξ)) ⊂ f∗(WF (ξ)) :=
{

(x, v) ∈ T ∗U | ∃w ∈WFf(x)(ξ) s.t. d∗f(x)f(w) = v
}
.

Corollary 5.1.4. Let V,U ⊂ Fn be open subsets. Let f : V → U be an analytic isomor-
phism. Then for any ξ ∈ S∗(V ) we have WF (f∗(ξ)) = f∗(WF (ξ)).

Corollary 5.1.5. Let X be an F -analytic manifold3. We can define the wave front set
of any distribution in S∗(X), as a subset of the cotangent bundle T ∗X.

We will need the following standard properties of the wavefront set.

2i.e. the differential of f is surjective.
3In the classical sense of [Ser64] and not in the sense of rigid geometry or Berkovich geometry.

http://projecteuclid.org/euclid.pjm/1102707065
http://projecteuclid.org/euclid.pjm/1102707065
http://projecteuclid.org/euclid.pjm/1102707065
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Lemma 5.1.6. Let X be an F -analytic manifold and ξ ∈ S∗(X) be a distribution on it.

(1) Let x ∈ X. Assume that WFx(ξ) = {0}. Then ξ is smooth at x, i.e. there exists
an analytic embedding φ : U ↪→ X from an open neighborhood U of the origin in
Fn to X such that φ(0) = x and φ∗(ξ) coincides with a Haar measure.

(2) [Aiz13, Theorem 4.1.5] Let an F -analytic group H act analytically on X. Suppose
that ξ changes under the action of H by some character of H. Then

WF (ξ) ⊂ {(x, v) ∈ T ∗X|v(hx) = 0},
where hx denotes the image of the differential of the action map h 7→ hx.

5.2. Preliminaries on special balls. The notions of special balls and admissible balls
were defined in [Say02] (under the name fuzzy balls) for G = GLn. Here we generalize
them to arbitrary reductive groups, using the standard theory of exponentiation.

Notation 5.2.1. Let O be the ring of integers in F . Fix a uniformizer $ ∈ O and denote
q := |$|−1.

We start with the following standard lemma on exponentiation.

Lemma 5.2.2. There exists a lattice (i.e. a free finitely-generated O-submodule of full
rank) L ⊂ g, a compact open subgroup K ⊂ G and an analytic diffeomorphism exp : L →
K such that

(1) For any x ∈ L, exp |O·x is a group homomorphism.
(2) d

dt exp(tx)|t=0 = x.
(3) For any X ∈ $mL, Y ∈ $nL we have

exp−1(exp(X) exp(Y ))−X − Y ∈ $m+nL.

For completeness we will indicate the proof of this lemma in Appendix A.1.

Remark 5.2.3. The conditions (1) and (2) define the map exp uniquely.

We fix such an L. Fix also an additive character ψ of F that is trivial on O and
non-trivial on $−1O.

Definition 5.2.4.

• For a vector space V over F and a lattice Λ ⊂ V denote Λ⊥ := {y ∈ V ∗ | ∀x ∈
Λ, 〈x, y〉 ∈ O} ⊂ V ∗.

• For a set B = a + Λ ⊂ g∗ define a subset KB := exp(Λ⊥) ⊂ G. Define also a
function ηB of KB by ηB(exp(x)) = ψ(〈a, x〉). Note that KB and ηB depend only
on the set B and not on its presentation as a+ Λ.

• An admissible ball is a set B ⊂ g∗ of the form a + Λ, where Λ ⊃ L⊥ is a lattice
such that KB is a group and ηB is its character.

Define eB ∈ H(G) to be the measure ηBeKB
, where eKB

is the normalized Haar
measure on KB.

• An admissible ball B is called nilpotent if it intersects the nilpotent cone N ⊂ g∗.
• For an element x ∈ g∗ we define |x| := min{|α| |x ∈ αL⊥, α ∈ F}.
• A special ball of radius r ≥ 1 is a set B ⊂ g∗ of the form c + αL⊥, where
α ∈ F, c ∈ g∗, |α| = r and either |c| = r2 or |c$| = r2. It is easy to see that any
special ball is an admissible ball.

• For Y ∈ g∗ we denote by B(Y ) the unique special ball containing Y (see Lemma A.2.1).
• Denote the set of all special balls by F.
• Ln := $nL, Kn := exp(Ln) for n ≥ 0.

In Appendix A we give more details about admissible and special balls and prove the
following fundamental statements.

Theorem 5.2.5. Let (π, V ) be a smooth representation. Then {π(eB)}B∈F form a full
family of mutually orthogonal projectors, i.e.
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(1) for any B,C ∈ F we have

eBeC =

{
eB B = C,

0 B 6= C.

(2)

V =
⊕
B∈F

π(eB)V.

Theorem 5.2.6. For any finitely generated smooth representation π there exist only
finitely many non-nilpotent special balls B such that π(eB) 6= 0.

Lemma 5.2.7. Let B be an admissible ball and let 1B ∈ S(g∗) denote the characteristic
function of B. Let F(1B) denote the Fourier transform of 1B, considered as a measure
on g. Then F(1B) = exp∗(eB).

5.3. Proof of Theorem A. We will need some preparations.

Proposition 5.3.1 (see Section 5.4). Let ξ ∈ S∗(G) be a z-finite distribution. Then there
exists a compact subset D ⊂ g∗ such that for any non-nilpotent special ball B ⊂ g∗ \D we
have eB ∗ ξ = 0.

The following is a straightforward computation.

Lemma 5.3.2. Let B := a+ αL⊥ be an admissible ball, with |α|2 > |a|. Let S be the set
of all special balls contained in B. Then eB =

∑
C∈S eC .

The last 2 statements give us the following corollary.

Corollary 5.3.3. Let ξ ∈ S∗(G) be a z-finite distribution. Then there exists a compact
subset D ⊂ g∗ s.t. for any non-nilpotent admissible ball of the form B := a+αL⊥ ⊂ g∗\D,
with |α|2 > |a|, we have eB ∗ ξ = 0.

Proposition 5.3.4 (See Section 5.5). Let n, l > 0 and let B = a+$−nL⊥ be an admissible
ball. Assume that |a| = qn+l. Then for any ξ ∈ S∗(exp($lL)) we have

exp∗(eB ∗ ξ) = exp∗(eB) ∗ exp∗(ξ)

Proof of Theorem A. Since any shift of ξ is also z-finite, we can assume that x is the unit
element 1 ∈ G. Thus it is enough to show that WF0(exp∗(ξ)) ⊂ N .

Let Y ∈ g∗ be non-nilpotent. Then there exists m such that for all big enough α ∈ F
the set α(Y + $mL⊥) is a non-nilpotent admissible ball. Let B := Y + $mL⊥. There
exists l such that $l−mY ∈ L⊥. Let φ be the characteristic function of $lL and µ be the
characteristic function of Kl := exp($lL). Let ζ := µξ and η := φexp∗(ξ) = exp∗(ζ). We
have to show that for all big enough α ∈ F we have F(η)|αB = 0. By Corollary 5.3.3, for
all big enough α ∈ F we have

eαB ∗ ζ = 0.

By Proposition 5.3.4 for all big enough α ∈ F we have:

exp∗(eαB ∗ ζ) = exp∗(eαB) ∗ η = F−1(F(exp∗(eαB))F(η)).

Lemma 5.2.7 implies now that F(η)|αB = 0 for all big enough α ∈ F . �

5.4. Proof of Proposition 5.3.1.

Proof of Proposition 5.3.1. Let π := S(G) ∗ ξ ∗ S(G). By Corollary L, π is a finite length
representation of G×G and thus, by Theorem 5.2.6, there exists a finite set X of special
balls of G × G such that π(eB) = 0 for a non-nilpotent B /∈ X. Let D be the union of
the projections of the balls in X to the first coordinate. It is easy to see that for any
non-nilpotent special ball B ⊂ g∗ \D and any special ball C, B×C /∈ X and thus for any
f ∈ S(G) we have

eB ∗ ξ ∗ f ∗ eC = eB ∗ eB ∗ ξ ∗ f ∗ eC = π(eB×C)(eB ∗ ξ ∗ f) = 0
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By Theorem 5.2.5,

eB ∗ ξ ∗ f =
∑

C,C′∈F

eC′ ∗ eB ∗ ξ ∗ f ∗ eC =
∑
C∈F

eB ∗ ξ ∗ f ∗ eC ,

where the sum goes over all special balls in g∗. This implies eB ∗ ξ ∗ f = 0. Since this
holds for any f ∈ S(G), eB ∗ ξ vanishes. �

5.5. Proof of Proposition 5.3.4.
From standard properties of the exponential map (see Lemma 5.2.2(3)) we obtain the

following Corollary.

Corollary 5.5.1.

(i) For any natural number n and any a ∈ L we have

exp(a+ Ln) = exp(a) exp(Ln) = exp(a)Kn

(ii) Let eK0 be the Haar probability measure on K0. Then exp∗(eK0) is the Haar proba-
bility measure on L.

(iii) Let n and l be natural numbers. By (i) we can define exp : L0/Ln+l → K0/Kn+l.
Let α, β be measures on K0/Kn+l such that α is supported on Kl/Kn+l and β is
supported on Kn/Kn+l. Then

exp∗(α ∗ β) = exp∗(α) ∗ exp∗(β)

Proof of Proposition 5.3.4.

Step 1. Proof for the case l = 0.
In this case for any b ∈ L0 we have

(eB ∗ ξ)|exp(b)Kn
= (eKn ∗ ξ)|exp(b)Kn

=

(∫
exp(b)Kn

ξ

)
(#K0/Kn)eK0 |exp(b)Kn

.

Also,

(exp∗(eB) ∗ exp∗(ξ))|b+Ln
=

(∫
b+Ln

exp∗(ξ)

)
(#L0/Ln)µL0

|b+Ln
,

where µL0 is the Haar probability measure on L0. By Corollary 5.5.1(i),

exp−1(exp(b)Kn) = b+ Ln and

∫
exp(b)Kn

ξ =

∫
b+Ln

exp∗(ξ).

Thus, by Corollary 5.5.1(ii),

exp∗(eK0
|exp(b)Kn

) = µL0
|b+Ln

.

We get

exp∗(eB ∗ ξ)|(b+Ln) = exp∗((eB ∗ ξ)|(exp(b)Kn)) =

= exp∗

((∫
exp(b)Kn

ξ

)
(#K0/Kn)eK0 |exp(b)Kn

)
=

=

(∫
exp(b)Kn

ξ

)
(#K0/Kn) exp∗(eK0

|exp(b)Kn
) =

=

(∫
exp(b)Kn

ξ

)
(#K0/Kn)µL0

|b+Ln
=

(∫
b+Ln

exp∗(ξ)

)
(#L0/Ln)µL0

|b+Ln
=

= (exp∗(eB) ∗ exp∗(ξ))|b+Ln .



14 AVRAHAM AIZENBUD, DMITRY GOUREVITCH, AND EITAN SAYAG

Step 2. Proof for the general case.
Denote by pL and pK the natural projections L0 → L0/Ln+l and K0 → K0/Kn+l.
There exist measures β and α on K0/Kn+l such that eKn+l

∗ ξ = p∗K(β) and
eB = p∗K(α). Clearly Supp(β) ⊂ Kl/Kn+l and Supp(α) ⊂ Kn/Kn+l. We have

(5) exp∗(eB ∗ ξ) = exp∗(eB ∗ eKn+l
∗ ξ) = exp∗(p∗K(α) ∗ p∗K(β)) = exp∗(p∗K(α ∗ β)).

From the commutative diagram

(6) L0
exp //

pL

��

K0

pK

��
L0/Ln+l

exp // K0/Kn+l

we have

(7) exp∗(p∗K(α ∗ β)) = p∗L(exp∗(α ∗ β)).

By Corollary 5.5.1(iii) we have

(8) p∗L(exp∗(α ∗ β)) = p∗L(exp∗(α) ∗ exp∗(β)) = p∗L(exp∗(α)) ∗ p∗L(exp∗(β)).

Applying the diagram (6) again we get

(9) p∗L(exp∗(α))∗p∗L(exp∗(β)) = exp∗(p∗K(α))∗exp∗(p∗K(β)) = exp∗(eB)∗exp∗(eKn+l
∗ξ).

Applying Step 1 twice we have

(10) exp∗(eB) ∗ exp∗(eKn+l
∗ ξ) = exp∗(eB) ∗ exp∗(eKn+l

) ∗ exp∗(ξ) =

= exp∗(eKn+l
) ∗ exp∗(eB) ∗ exp∗(ξ) = exp∗(eKn+l

∗ eB) ∗ exp∗(ξ) = exp∗(eB) ∗ exp∗(ξ).

Combining (5,7-10) we get exp∗(eB ∗ ξ) = exp∗(eB) ∗ exp∗(ξ).

�

5.6. Regularity of invariant z-finite distributions at cotoric elements and proof
of Corollary F. In this section we prove a generalization of Corollary F. We will need
the following notion.

Definition 5.6.1. Let H1,H2 < G be algebraic subgroups. We say that an element g ∈ G
is H1 ×H2-cotoric if the conormal space to H1gH2 at g intersects trivially the nilpotent
cone of g∗.

Lemma 5.6.2. Let H be an open subgroup the group of fixed points of an involution θ
of G. Let g ∈ G be an H×H-regular semisimple element, i.e. an element such that the
double coset HgH is closed and of maximal dimension. Then g is H×H-cotoric.

In particular, the set of cotoric elements contains an open dense subset of H×H.

Proof. Let σ be the anti-involution given by σ(g) := θ(g−1). Let (H×H)g be the stabilizer
of g with respect to the two-sided action of H ×H, and NG

HgH,g be the normal space to
the double coset HgH at g in G. Since g is H ×H-regular semisimple, the Luna slice
theorem (see e.g. [Dre00, Theorem 5.4]) implies that (H×H)g acts trivially on NG

HgH,g.

Let x = gσ(g). By [AG09, Proposition 7.2.1(ii)], the pair consisting of the group
(H×H)g and its action on NG

HgH,g is isomorphic to the pair consisting of the centralizer
Hx and its adjoint action on the centralizer gσx of x in the space gσ of fixed points of σ in
g. Since g is H×H-semisimple, [AG09, Proposition 7.2.1(i)] shows that x is a semisimple
element of G. Thus Gx is a reductive group.

Now, assume that x is not cotoric. Then, using a non-degenerate θ-invariant and G-
invariant quadratic form on g (see e.g. [AG09, Lemma 7.1.9]), we can find a nilpotent
element α ∈ gσx . Using the Jacobson-Morozov theorem for symmetric pairs (see e.g.
[AG09, Lemma 7.1.11]), for some t 6= 1 ∈ F we can find an element h ∈ Hx such that
ad(h)(α) = tα. This contradicts the fact that Hx acts trivially gσx . �

http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.dmj/1251120011
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.dmj/1251120011
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.dmj/1251120011
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.dmj/1251120011
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In view of Lemma 5.1.6, Theorem A gives us the following corollary.

Corollary 5.6.3. Let H1,H2 < G be algebraic subgroups. Let χi be characters of Hi,
and let ξ be an (H1 × H2, χ1 × χ2)-equivariant z-finite distribution. Let x ∈ G be an
H1 ×H2-cotoric element. Then ξ is smooth at x.

In view of Lemma 5.6.2 this corollary implies Corollary F.

Appendix A. Fuzzy balls (joint with Alexander Kemarsky)

In this section we prove the statements on admissible balls and special balls formulated
in Section 5.2. We follow [Say02, §4 and §5.1]. Throughout the section we assume that F
has characteristic zero.

A.1. The exponential map and proof of Lemma 5.2.2. It is enough to prove
Lemma 5.2.2 for G = GLn. Consider the power series

Exp(X) :=

∞∑
k=0

akX
k :=

∞∑
k=0

Xk/k! and Log(X) :=

∞∑
k=0

bk(X−1)k :=

∞∑
k=1

(−1)k−1(X−1)k/k,

where X ∈ Matn×n(F ). The Baker-Campbell-Hausdorff formula is the following equality
of power series

(11) Log(Exp(X + Y ))−X − Y =

=

∞∑
n=1

∑
|i|+|j|=n

(
cijad

i1
X ◦ ad

j1
Y · · · ad

ik
X ◦ ad

jk
Y (X) + dijad

i1
Y ◦ ad

j1
X · · · ad

ik
Y ◦ ad

jk
X (Y )

)
,

where i = (i1, . . . , ik) and j = (i1, . . . , ik) are multi-indices and cij , dij ∈ Q ⊂ F are
certain constants. Let αn := max(|an|, |bn|,max|i|+|j|=n(|cij |),max|i|+|j|=n(|dij |)). It is
well known for some constant C > 1 and all n ≥ 1 we have αn ≤ Cn. Define L := {X ∈
Matn×n(F ) | |Xij | < C−1}. It is easy to see that the power series Exp converge on L. We
define exp to be the corresponding analytic map, and K to be exp(L). Finally, it follows
from (11) that (L,K, exp) satisfy the requirements (1)-(3). �

A.2. Proof of Theorem 5.2.5. We start with the following easy lemma.

Lemma A.2.1. Let B denote the collection of all special balls. Then g∗ decomposes as a
disjoint union

g∗ =
∐
B∈B

B.

Proof. Let X ∈ g∗. If |X| ≤ 1, then X ∈ L⊥1 . If |X| = qm > 1, then X ∈ X + L⊥[ m2 ].

Thus g∗ =
⋃
B. Let B1 = X + L⊥m, B2 = Y + L⊥n be special balls and suppose that

z = X + l1 = Y + l2 ∈ B1 ∩ B2. Then |z| = |X| = |Y |, so m = n. Let Y + l′ ∈ B2. We
can rewrite this element as

Y + l′ = Y + l2 + l′ − l2 = z + (l′ − l2) ∈ X + L⊥m = B1.

We have obtained B2 ⊂ B1 and clearly by the same argument applied to B1, we obtain
B1 ⊂ B2. Therefore, B1 = B2. �

Let (π, V ) be a smooth representation. The following lemma is straightforward.

Lemma A.2.2. For an admissible ball B, the image of π(eB) consists of (η−1
B ,KB)-

equivariant vectors in V , i.e.

π(eB)V =
{
v ∈ V : π(k)v = η−1

B (k)v ∀k ∈ KB

}
.

Moreover, eB is a projection, that is eB = e2
B.

Lemma A.2.3. Let B1, B2 be distinct special balls. Then eB1eB2 = 0
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Proof. Suppose B1 6= B2 and eB1eB2 6= 0. Then for any a ∈ K := KB1 ∩KB2 we have

ηB1
(a−1)eB1

eB2
= aeB1

eB2
= eB1

aeB2
= ηB2

(a−1)eB1
eB2

We get ηB1 |K = ηB2 |K . Now, if KB1 = KB2 , then B1 = B2, a contradiction. Otherwise
we can assume KB1

⊂ KB2
, but then the character ηB1

is a restriction of ηB2
from the

bigger group KB2
, thus B1 and B2 intersect and thus by Lemma A.2.1 they coincide,

which again is a contradiction. �

Lemma A.2.4. Let v ∈ V KN and B be a special ball with radius bigger than qN . Then
π(eB)v = 0.

Proof.

π(eB)v =

∫
KB

ηB(k)π(k)vdk =

(∫
KB

ηB(k)dk

)
v = 0.

�

Lemma A.2.5. For every 0 6= v ∈ V , there exists a special ball B, such that πB(v) 6= 0.

Proof. Let 0 6= v ∈ V . If v ∈ V K0 then v ∈ V (B) for B = 0 + L⊥.
Suppose v 6∈ V K0 . Let n ≥ 1 be the minimal n such that v ∈ V K2n , v 6∈ V K2n−2 . Thus
the group A = Kn/K2n acts on the finite dimensional space W generated in V by the
orbit Knv. Note that Kn/K2n ' Ln/L2n and by standard properties of the exponential
map (see Lemma 5.2.2(3)) the group Ln/L2n is commutative. Thus, the group A is a
commutative finite group. The space W can be decomposed as a direct sum of one-
dimensional characters of A. For a character χ of A and w ∈ W , let w(χ) ∈ W be the
projection of w to the χ-isotypic component of W . Then v =

∑
χ∈A∗ v(χ), and thus there

exists a character χ of A with v(χ) 6= 0 and χ|K2n−2/K2n
6= 1. Lift χ to a character η of

Kn and note that there exists a unique special ball B with KB = Kn and ηB = η. Then
π(B)v = v(χ) 6= 0. �

Proof of Theorem 5.2.5. Part (1) follows from Lemmas A.2.2 and A.2.3. To prove part
(2) take 0 6= v ∈ V , and let w =

∑
B∈F π(eB)v. By Lemma A.2.4 we know that the sum

is well-defined. By Lemmas A.2.2 and A.2.3, π(eB)(v−w) = 0 for all special balls B. By
Lemma A.2.5, it follows that v = w. �

A.3. Proof of Theorem 5.2.6.

Definition A.3.1. A special set is a finite union of special balls. For a special set
T = ∪Bi, denote eT :=

∑
eBi

.

Lemma A.3.2. Let T and S be two special sets in g∗ and let g ∈ G. Let (π, V ) be a
smooth representation of G. Suppose that π(eT )π(g)π(eS) 6= 0. Then ad(g)S ∩ T 6= ∅.

Proof. By linearity we reduce to the case where

T = B = X + L⊥m and S = B′ = X ′ + L⊥m′
are special balls. Let

K = KB = exp(Lm), K ′ = KB′ = exp(Lm′), η = ηB , η
′ = ηB′

We first check that
η(a) = η′(g−1ag)

for all a ∈ K ∩ gK ′g−1. Indeed, let v ∈ V be such that π(eB)π(g)π(e′B)(v) 6= 0. Then for
all a ∈ K ∩ gK ′g−1 we have

(12) η(a)−1π(eB)π(g)π(eB′)(v) = π(a)π(eB)π(g)π(eB′)(v) = π(eB)π(a)π(g)π(eB′)(v),

since π(eB)π(a) = π(a)π(eB) for a ∈ K. On the other hand,
(13)
π(eB)π(a)π(g)π(eB′)(v) = π(eB)π(g)π(g−1ag)π(eB′)(v) = η′−1(g−1ag)π(eB)π(g)π(eB′)(v).
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Combining equations (12) and (13), we obtain η(a) = η′(g−1ag) for every a ∈ K∩gK ′g−1.
Therefore,

ψ0 (X(log(a))) = ψ0

(
X ′(Ad(g−1) log(a))

)
= ψ0 ((Ad(g)X ′)(log(a))) .

We see that for b ∈ Lm ∩Ad(g)Lm′ ,

(Ad(g)X ′ −X)(b) ∈ O.

Thus,

Ad(g)X ′ −X ∈ (Lm ∩Ad(g)Lm′)⊥ = L⊥m +Ad(g)L⊥m′ ,

that is, there exist u ∈ L⊥m and v ∈ L⊥m′ such that

Ad(g)X ′ −X = u+Ad(g)v.

Hence Ad(g)(X ′ − v) = X + u ∈ X + L⊥m = B. �

The following Lemma due to Howe plays a central role in the proof of Theorem 5.2.6.

Lemma A.3.3 ([HCDBS99, Lemma 12.2]). Let S ⊂ g be compact. There exists a compact
subset S1 such that

Ad(G)S ⊂ S1 +N .

Proof of Theorem 5.2.6. Suppose V is generated by v1, ..., vn and for each i pick all special
balls Bij such that π(eBij )(vi) 6= 0. Note that by Lemma A.2.4 for every v ∈ V , there are
only finitely many special ball B such that π(eB)v 6= 0. Let S = ∪Bij . By Theorem 5.2.5
π(S)vi = vi. Since S is compact, Lemma A.3.3 implies

Ad(G)S ⊂ L⊥m +N

for some large m. Let B be a special ball such that π(eB) 6= 0. Let us show that there
exists g ∈ G such that π(eB)π(g)π(eS) 6= 0. Indeed, suppose on the contrary that
π(eB)π(g)π(eS) = 0 for every g ∈ G. Let v be such that π(eB)v 6= 0 and write

v =

k∑
j=1,1≤ij≤n

ciπ(gi)vij .

Then

π(eB)(v) =

k∑
j=1,1≤ij≤n

ciπ(eB)π(gi)vij =

k∑
j=1,1≤ij≤n

ciπ(eB)π(gi)π(eS)vij = 0,

and we obtain a contradiction! By Lemma A.3.2

Ad(g)S ∩B 6= ∅.

In particular B ∩ (L⊥m + N ) 6= ∅. Suppose B = X + L⊥n with n ≥ m and let Y ∈
B ∩ (L⊥m + N ). Then Y = X + l = l′ + n, l ∈ L⊥m, l′ ∈ L⊥n , and n ∈ N . In particular,
n = X + (l − l′) ∈ X + L⊥n , so n ∈ B ∩N .
We have obtained that every special ball B that acts on V as non-zero and has big enough
radius is a nilpotent special ball. Since the number of special balls with a bounded radius
is finite, we obtain that all except of finitely many non-nilpotent balls act on V as zero. �
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A.4. Proof of Lemma 5.2.7. We follow [Say02, §5.1]. Assume that B = B(X,L). Note
that exp∗(eB) = fµ, where µ is the Haar measure on L, normalized such that µ(L) = 1
and f is a function given by f(y) = ψ0(〈y,X〉)1L(y). Then

F(µ)(Z) =

∫
y∈L

ψ0(〈y,X + Z〉)dµ(y).

The last integral is an integral of an additive character on an additive group. Such an
integral is zero, unless the character is trivial. In our case this means that the integral is
zero, unless X + Z ∈ L⊥, which happens if and only if −Z ∈ X + L⊥ and in that case
the integral equals 1. Therefore, F(µ)(Z) = 1X+L⊥(−Z). As F ◦ F = −Id (under the
identification g ' g∗∗), we get that F(1B) = exp∗(eB), as claimed.

Appendix B. Finite Generation of Hecke Modules (by A. Aizenbud and D.
Gourevitch)

In this section we prove a stronger version of Theorem I. For its formulation we will
need the following definition.

Definition B.0.1. Let (G, (H,χ)) be a twisted pair, i.e. H < G is a (closed) subgroup,
and χ is its character.

(1) Denote by DG/H the G-equivariant sheaf of smooth measures on G/H and by
∆G/H its fiber at [1] ∈ G/H, considered as a character of H. Note that ∆G/H =

(∆G)|H ·∆−1
H = ∆−1

H .
(2) We define the dual of the twisted pair (G, (H,χ)) to be the pair (G, (H, χ̂)), where

χ̂ = ∆G/Hχ
−1. Note that ˆ̂χ = χ.

The following theorem clearly implies Theorem I.

Theorem B.0.2. Let (G, (H,χ)) be a twisted pair. Let P be a minimal parabolic subgroup
of G and P = P(F ). Suppose that H has finitely many orbits on G/P . Suppose that for
any irreducible smooth representation ρ of G we have

(14) dim HomH(ρ|H , χ̂) <∞.

Then for any open compact subgroup K of G the module indGH(χ)K over the Hecke algebra
HK(G) is finitely generated.

Let us now give an overview of the argument. In Lemma B.1.9 we present a criterion,
due to Bernstein, for the finite generation of spaces of K-invariants. The proof of the
criterion uses the theory of Bernstein Center. Using this criterion we introduce a notion
of twisted pairs of finite type (see Definition B.2.1(2)) which is equivalent to the local

finite generation of indGH(χ). Bernstein’s criterion is given in terms of all parabolic sub-
groups of G. This allows us to define an intermediate notion of finite cuspidal type (see
Definition B.2.1(3)), which means that the criterion holds for the group G as a parabolic
subgroup of itself.

Then we introduce duality between twisted pairs. We prove that condition (14) implies
that the dual pair (G, (H, χ̂)) is of finite cuspidal type (see Appendix B.4). We use a simple
trick (Corollary B.4.6) to imply that the pair (G, (H,χ)) is itself of finite cuspidal type.

In order to analyze the condition of Lemma B.1.9 for all parabolic subgroups of G
we introduce the notion of a descendant of the pair (G, (H,χ)) and prove that if all the
descendants are of finite cuspidal type then the pair itself is of finite type (see Appen-
dix B.5).

Thus it remains to show that if the conditions of Theorem I hold for a twisted pair
then they hold for all its descendants. This we do in Appendix B.3, using a homological
algebra argument.
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Remark B.0.3. The argument here is an adaptation of a similar argument in [AAG12]
that dealt with the case of trivial χ. However, the argument in [AAG12] did not take into
account the modular characters of various groups that appear along the way. As a result,
it is not valid for non-unimodular H and even for unimodular H it is not complete. The
gap in the original argument is filled mainly by the proof of Corollary B.4.6.

B.1. Preliminaries.

Notation B.1.1. For a subgroup H < G we denote by indGH : M(H) → M(G) the

compactly supported induction functor and by IndGH : M(H) →M(G) the full induction
functor. For π ∈ M(G) denote by π̃ := (π∗)∞ the smooth contragredient representation.

Note that for any character χ of H we have ˜indGH(χ) = IndGH(χ̂).

Definition B.1.2. Let P < G be a parabolic subgroup with unipotent radical U, and let
M := P/U. Such M is called a Levi subquotient of G. Note that every representation
of M can be considered as a representation of P using the quotient morphism P � M .
Define:

(1) The Jacquet functor rGM :M(G)→M(M) by rGM (π) := (∆
1
2

G/P ·π|P )U . Note that

rGM is defined for any representation of P .

(2) The parabolic induction functor iGM :M(M)→M(G) by iGM (τ) := indGP (∆
− 1

2

G/P τ).

Note that iGM is right adjoint to rGM . A representation π of G is called cuspidal if rGM (π) = 0
for any Levi subquotient M of G.

It is well-known that iGM and rGM are exact functors.

Definition B.1.3. A smooth representation V of G is called compact if for any v ∈ V
and ξ ∈ Ṽ the matrix coefficient function defined by mv,ξ(g) := ξ(gv) is a compactly
supported function on G.

Theorem B.1.4 (Bernstein-Zelevinsky). Any compact representation of G is a projective
object in the category M(G).

Definition B.1.5.

(1) Denote by G1 the preimage in G of the maximal compact subgroup of G/[G,G].
(2) Denote by Z(G) the center of G and denote G0 := G1Z(G).
(3) We call a complex character of G unramified if it is trivial on G1. We denote the

set of all unramified characters by ΨG. Note that G/G1 is a lattice and therefore
we can identify ΨG with (C×)n. This defines a structure of algebraic variety on
ΨG.

(4) For any smooth representation ρ of G we denote Ψ(ρ) := indGG1(ρ|G1). Note that
Ψ(ρ) ' ρ⊗O(ΨG), where G acts only on the first factor, but this action depends
on the second factor. This identification gives a structure of O(ΨG)-module on
Ψ(ρ).

Theorem B.1.6 (Harish-Chandra). Let V be a cuspidal representation of G. Then V |G1

is a compact representation of G1.

Corollary B.1.7. Let ρ be a cuspidal representation of G. Then
(i) ρ|G1 is a projective object in the category M(G1).
(ii) Ψ(ρ) is a projective object in the category M(G).

Proof. (i) Follows from Theorems B.1.4 and B.1.6.
(ii) note that

HomG(Ψ(ρ), π) ∼= HomG/G1
(O(ΨM ), HomG1(ρ, π)),

for any representation π. Therefore the functor π 7→ HomG(Ψ(ρ), π) is a composition of
two exact functors and hence is exact. �
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We will use Bernstein’s second adjointness theorem.

Theorem B.1.8 ([Ber87] or [Bus01, Theorem 3]). Let P ⊂ G be a parabolic subgroup
and let P be an opposite parabolic subgroup. Let M be the Levi quotient of P and let
rGM : M(G) → M(M) denote the Jacquet functor defined using P . Then rGM is right
adjoint to iGM . In particular, iGM maps projective objects to projective ones and hence for
any irreducible cuspidal representation ρ of M , iGM (Ψ(ρ)) is a projective object of M(G).

We now present a criterion, due to Bernstein, for local finite generation.

Lemma B.1.9 ([AAG12, Lemma 2.1.10]). Let V ∈M(G). Suppose that for any parabolic
P < G and any irreducible cuspidal representation ρ of M (where M denotes the reductive
quotient of P ), HomG(iGM (Ψ(ρ)), V ) is a finitely generated module over O(ΨM ). Then V K

is a finitely generated module over z(HK(G)), for any compact open subgroup K < G.

The theory of Bernstein center gives us the following Lemma:

Lemma B.1.10. Let V be a smooth finitely generated representation of G. Let W ⊂ V
be a subrepresentation. Then W is finitely generated.

Proof. Let v1, . . . , vn be the generators of V . By Theorem 2.2.4(2) we can choose a
splitting subgroup K ⊂ G s.t. vi ∈ V K . Then V ∈ MK(G) and V K is finitely generated
over HK(G). Hence W ∈ MK(G) and thus it is enough to show that WK is finitely
generated over HK(G). By Theorem 2.2.4(3b) HK(G) is finite over its center z(HK(G)).
So V K is finitely generated over Z(HK(G)). From Theorem 2.2.4(3c) it follows that
z(HK(G)) is Notherian, and thus WK is finitely generated generated over z(HK(G)). �

B.2. Finite multiplicity and duality of twisted pairs. Let (G, (H,χ)) be a twisted
pair.

Definition B.2.1. We say that the pair (G, (H,χ))

(1) has finite multiplicities (resp. finite cuspidal multiplicities) if for any irreducible
(resp. cuspidal irreducible) representation π of G,

dim Hom(indGH(χ), π) <∞.

(2) has finite type if for any parabolic P < G and any irreducible cuspidal represen-
tation ρ of M (where M denotes the reductive quotient of P),

HomG(iGM (Ψ(ρ)), indGH(χ))

is a finitely generated module over O(ΨM ).
(3) has finite cuspidal type if for any irreducible cuspidal representation ρ of G,

HomG(Ψ(ρ), indGH(χ)) is a finitely generated module over O(ΨM ).
(4) is F -spherical4 if for any parabolic subgroup P ⊂ G, there is a finite number of

double cosets in P \G/H.

The following lemma helps to connect multiplicities to duality.

Lemma B.2.2. Let π, ρ ∈ M(G) and assume that ρ has finite length. Then the natural
morphism Hom(π, ρ)→ Hom(ρ̃, π̃) is an isomorphism.

Proof. By Theorem 2.2.4 we can choose a splitting subgroup K such that ρK generates
ρ. Then

Hom(π, ρ) ∼= HomHK(G)(π
K , ρK) ∼= {v ∈ (πK)∗⊗ρK | ∀a ∈ HK(G), (a⊗1−1⊗a)v = 0}.

4 If charF = 0 and G is quasi-split over F then (G,H) is an F -spherical pair if and only if it is a
spherical pair of algebraic groups.

http://www.math.uchicago.edu/\protect \unskip \penalty \@M \ \ignorespaces mitya/langlands/Bernstein/Bernstein87.ps
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Here we consider the standard action of HK(G)opposite ⊗HK(G) on acts on (πK)∗ ⊗ ρK .
Also

Hom(ρ̃, π̃) ∼= HomHK
((ρ∗)K , (π∗)K) ∼= HomHK

((ρK)∗, (πK)∗) ∼= ρK ⊗ (π∗)K ∼=
∼= {v ∈ ρK ⊗ (πK)∗ | ∀a ∈ HK(G), (a⊗ 1− 1⊗ a)v = 0}

This easily implies the assertion. �

Using Frobenius reciprocity we obtain the following corollary.

Corollary B.2.3. Let π be a smooth representation of G of finite length. Then

dim HomG(indGH(χ), π) = dim HomH(π̃, χ̂)

Lemma 3.2.2 follows from Corollary B.2.3 and the next lemma.

Lemma B.2.4. If (G, (H,χ)) has finite (cuspidal) type then it has finite (cuspidal) mul-
tiplicities.

Proof. Let π be a irreducible (cuspidal) representation of G. By Theorem 2.2.4 we can
choose a splitting compact open subgroup K < G s.t. πK 6= 0. Then

HomG(indGH(χ̂), π) = HomHK(G)((indGH(χ̂))K , πK).

Since (indGH(χ̂))K is finitely generated, this implies that dim HomG(indGH(χ̂), π) <∞. �

In view of Lemma B.1.9 and Corollary B.2.3, Theorem B.0.2 is equivalent to the fol-
lowing one.

Theorem B.2.5. If (G, (H,χ)) is F -spherical and has finite multiplicity then it has finite
type.

B.3. Descent Of Finite Multiplicity.

Notation B.3.1. Let (G, (H,χ)) be a twisted pair. Let P < G be a parabolic subgroup
and M be its Levi quotient. Let P < G be a parabolic subgroup opposite to P and U be
its unipotent radical. Let X := G/H. Let F be the natural G-equivariant sheaf on X such
that the stalk at [1] coincides with χ as a representation of H.

Let x ∈ X. It is easy to see that there exists a geometric quotient Ax = U\Px. Denote
by Fx the natural M -equivariant sheaf on Ax such that rGM (S(Px,F|Px)) = S(Ax,Fx).
Suppose that Fx 6= 0. Let y be the image of x in Ax. We denote its stabilizer in M by
Hx
M , and we consider the fiber (Fx)y as a character of Hx

M , and denote it by χxM .
We say that the twisted pair (M, (Hx

M , χ
x
M )) is a P -descendent of the twisted pair

(G, (H,χ)). We will say that descendants (M, (Hx
M , χ

x
M )) and (M, (Hx′

M , χ
x′

M )) are equiv-
alent if x and x′ belong to the same P -orbit.

The following version of the Bernstein-Zelevinsky geometric lemma follows from the
exactness of rGM .

Lemma B.3.2. Let P < G be a parabolic subgroup and M be its Levi quotient. Let
(G, (H,χ)) be an F -spherical twisted pair. Then indGH(χ) has a finite filtration such that

Gr(rGM (indGH(χ))) '
⊕
i

indGHi
(χi),

where (M, (Hi, χi)) ranges over all the P -descendants of (G, (H,χ)) up to equivalence.

The goal of this subsection is to prove the following lemma.

Lemma B.3.3. Let (G, (H,χ)) be an F -spherical pair of finite multiplicity. Let P < G
be a parabolic subgroup and M be its Levi quotient. Let (M, (H ′, χ′)) be a descendant of
(G, (H,χ)). Then (M, (H ′, χ′)) is an F -spherical pair of finite cuspidal multiplicity.
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Remark B.3.4. One can easily show that the converse statement to this lemma is also
true. Namely, if all the descendants of the pair have finite cuspidal multiplicity then the
pair has finite multiplicity. This also implies that in this case all the descendants have
finite multiplicity. However we will not use these facts.

We will need the following lemmas.

Lemma B.3.5. Let M be an l-group and V,W be smooth representations of M such that
that dim Hom(V,W ) <∞. Let 0 = F 0V ⊂ ... ⊂ Fn−1V ⊂ FnV = V be a finite filtration
of V by subrepresentations. Suppose that for any i, either

dim Hom(F iV/F i−1V,W ) =∞

or

both dim Hom(F iV/F i−1V,W ) <∞ and dim Ext1(F iV/F i−1V,W ) <∞.
Then dim Hom(F iV/F i−1V,W ) <∞ for any i.

Proof. We prove by a decreasing induction on i that dim Hom(F iV,W ) <∞, and, there-
fore, dim Hom(F iV/F i−1V,W ) <∞ and by the conditions of the lemma

dim Ext1(F iV/F i−1V,W ) <∞.

Consider the short exact sequence

0→ F i−1V → F iV → F iV/F i−1V → 0,

and the corresponding long exact sequence

...← Ext1(F iV/F i−1V,W )← Hom(F i−1V,W )← Hom(F iV,W )← Hom(F iV/F i−1V,W )← 0.

In this sequence dim Ext1(F iV/F i−1V,W ) < ∞ and dim Hom(F iV,W ) < ∞, and hence
dim Hom(F i−1V,W ) <∞. �

Lemma B.3.6. Let (G, (H,χ)) be a twisted pair. Let ρ be an irreducible cuspidal represen-

tation of G. Suppose that dim Hom(indGH(χ), ρ) <∞. Then dim Ext1(indGH(χ), ρ) <∞.

For the proof we will need the following straightforward lemma.

Lemma B.3.7. Let L be a lattice. Let V be a linear space. Let L act on V by a character.
Then

H1(L, V ) = H0(L, V )⊗C (L⊗Z C).

Proof of Lemma B.3.6. By Lemma B.2.2

Exti(indGH(χ), ρ) ∼= Exti(ρ̃, IndGH(χ̂)).

By Frobenius reciprocity

Exti(ρ̃, IndGH(χ̂)) ∼= ExtiH(ρ̃, χ̂).

Let I := H ∩G1 and J := H ∩G0. Note that

ExtiH(ρ̃, χ̂) ∼= ExtiH(ρ̃⊗ χ̂−1,C) ∼= ExtiH/I((ρ̃⊗ χ̂−1)I ,C),

where the last isomorphism follows from Corollary B.1.7. Now, since H/J is finite,

ExtiH/I((ρ̃⊗ χ̂−1)I ,C) ∼= HomH/J(Hi(J/I, (ρ̃⊗ χ̂−1)I),C),

which implies the assertion by Lemma B.3.7. �

Now we are ready to prove Lemma B.3.3.
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Proof of Lemma B.3.3. Clearly (M,H ′) is F -spherical. It remains to prove that

(15) dim Hom(indMH′(χ
′), τ) <∞,

for any irreducible cuspidal representation τ of M .
Since (G, (H,χ)) has finite multiplicity, we have dim Hom(indGH(χ), π) < ∞ for any

irreducible π ∈M(G). Thus for any irreducible τ ∈M(M) we have

dim HomG(indGH(χ), i
G
M (τ))) <∞.

Thus

dim HomM (rGM (indGH(χ)), τ) <∞.

By Lemma B.3.2, there exists a filtration on rGM (indGH(χ)) such that Gri(rGM (indGH(χ))) =

indGHi
(χi) where (M, (Hi, χi)) ranges over all the descendants of (G, (H,χ)) up to equiv-

alence. In particular we can assume that for some i0, we have Hi0 = H ′, χi0 = χ′.
By Lemma B.3.6, this filtration satisfies the conditions of Lemma B.3.5 and thus (15)
holds. �

B.4. Finite cuspidal type. Let us now prove the following cuspidal analogue of theorem
B.2.5

Theorem B.4.1. If (G, (H, χ̂)) has finite cuspidal multiplicity, then (G, (H,χ)) has finite
cuspidal type.

We will need several lemmas.

Lemma B.4.2. Let A be a locally compact group and B be a closed subgroup. Suppose
that A = BZ(A). Then any character of B can be lifted to A.

Proof. Taking quotient by the kernel of the character we reduce to the case of abelian A.
In this case the statement is [Dix57, Theorem 5]. �

Lemma B.4.3. Let (G,H) be an F -spherical pair, and denote H̃ = HZ(G) ∩ G1. Let
χ be a character of H. Suppose that for any smooth (respectively cuspidal) irreducible
representation ρ of G we have

dim HomH(ρ|H , χ) <∞

Then for any smooth (respectively cuspidal) irreducible representation ρ of G and for every

character ψ of H̃ whose restriction to H ∩G1 coincides with χ, we have

dim HomH̃(ρ|H̃ , ψ) <∞.

Proof. Let ρ be a smooth (respectively cuspidal) irreducible representation of G. Using

Lemma B.4.2 extend χ to a character χ′ of HZ(G). Let φ be a character of H̃ whose
restriction to H ∩G1 is trivial. We have to show that

dim HomH̃

(
ρ|H̃ , φχ

′) <∞.
We have

HomH̃

(
ρ|H̃ , φχ

′) = HomHZ(G)∩G0

(
ρ|(HZ(G))∩G0

, Ind
HZ(G)∩G0

H̃
φχ′
)
.

Since

HZ(G) ∩G0 = H̃Z(G) ∩G0 = H̃Z(G),

the subspace of Ind
(HZ(G))∩G0

H̃
φχ′ that transforms under Z(G) according to the central

character of ρ is at most one dimensional. If this subspace is 0, then the lemma is clear.
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Otherwise, denote it by τ . Since H ∩G1 is normal in HZ(G), we get that the restriction

of Ind
(HZ(G))∩G0

H̃
φ to H ∩G1 is trivial, and thus that τ |H∩G1 = χ′H∩G1 . Hence

HomH̃

(
ρ|H̃ , φχ

′) = Hom(HZ(G))∩G0

(
ρ|(HZ(G))∩G0

, τ
)

=

= HomH∩G0 (ρ|H∩G0 , τ |H∩G0) = HomH

(
ρ|H , IndHH∩G0

τ |H∩G0

)
.

Since H/H ∩G0 is finite and abelian, we have

IndHH∩G0
(τ |H∩G0

) = χ

(
N⊕
i=1

χi

)
where χi are characters of H, s.t. (χi)|H∩G1 = 1. By Lemma B.4.2 the characters χi can
be extended to characters of G, because H/(H ∩G1) is a sub-lattice of G/G1. Denoting
the extensions by Θi, we get that

HomH (ρ|H , χχi) = HomH

(
(ρ⊗Θ−1

i )|H , χ
)
,

but ρ ⊗ Θ−1
i is again smooth (respectively cuspidal) irreducible representation of G, so

this last space is finite-dimensional. �

Lemma B.4.4. Let A be a commutative unital Noetherian algebra without zero divisors
and let K be its field of fractions. Let KN be the space of all sequences of elements of K.
Let V be a finite dimensional subspace of KN and let M := V ∩ AN. Then M is finitely
generated.

Proof. Since A does not have zero divisors, M injects into KN. There is a number n such
that the projection of V to K{1,...n} is injective. Therefore, M injects into A{1,...n}, and,
since A is Noetherian, M is finitely generated. �

Lemma B.4.5. Let L be an l-group, and let L′ ⊂ L be an open normal subgroup of L
such that L/L′ is a lattice. Let ρ be a smooth representation of L of countable dimension.
Suppose that for any character χ of L whose restriction to L′ is trivial we have

dim HomL(ρ, χ) <∞.
Consider HomL(ρ,S(L/L′)) as a representation of L, where L acts by ((hf)(x))([y]) =
(f(x))([yh]). Then this representation is finitely generated.

Proof. By assumption, the action of L on HomL(ρ,S(L/L′)) factors through L/L′. Since
L/L′ is discrete, S(L/L′) is the group algebra C[L/L′]. We want to show that HomL(ρ,C[L/L′])
is a finitely generated module over C[L/L′].

Let C(L/L′) be the fraction field of C[L/L′]. Choosing a countable basis for the vec-
tor space of ρ, we can identify any C-linear map from ρ to C[L/L′] with an element of
C[L/L′]N. Moreover, the condition that the map intertwines the action of L/L′ translates
into a collection of linear equations that the tuple in C[L/L′]N should satisfy. Hence,
HomL′(ρ,C[L/L′]) is the intersection of the C(L/L′)-vector space HomL(ρ,C(L/L′)) and
C[L/L′]N. By Lemma B.4.4, it suffices to prove that HomL(ρ,C(L/L′)) is finite dimen-
sional over C(L/L′).

Since L is separable, and ρ is smooth and of countable dimension, there are only
countably many linear equations defining HomL(ρ,C(L/L′)); denote them by φ1, φ2, . . . ∈(
C(L/L′)N

)∗
. Choose a countable subfield K ⊂ C that contains all the coefficients of the

elements of C(L/L′) that appear in any of the φi’s. If we define W as the K(L/L′)-linear
subspace of K(L/L′)N defined by the φi’s, then HomL(ρ,C(L/L′)) = W⊗K(L/L′)C(L/L′),
so dimC(L/L′) HomL(ρ,C(L/L′)) = dimK(L/L′)W .

Since L/L′ is a lattice generated by, say, g1, . . . , gn, we get thatK(L/L′) = K(t±1
1 , . . . , t±1

n )
= K(t1, . . . , tn). Choosing elements π1, . . . , πn ∈ C such that tr.degK(K(π1, . . . , πn)) = n,
we get an injection ι of K(L/L′) into C. As before, we get that if we denote the C-vector
subspace of CN cut by the equations ι(φi) by U , then dimK(L/L′)W = dimC U . However,
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U is isomorphic to HomL(ρ, χ), where χ is the character of L/L′ such that χ(gi) = πi.
By assumption, this last vector space is finite dimensional. �

Now we are ready to prove Theorem B.4.1.

Proof of Theorem B.4.1. Let ρ be an irreducible cuspidal representation of G. By Corol-
lary B.2.3 we know that dim HomH(ρ, χ) <∞. We need to show that HomG(Ψ(ρ), indGH χ)
is finitely generated over O(ΨG). We have

HomG(Ψ(ρ), indGH χ) = HomG1(ρ, indGH χ).

Here we consider the space Φ := HomG1(ρ, indGH χ) with the natural action of G. Note
that G1 acts trivially and hence this action gives rise to an action of G/G1, which gives the

O(ΨG) - module structure. Let Θ := HomG1(ρ, IndGHZ(G) ind
HZ(G)
H χ). Clearly Φ ⊂ Θ.

Thus, by Lemma B.1.10, it is enough to show that Θ is finitely generated over G.
Denote H ′ := H ∩G1 and H ′′ := (HZ(G)) ∩G1. Consider the subspace

V := HomG1(ρ, IndG
1

H′′(indH
′′

H′ (χ|H′))) ⊂ Θ.

It generates Θ as a representation of G, and therefore also as an O(ΨG) - module. Note
that V is H-invariant. Therefore it is enough to show that V is finitely generated over H.

By Frobenius reciprocity we have V ∼= HomH′′(ρ, indH
′′

H′ (χ|H′)).
By Lemma B.4.2 χ can be extended to a character χ′ of HZ(G). Thus

indH
′′

H′ (χ|H′) ∼= χ′|H′′S(H ′′/H ′).

Let ρ′ := χ′|−1
H ρ|H . Then

V ∼= HomH′′(ρ
′,S(H ′′/H ′)).

Under this isomorphism, the action Π of H on V is given by

((Π(h)(f))(v))([k]) = f(ρ′(h−1)v)([h−1kh]),

where h ∈ H, f ∈ HomH′′(ρ
′,S(H ′′/H ′)), v ∈ ρ′, k ∈ H ′′, [k] = kH ′ ∈ H ′′/H ′.

Let Ξ be the action of H ′′ on HomH′′(ρ
′,S(H ′′/H ′)) as described in Lemma B.4.5, i.e.

((Ξ(h)(f))(v))([k]) = f(v)([kh]).

Let us show that HomH′′(ρ
′,S(H ′′/H ′)) is finitely generated w.r.t. the action Ξ. By

Lemma B.4.5 it is enough to show that

(16) dim HomH′′(ρ
′, θ) <∞

for any character θ of H ′′ with trivial restriction to H ′. Note that HomH′′(ρ
′, θ) ∼=

HomH′′(ρ, χ
′θ). Thus (16) follows from the hypothesis dim HomH(ρ, χ) < ∞ in view of

Lemma B.4.3 and we have shown that HomH′′(ρ
′,S(H ′′/H ′)) is finitely generated w.r.t.

the action Ξ.
Now it is enough to show that for any h ∈ H ′′ there exist an h′ ∈ H and a scalar α s.t.

Ξ(h) = αΠ(h′).

In order to show this let us decompose h to a product h = zh′ where h′ ∈ H and z ∈ Z(G).
Now

((Ξ(h)(f))(v))([k]) = f(v)([kh]) = f(h−1v)([h−1kh]) = f(h
′−1z−1v)([h

′−1kh′]) =

= αf(h′−1v)([h
′−1kh′]) = α((Π(h′)(f))(v))([k]),

where α is the scalar with which z−1 acts on ρ′.
Thus V is finitely generated over H, thus Φ and Θ are finitely generated over G and

HomG(Ψ(ρ), indGH χ) is finitely generated over O(ΨG). �

Corollary B.4.6. If (G, (H,χ)) has finite cuspidal multiplicity, then (G, (H,χ)) has finite
cuspidal type.
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Proof. Assume that (G, (H,χ)) has finite cuspidal multiplicity. By Theorem B.4.1 the
twisted pair (G, (H, χ̂)) has finite cuspidal type. By Lemma B.2.4 the pair (G, (H, χ̂))
has finite cuspidal multiplicity. Applying Theorem B.4.1 again we obtain that (G, (H,χ))
has finite cuspidal type. �

B.5. Proof of Theorem B.2.5.
Let P < G be a parabolic subgroup and M be the Levi quotient of P. Let ρ be a

cuspidal representation of M . We have to show that Hom(iGM (Ψ(ρ)), indGH(χ)) is finitely
generated over O(ΨM ). By second adjointness theorem (Theorem B.1.8), we have

Hom(iGM (Ψ(ρ)), indGH(χ)) = Hom((Ψ(ρ)), r̄GM (indGH(χ))).

By Lemma B.3.2 the representation r̄GM (indGH(χ)) has a filtration s.t.

Gri(r̄
G
M (indGH(χ))) = indMHi

(χi)

where (M, (Hi, χi)) are the descendants of (G, (H,χ)). Since iGM (Ψ(ρ)) is a projective

object (Theorem B.1.8), this gives us filtration on Hom((Ψ(ρ)), r̄GM (indGH(χ))) with

Gri Hom((Ψ(ρ)), r̄GM (indGH(χ))) = Hom((Ψ(ρ)), indMHi
(χi)).

So it remains to show that (M, (Hi, χi)) are of finite cuspidal type. This follows from
Lemma B.3.3 and Corollary B.4.6.
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