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ABSTRACT. We prove dimension bounds on the jet schemes of the variety
of nilpotent matrices (and of related varieties) in positive characteristic.

This result has applications to the analytic properties of the Cheval-
ley map p : gl,, — ¢ that sends a matrix to its characteristic polynomial.
We show that our dimension bound implies, under the assumption of
existence of resolution of singularities in positive characteristic, that the
Chevalley map pushes a smooth compactly supported measure to a mea-
sure whose density function is L for any t < oo.

We also prove this analytic property of the Chevalley map, uncondi-
tionally, when the characteristic of the field exceeds 7.

The zero characteristic counterpart of this result is an important step
in the proof of the celebrated Harish-Chandra’s integrability theorem.
In a sequel work [AGKSb] we show that also in positive characteristic,

this analytic statement implies Harish-Chandra’s integrability theorem

for cuspidal representations of the general linear group.
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1. INTRODUCTION

1.1. Results on dimensions of jet schemes. Fix a finite field F,. Unless
explicitly stated otherwise, all the algebraic varieties that we consider will
be defined over [Fy. For a variety X we denote by J,,,(X) its m-th jet scheme.
We consider J,, as a functor from the category of varieties to the category
of schemes. We fix an integer n and set g := gl,, considered as an algebraic
variety. B

In this paper we prove:

Theorem A (§8). Let N C g be the nilpotent cone. There is a constant Cy
such that for any m € N we have

dim J,,(IN) < mdim(N) + Cy.

We deduce from this result bounds on jet schemes of more varieties. To
formulate these bounds we make:

Notation 1.1.1. Denote by

e ¢ - the affine space of monic polynomials of degree n. We will identify
it with A",
® p:g— ¢ - the Chevalley map (essentially sending an element to its

characteristic polynomial).
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o For an integer i € N we denote by g, := g X ... X, g the i-folded fiber

|

i times

product of g with itself over ¢ with respect to the map p.!
We deduce the following:

Theorem B (§8). There is a constant C such that for any x € ¢ and any
m € N we have

dim J,,(p~'(z)) < mdim(p~'(z)) + C.
From this we deduce the following:

Theorem C (§8). For any i there is a constant C; such that for any m € N
we have

dim J,(g,) < mdim(g,) + C;.

=1

1.2. Results on pushforward of measures. We deduce from the results
above the following one.

Theorem D (§11). Let i € N. Assume that the variety g, admits a strong
resolution of singularities. Let u° be a Haar measure on c.
Then for any smooth compactly supported measure p on g := g(F'), there
exists a function B
fe ) L
te(l,3)
such that p,(u) = fu.

Remark 1.2.1. In §12 we give several alternative conditions on resolution
of singularities under which the result holds.

Finally we show that one can replace the assumption of Theorem D on
the existence of resolution with an assumption on characteristic:

Theorem E (§13). Suppose char(F,) > ¢. Let F':=TF((t)).

Then for any smooth compactly supported measure p on g := g(F), the
measure p, (1) can be written as a product of a function in L (¢) and a Haar
measure on c.

1.3. Background and motivation.

1.3.1. FRS maps. Theorems D and E are related to the notion of FRS maps
introduced and studied in [AA16]. Let us recall this notion:

Definition 1.3.1. A map ¢ : X — Y of smooth algebraic varieties over a
field of characteristic zero is called FRS if it is flat, its fibers are reduced,
and the singularities of its fibers are rational.

The motivation to this definition is the following:

LA-priory this is a scheme, but we will see in Lemma 5.0.10 below that it is reduced,
so it is a variety.
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Theorem 1.3.2 ([AA16, Theorem 3.4], [Reil8]). Let ¢ be a map of smooth
algebraic varieties over a local field F of characteristic zero.

If ¢ is FRS then for any smooth compactly supported measure p on X(F),
the measure ¢.(p) on'Y := Y (F) can be written as a product of a continuous
function and a smooth measure on Y.

Unfortunately, we do not have an extension of this Theorem to the positive
characteristic case. In fact it is not even clear how to formulate it correctly
since there is no universally accepted definition of rational singularities (see
[Har98, Smi97, Bhal2, Kov00] for several related notions).

For this paper we choose the following notion of rational singularities in
positive characteristic.

Definition 1.3.3. Let Z be a variety defined over an arbitrary field. We
say that the singularities of Z are rational if Z is Cohen-Macaulay, normal,
and admits a resolution of singularities n : Z — 7 such that the natural
morphism 1n.(Qz) — 1.(Qzsm) is an isomorphism. Here i : Z°™ — Z 1is the
embedding of the smooth locus and ) denotes the sheaf of top differential
forms.

Remark 1.3.4. In characteristic zero, this notion is equivalent to rational
singularities, see e.g. [AA16, Appendix B, Proposition 6.2].

Next we give several extensions of the notion of FRS maps to positive
characteristic:

Definition 1.3.5. Let ¢ : M — N be a flat morphism of smooth algebraic
varieties over a local field F' of arbitrary characteristic. Assume that the
fibers of ¢ are reduced and normal.
(1) We say that ¢ is geometrically FRS (in short geo-FRS) if for any
y € N(F), the singularities of ¢~'(y) are rational.
(2) We say that ¢ is analytically FRS (in short an-FRS) if for any
smooth compactly supported measure pp; on M := M(F') there exist

a smooth compactly supported measure pun on N := N(F), and a
bounded function f on N such that
Gu(pinr) = frn-

(8) We say that ¢ is almost analytically FRS (in short almost an-
FRS) if for any smooth compactly supported measure jip; on M there
exist smooth compactly supported measure py and a function f on N
such that
Gu(piar) = fun-

and f € L"(N) for all r € [1,00)

Using extension of scalars from Fy to Fy((t)) we will apply these notions also

for maps of varieties over .

Remark 1.3.6. As in Remark 1.3.4, in characteristic zero, the geo-FRS
property is equivalent to FRS property. Also, by Theorem 1.5.2, in this case

each of them implies the an-FRS property.
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In this language, Theorem D implies that, under an appropriate assump-
tion of existence of resolution of singularities, the Chevalley map, p : g — ¢, is
almost an-FRS. Similarly, the content of Theorem E is that, for char(F,) > %
the Chevalley map, p: g — ¢, is an-FRS.

The following is a positive characteristic analogue of Theorem 1.3.2:

Conjecture F. Let ¢ : M — N be a flat morphism of smooth algebraic
varieties defined over a local field F' whose fibers are reduced and normal.

Assume that ¢ is geo-FRS. Then ¢ is an-FRS.
We explain in §1.3.2 below that this would imply the following:
Conjecture G. The Chevalley map p : g — ¢ is an-FRS.

Theorems D and E are partial results towards this conjecture.

1.3.2. The Springer resolution. The nilpotent cone has a natural resolution
of singularities

T"(B) - N

by the cotangent bundle to the flag variety, called the Springer resolution.
In characteristic zero, one can use this resolution in order to prove that the
singularities of the nilpotent cone are rational (see [Hes76, Theorem A]). We
list now two important corollaries of this fact:

(I) The jet schemes of the nilpotent cone are irreducible of the expected
dimensions (See [Mus01, Appendix]).

(IT) The Chevalley map p : g — ¢ is an-FRS. This follows from the ratio-
nality of the singularities of the nilpotent cone using [AA16, Theorem
3.4]. This fact is essentially equivalent to the bounds on orbital inte-
grals established in [HC70, Theorem 13, page 68]. Note that [HC70,
Theorem 13] is an important ingredient in Harish-Chandra’s integra-
bility theorem for characters of irreducible representations of reductive
p-adic groups (See [HC99]). We will discuss this below in more details
(see §1.3.3).

In positive characteristic, these results are not known. In more details,
the Springer resolution exists in any characteristic, moreover, according to
our definition of rational singularities (Definition 1.3.1) one can deduce from
it that the singularities of the fibers of the Chevalley map are rational (it
follows from the proof in [Hin91] of [Hes76, Theorem A]). So we have:

Proposition 1.3.7. The Chevalley map p : g — ¢ is geo-FRS. 2

However, the main results of [AA16, Mus01, HC70] are not known in
positive characteristic for the following reasons:

Indeed, by Jordan-Chevalley decomposition it is enough to show that the Springer res-
olution satisfy the condition of Definition 1.3.3. This is proven in [Hin91] for a generaliza-
tion of the Springer resolution. The statements in [Hin91] are formulated for characteristic
zero, but the proof of this statement is valid in arbitrary characteristic.
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(1) [AA16, Mus01] use repeatedly the existence of resolution of singular-
ities which is not known in positive characteristic.

(2) [AA16, Mus01] use the Grauert-Riemenschneider theorem, which is
not valid (in general) over fields of positive characteristic (see [Ray78]
and [MvdK92]).

(3) The proof of [HC70, Theorem 13] uses the fact that the Lie algebra
of G is the direct sum of its center and its derived algebra. This is
not true in positive characteristic.

(4) The proof of [HC70, Theorem 13] uses the Jordan-Chevalley decom-
position. This decomposition does not exist as is over local fields
of positive characteristic, since there are elements with irreducible
totally inseparable characteristic polynomial.

We view Theorems A - E as partial analogs of (I) and (II), and as evidence
for Conjectures F and G.

1.3.3. Harish-Chandra’s integrability theorem. Another motivation for The-
orems C and D is the following celebrated result by Harish-Chandra.

Theorem 1.3.8 ([HC99]). Let F be a local non-Archimedean field with char-
acteristic zero. Let H be a reductive group defined over F'. Let H = H(F)
and fix a Haar measure p on H. Let (p,V) be an irreducible smooth rep-
resentation of H. Consider the distributional character x, of p defined by

Xp(f) = trace(p(fp)) where

p(f11) (v) = /H f(9)p(g)on

and f € CX(G),veV .
Then x, is represented by a locally integrable function on H.

An important step in the proof of Theorem 1.3.8 is a bound on orbital
integrals [HC70, Theorem 13]. This bound is essentially equivalent to the
fact that the Chevalley map is an-FRS. Thus we view Theorem D as a partial
positive characteristic analogue of [HC70, Theorem 13].

In [AGKSb] we will use Theorems D and E in order to prove a positive
characteristic version of Harish-Chandra local integrability theorem (Theo-
rem 1.3.8) for irreducible cuspidal representations of GL,, under the assump-
tion of the existence of resolutions of singularities as in Theorem D or the
assumption on characteristic of Theorem E.

The main statement of [Lem96] is Theorem 1.3.8 for GL,, in positive char-
acteristic. However, this proof contains a gap that we explain in details in
[AGKSb]. Moreover, the statement of [Lem21, §5.3 Corollary 1] is equiva-
lent to the statement of Theorem E but without limitation on characteristic.
However, the proof of [Lem21, §5.3 Corollary 1] contains a gap. Namely, it is
based on the lemma in [Lem21, §3.7] which is wrong as stated. This mistake
is a propagation of an earlier mistake from [Lem97, Lemma 5.4.2], which in

turn comes from a mistake in [Lem96, Lemma 2.3.2].
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1.4. Further related results. One can use the methods of [CGH14] to
prove that Theorems A, B, and D are valid for large enough characteristic
of IF,. However, no explicit bound on the characteristic can be obtained in
this way.

1.5. Ideas of the proofs.

1.5.1. The original Harish-Chandra’s argument. The starting point for this
paper is the original Harish-Chandra’s proof of the bound on the orbital
integrals of a compactly supported function on gl,, in the characteristic zero
case (See [HC70, Theorem 13]). This can be reformulated as the statement
that the Chevalley map is an-FRS. Let us briefly recall Harish-Chandra’s
argument in the language of an-FRS maps:

(1) Decompose gl,, as sl,, &gl; and reduce the statement to the statement
that the Chevalley map p’ : sl,, — ¢’ is an-FRS.

(2) Deduce from the induction hypothesis that the map p'|q, n is an-
FRS, where N is the nilpotent cone.

(3) Prove by descending induction that p/|s, s is an-FRS, where S C N
is a closed GL,-invariant subset. The induction is on S:

(a) For each nilpotent z use the Slodowy slice L, at x to reduce the
statement that p'[r, is an-FRS to the statement that p|,.o is
an-FRS.

(b) Use the action of G,, on L, and an estimate on its eigenvalues
in order to prove that p|;, is an-FRS assuming the fact that
?|L,<o is an-FRS.

When going to positive characteristic this argument has several problems:

e Step (1) is invalid.

e Step (2) is invalid as stated, but one can adapt it to prove that
Plst, ~ Ninsep 18 an-FRS where Nj,, is the collection of matrices with
purely inseparable characteristic polynomial.?

e Step (3) is invalid as stated, but one can replace the Slodowy slice
([Slo80]) with other constructions (see §6.2). However, this method
can be applied directly only to the nilpotent cone N and not to N,sep.

1.5.2. An-FRS over the origin. One can start with proving a weaker state-
ment. Namely, that p is an-FRS over the origin. This means that for every
smooth compactly supported measure p, the density of p.(u) at 0 € ¢ is
finite. Note that this does not imply that this density is bounded in any
neighborhood of the origin. In fact, in order to enable Harish-Chandra’s
argument, we need a very narrow definition of density at a point - the limit
of the average density for a very specific sequence of balls that converges to
0.

3For example the matrix (g 1) over the field Fy((2)).

0
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For the weaker statement, steps (1) and (2) become obsolete, since it is
obvious that p,. n is an-FRS over the origin (as the origin is not in its image).
One can adapt step (3) to work in this case.

1.5.3. Effectively an-FRS over the origin. The property of being an-FRS
over the origin by itself is not useful for us, since we can not use it in order to
deduce any information outside the origin. In order to make it useful we have
to consider a version which is uniform over finite extensions of F,. This leads
us to the notion of effectively an-FRS over the origin (see Definition 6.0.2
below). Our proofs of Theorems C and D are based on the proof that p
is effectively an-FRS over the origin (see Theorem 6.0.4 below). The proof
follows the lines described above, but with several important adaptations:

e One has to properly define a setting where one can state effective
results that are uniform on finite extensions of F,. This we did in
[AGKSa].

e One has to reprove standard facts from differential geometry (such
as the implicit function theorem) in this effective setting. This was
also done in [AGKSa).

e One has to carefully define the notion of an-FRS maps in a way that
makes it amenable for Harsh-Chandra’s argument. The key points
here are to work with a specific sequence of ellipsoids around the
origin and to require the bound on the average density to be uniform
over the entire sequence (even for large ellipsoids). This makes the
fact that p|g,n is effectively an-FRS over the origin not obvious,
but still correct (see Lemma 6.1.3 below).

e The Harish-Chandra’s argument uses (implicitly) the fact that the
notion of an-FRS map is local with respect to smooth covers which
are surjective on the level of F' points. This locality is not clear for
maps that are effectively an-FRS over the origin. However, we show
that this notion is local with respect to a class of smooth covers which
we call effectively surjective (see Definition 4.1.5 below). In [AGKSa]
we proved that this class of covers includes the Nisnevich covers (See
Proposition 4.2.7 below). This allows us to adapt Harish-Chandra’s
argument.

1.5.4. Proof of Theorems A, B, and C. We deduce Theorem A from the fact
that p is effectively an-FRS over the origin using the Lang-Weil bounds. If
the ellipsoids in the definition of effectively an-FRS over the origin would be
balls, this would be straightforward - the average density would be exactly
the limit of the normalized number of points in the jet-scheme. In our case,
the bounds on the average density provide bounds on the dimension of some
weighted versions of the jets schemes. We deduce the desired bounds on
dimensions from this bound using the semi-continuity of dimension of fibers.
This is done in §7 (Theorem A itself is proven in §8 but the actual argument
is in §7.)
8



We deduce Theorem B from Theorem A using semi-continuity of dimen-
sion again. Theorem C follows easily from Theorem B. See §8.

1.5.5. Proof of Theorem D. We now want to go back to an-FRS property
but this time over the entire range. This we do only under the additional
assumption of existence of resolution of singularities.

For a variety X (equipped with a top form on its smooth locus) we
can consider the following quantity: the volume of a ball of radius R in
X*™(Fu((t))). Here X*™ denotes the smooth locus of X. Note that the
notion of ball in X*™ is defined in such a way that the singular locus of
X is infinitely far. We can study the asymptotics of this volume both as a
function of R and as a function of k. We note that our analysis is local on
X so all the balls are intersected with a fixed ball in X.

Under our assumption of existence of resolution of singularities we relate
these 2 asymptotics. See Theorem 9.0.3.

We apply Theorem 9.0.3 to the variety g, We relate the asymptotic
behavior of the above volume with respect to k to the number of points on
the jet schemes of g. See Theorem 10.0.1. We use Theorem 9.0.3 to deduce
bounds on the asymptotlcs of the above volume with respect to R.

Now we wish to relate this asymptotics to the desired L? property. We fix
a measure y on g(F,((t))) and consider its pushforward under the Chevalley
map p : g(Fi((t))) — c(Fe((t))). Denote this resulting measure by v. We
consider the L norm of v outside an e-neighborhood of the singular locus of
p.

We relate the asymptotics of this L’ norm w.r.t. € to the above asymptotics
w.r.t. R. We use a standard analytic argument to deduce from this a bound
on the L¥-norm for any i’ < i. See §11.

1.5.6. Proof of Theorem E. We follow the original Harish-Chandra’s argu-
ment. The first step is to analyze the situation near (non-central) semi-
simple elements, using the induction hypothesis.

In the characteristic zero situation this proves the result outside the Minkowski
sum of the nilpotent cone and the set of scalar matrices.

In the positive characteristic situation this proves the result outside the
cone of matrices whose characteristic polynomial is purely inseparable.

In general, this cone is rather complicated, however, under our assumption
on the characteristic, only its regular part exhibits this complexity. Since
the statement is obvious for regular matrices, we can ignore this complexity,
and again deduce the result outside the Minkowski sum of the (non-regular)
nilpotent cone and the set of scalar matrices.

This still does not finish the problem, since we do not have the splitting
of g to scalar and traceless matrices. So we use our assumption on the
characteristic again in order to choose an analog of the Slodowy slice (to a
non-regular orbit) which will have such a splitting. See Lemma 13.3.1.

Though the slice has a splitting, ¢ does not admit a corresponding splitting.

Thus the original Harish-Chandra’s homogeneity argument does not work
9



here. One has to tweak it in order to take into account the one-dimensional
center (see Lemma 13.4.4). This makes it less sharp, so it fails to give
the an-FRS property around the subregular orbit (though it still gives the
almost an-FRS property). Therefore we prove the an-FRS property around
the subregular orbit using a direct computation - see Step 4 of the proof of
Theorem E.

1.5.7. The role of the assumption G = GL,,. We used the assumption G =
GL,, in order to make all explicit computations easier. However, our argu-
ment does not use any statement that inherently depends on this assumption
(such as existence of mirabolic subgroup, stability of adjoint orbits, or the
Richardson property of all nilpotent orbits).

Moreover, for non-type A groups in good characteristic the analog of Ny sep
coincides with the nilpotent cone N. Therefore, we expect the original
Harish-Chandra’s argument to allow reduction to type A. Hence, we ex-
pect that in good characteristic?, the conclusion of Theorem D for general
reductive group will only require the assumptions on resolution of the variety

g, for g = gl,.

1.6. Structure of the paper. In §2 we fix some conventions and recall
some standard facts.

In §3 we give a short overview of the theory of norms on algebraic varieties
over local fields developed in [Kot05, §18].

In §4, we recall the theory of rectified algebraic varieties and balls and
measures on them, introduced in [AGKSa].

We recall the main results of [AGKSa|, which are uniform analogs of stan-
dard results from local differential topology, including the implicit function
theorem and study the behavior of smooth measures under push forward
with respect to submersions.

We also introduce the notion of effectively surjective map from [AGKSa],
which is a surjective map such that we can control the norm of a preimage
in terms of the norm of the point in the target. We recall a statement from
[AGKSa] that implies that any Nisnevich cover is effectively surjective.

In §5 we recall some standard facts on the Chevalley map that are less
standard in positive characteristic.

In §6 we introduce the notion of effectively an-FRS over the origin and
prove that the Chevalley map has this property.

In §7 we prove a bound on the dimension of the jets of the fiber of an
effectively an-FRS map over the origin.

In §8 we deduce Theorems A, B and C.

In §9 we introduce several notions related to the asymptotics of the vol-
umes of balls in the smooth loci of varieties over local function fields. We
call these notions analytic, geometric and asymptotic almost integrability.

We show that all these notions are equivalent under the assumption of
existence of an appropriate resolution of singularities.

see e.g. [SS70, I, §4] for the definition of this notion
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In §10 we prove that the varieties g, are asymptotically almost integrable.
In §11 we prove Theorem D.

In §12 we give several variations of Theorem D.

In §13 we prove Theorem E.
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2. NOTATIONS AND PRELIMINARIES

2.1. Conventions.

(1) By a variety we mean a reduced scheme of finite type over a field.
Unless stated otherwise this field will be F,.

(2) When we consider a fiber product of varieties, and fibers of maps
between varieties, we always consider it in the category of schemes.

(3) We will describe subschemes and morphisms of varieties and schemes
using set-theoretical language, when no ambiguity is possible.

(4) We will usually denote algebraic varieties by bold face letters (such
as X).

(5) For Gothic letters we use underline instead of boldface.

(6) We will use the same letter to denote a morphism between algebraic
varieties and the corresponding map between the sets of their F-
points for various fields F'.

(7) We will use the symbol O in the middle of a square diagram in order
to denote that a square is Cartesian.

(8) A big open set of an algebraic variety Z is an open set whose com-
plement is of co-dimension at least 2 (in each component)

(9) For an algebraic variety X, we denote by X*™ the variety of smooth
points of X. We also denote by X*™9 the variety of singular points.

(10) We will abbreviate SNC divisor for strict normal crossings divisor.

(11) By a strong resolution of singularities of a variety X we mean a proper
birational map ¢ : X — X st X is smooth, ¢ is an isomorphism
over X*™ and the inverse image of X in X, considered as a variety,
is an SNC divisor.

(12) If Fis alocal field and X is an analytic manifold over F (In the sense
of [Ser06, Part II, Chapter 3]) and r > 1 we denote by Lj .(X) the
space of functions on X which are locally in L". That is, functions
f s.t. for any open analytic embedding ¢ : U — X, with U ¢ FM
precompact, we have fo¢ € L] (U). We also define

loc

L (X) = L (X).

loc loc

11



(13) When considering elements in these function spaces, we will not dis-
tinguish between functions on X and functions defined almost every-
where in X.

2.2. Forms and measures.

Definition 2.2.1. For a top form w on a smooth algebraic variety X defined
over a local field F', we denote the corresponding measure on X = X(F') by
jwl.

Notation 2.2.2. For a smooth morphism ~v : Zy — Zs, a top differential
form wz, on Zy, and a relative top differential form w, on Z; with respect
to v, denote the corresponding top differential form on Zy by wz, * w.,.

We use the same notation for rational top-forms. Also in this case, we do
not have to require that Z; and v are smooth, instead it is enough to require
that v s generically smooth.

Definition 2.2.3. Given a Cartesian square of smooth morphisms and smooth
varieties:

V—>Zl

| o |

Z2—>Z

and top forms w,w; on 4, Z; define a form wy X, ws on 'V in the following
way:
o Let w, be a Gelfand-Leray relative form on Z; w.r.t. the map Z; — Z.
o wi Xz wh is the corresponding relative form on V w.r.t. the map
v:V = 7.
o Wy Xy wy = wx* (W Kz wh).
We use the same notation for rational top-forms. Also in this case, we do
not have to require that Z;, Z and ~y be smooth, instead it is enough to require
that they are generically smooth.

3. NOrRMS

In this section, we recall basic parts of the theory of norms developed
in [Kot05, §18], and prove an integrability result about this theory (See
Proposition 3.0.1 below). We will use the following notions from [Kot05,
§18].

(1) An abstract norm on a set Z is a positive real-valued function || - ||z
on Z such that ||z||z > 1 for all z € Z.

(2) For two abstract norms || - ||}, ]| - |3 on Z we say that ||z||}, < ||z||%
if there is a constant ¢ > 1 s.t. ||z||}, < c(||z[|%)°.

(3) We say that two abstract norms || - ||}, ]| - ||% on Z are equivalent,
and denote this as || |15 ~ | - I3 if |[2]l5 < [fel[% < ll2ll}-

12



(4) Let M be an algebraic variety defined over a local field F'. In [Kot05,
§18] there is a definition of a canonical equivalence class of abstract
norms in M = M(F'). The abstract norms in this class are called
norms on M.

The main result of this section is the following:

Proposition 3.0.1. Let U C X be an open dense subset of a smooth variety.
Let X = X(Fy((t))) and U = U(F,((t))). Let || - ||u be a norm on U. Then

log,ol| - [lu € Lige” (X).

loc

For the proof we will need some preparations.

Lemma 3.0.2 (cf. [GH25, Theorem 1.3]). Let X be a smooth algebraic
variety defined over a local field F. Let f € Ox(X) be a non-zero divisor.
Let X = X(F). Then there exist ¢ > 0 s.t. |f|7° € L (X).

loc

Corollary 3.0.3. Let X be a smooth algebraic variety defined over a local
field F. Let f € Ox(X). Let X = X(F). Then log(|f]) € L3>(X).

loc

Proof. WLOG assume that we have an invertible to form w on X. Fix a
compact C' C X. Let

Ci={reC:i<|f(x)] ' <i+1}

Let m; := |w|(C;). Let € be as in the lemma. Then we have

o0

Z °m; < 00.

i=1
So, for any k > 0 we obtain

o0

Z(log(i +1))*m; < 0.

=1

This implies the assertion. O

Proof of Proposition 3.0.1. Note that this statement does not depend on the
norm so we will choose the norm at our convenience.

Case 1. X is affine and U = Xy C X is principal open affine subset:
Take any norm || - ||x on X and take

lz|lv = max(]|2]|x, |f ()]

The assertion follows now from Corollary 3.0.3.
Case 2. X is affine:

Follows from the previous case.
Case 3. X is general case:

Follows from the previous case.

13



4. RECTIFIED ALGEBRAIC VARIETIES

In this section, we recall the theory of rectified algebraic varieties and balls
and measures on them, introduced in [AGKSa]. This is a framework for
quantitative statements on distances and measures when studying algebraic
varieties and morphisms of algebraic varieties over local fields of the type
Fy((t)). It allows to formulate uniform statements with respect to finite
extensions of [F,.

We recall the main results of [AGKSa] which are uniform analogues of
standard results from local differential topology, including the implicit func-
tion theorem and study the behavior of smooth measures under push forward
with respect to submersions.

Part of this theory is analogous to the theory of norms recalled above.

We also introduce the notion of effectively surjective map from [AGKSa],
which is a surjective map such that we can control norm of a preimage in
terms of the norm of the point in the target. We recall a statement from
[AGKSa] that implies that any Nisnevich cover is effectively surjective. See
Proposition 4.2.7.

4.1. Notions. We recall here the main notions from [AGKSa]:

Definition 4.1.1. Let X be a smooth algebraic variety over IFy.

(1) A rectification of X is a finite open cover X C \J,e; Ua with closed
embeddings i, : Uy — AM,

(2) We will call a rectification simple if |I| = 1.

(8) By a rectified variety we will mean a smooth algebraic variety over
Fy equipped with a rectification. By a map or a morphism of such we
Just mean a morphism of the underlying algebraic varieties.

(4) A p-rectification of X is a rectification of X together with invertible
top differential forms w, € Q(U,).

(5) We define similarly the notion of a u-rectified variety, and simple
w-rectification.

Definition 4.1.2.

(1) Let (X,Ug,i4) be a rectified variety. Then, for any k € N and m € Z
define:
(a) BXF =), ig" (¢ Fu[[t]M).
(b) BZ" = U, en B = X(Fue((1)))-
(c) For x € X(Fu((t))) define a ball around x
BXk(g) = U it (ia(2) + [t .

a s.t. 2€Ua(Fyr ((1)))

(d) ForZ C X define



(2) Let (X, Uy, ta,ws) be a p-rectified variety. Then, for any positive
integers k,m define a measure on X (Fu((t))) supported on BX* de-
fined by

Xk .
= D 1 @a)E (@) L (1 g

(3) If X is an affine space, we denote by p** the Haar measure on
X(Fu((t)) normalized s.t. p®F(X(Fu[[t]]) = 1.

Definition 4.1.3. By an almost affine space we mean a principal open subset
i an affine space defined over F,. Note that any almost affine space is
equipped with a natural simple (u-)rectification that we will call the standard
(u-)rectification on this space.

When dealing with such space, if we are not fixing a p-rectification on it,
the above notions of balls and measures will refer to the standard rectification.

Definition 4.1.4. Let X be a rectified variety. Let m,k € N. We say that
f € C>=(BXk) is m-smooth if for any x € BXF the function flpxr is
constant.

Definition 4.1.5. Let v : X — Y be a map of rectified varieties. We say
that ~y is effectively surjective iff for any me N there ism’ € N s.t. for every
k € N we have

v(B,)n(,’k) D B;i’k.

4.2. Statements. We recall here the main statements of [AGKSa].
The following is obvious:

Lemma 4.2.1 ([AGKSa, Lemma 3.4]). Let X be a rectified variety. Then
for any 2 integers my, mo € N we have:

Xk ,
(1) If x € BXF then BT, (x) C BX:F.

(2) If v € BX* and y € BXr (x) then x € B ().
(8) If the rectification of X is simple and my > msy, then

BX,., (x) € BY,, () = BY,, (y)

—ms

for any x € X(Fu((t))) and y € BXF (x).

—mo

The following lemma says that regular maps are uniformly continuous and
bounded on balls, in a way which is also uniform on the residue field:

Lemma 4.2.2 ([AGKSa, Proposition 3.5]). Let v : X — Y be a map of
rectified algebraic varieties. Then for any m € N there is m' > m s.t. for
any k and any x € BX* we have

(i) v(BXk) ¢ BYF.

(ii) 7(B%(x)) € BXy(v(x)).

The following two corollaries imply that all the statements on balls that

we formulate do not depend on the rectification.
15



Corollary 4.2.3 ([AGKSa, Corollary 3.6]). Let X1, Xy be two copies of the
same Fg-variety with two (possibly different) rectifications. Let Z C Xy be a
closed subvariety. Then
(1) for any m € N there is m' € N s.t. for any k € N we have:
(a) BXik ¢ BX>*,
(b) for any x € X, (Fu((t))) we have BX1 ¥ (z) € BX2*(x).
(¢) BX"M(Z) C B, »"(Z).
(2) For any p-rectifications of X; and m € N, there exists m’ s.t. for
any k we have:

X1,k km/ |, Xo,k
/Lm < g /’Lm’

Corollary 4.2.4 ([AGKSa, Lemma 6.2]). The property of a map v : X —
Y being effectively surjective does not depend on the rectifications on the
varieties X and Y.

At some point we will need the following stronger version of Corollary 4.2.3
(la):

Lemma 4.2.5 ([AGKSa, Lemma 3.7]). Let Xy, Xy be two copies of the same
Fo-variety with two (possibly different) rectifications. Then there exists a € N
s.t. for any m,k € N we have:

Xo,k
BXuvk c g2

am-+a*

The next result is an effective version of the open mapping theorem:

Lemma 4.2.6 ([AGKSa, Theorem 4.2]). Let v : X — Y be a smooth map
of smooth (rectified) algebraic varieties. Then for any m there is m’ s.t. for
any k and any x € BX* we have

Y(B%a (@) D B (v(x)).
The following is a criterion for effective subjectivity.

Proposition 4.2.7 ([AGKSa, Theorem 6.3]). Let v : X — Y be a smooth
map of algebraic varieties that is onto on the level of points for any field.
Then v is effectively surjective.

The following four statements describe the behavior of the measures de-
fined in §4.1 under push forward by a submersion. In particular they imply
that all the statements that we formulate on these measures do not depend
on the rectification.

Lemma 4.2.8 ([AGKSa, Lemma 3.9]). Let v: X — Y be a submersion of
w-rectified varieties. Then for any m there is m' s.t.

Yt ) < O it
Corollary 4.2.9 ([AGKSa, Corollary 3.10]). Let X be a p-rectified variety.
Then for any m € N there exists M € N s.t. for any k € N:
KH(BXF) < 4
16



Lemma 4.2.10 ([AGKSa, Corollary 6.8]). Let v: X — Y be a submersion

of p-rectified varieties. Assume that ~y is effectively surjective. Then for any
m € N there is m' € N s.t. for any k € N we have

™ < O ()
Lemma 4.2.11 ([AGKSa, Theorem 5.7]). Let v : X1 — Xy be a smooth
map of p-rectified varieties. Then for any m € N there is m’ € N s.t. for

any k € N and any m-smooth function g € C°(BX¥) there is an m/-smooth
function f € C(BX?") s.t.:

m/
Xi1,k\ _ Xo.,k
Yalgps™) = - py7".
5. BASIC GEOMETRY OF THE CHEVALLEY MAP p

We recall that p : g — ¢, is the Chevalley map sending a matrix to its
characteristic polynomial. We need further notation:

Notation 5.0.1.

(1) Let t be the standard Cartan subalgebra of g, consisting of diagonal
matrices. B

(2) Let W := S, be the Weyl group of GL,,.

(8) Identify ¢ = t//W by the Chevalley restriction theorem (see e.g.
[Hum?78, §23|). We will also identify it with the affine space A™.

(4) Denote by q : t — ¢ the quotient map.

(5) Denote by g™ the locus of reqular semi-simple elements (i.e. matri-
ces with n different eigenvalues over the algebraic closure).

(6) Denote ¢"** := p(g"*®) the locus of separable polynomials in .

The following lemma follows immediately from miracle flatness (see [Sta25,
Lemma 00R4)):

Lemma 5.0.2. g : t — ¢ is flat.

Notation 5.0.3. Let I be a finite set. For w € Z! define the w-degree of a
monomial [[,c; " to be >, ; azw(i). For a polynomial f € k[A'], we denote

by ou(f) the sum of the monomials of f with the highest w-degree.
Proposition 5.0.4. Let I,J be finite sets and let b = (;)jes : AT — A7

be a morphism such that ¥(0) =0, fit w € Z'. Let 0,(¢) = (0w(¥;))jes. If
ow(V) is flat at 0, then so is 1.

Proof. The proof is identical to the proof of [AA16, Proposition 2.1.16],
replacing [AA16, Proposition 2.1.1] with [DG67, IV, 11.3.10]. O

Corollary 5.0.5. p: g — ¢ s flat.

Proof. Let I ={1,...,n} x{1,...,n} be the set of indices of n x n matrices.
Following [BL96] we let w : I — Z defined by w(i, j) = d;;. Identify g with
A!. Using Proposition 5.0.4 and Lemma 5.0.2 we obtain that p is flat at 0.

The assertion follows, using the homothety action of G,, on g. O
17


https://stacks.math.columbia.edu/tag/00R4

Lemma 5.0.6. The fibers of p are irreducible.

Proof. This follows from the Jordan decomposition. O
Notation 5.0.7. Denote by g" the smooth locus of p.

Lemma 5.0.8. p|y- : g" — ¢ is onto.

Proof. The companion matrix C(f) attached to a polynomial f € ¢ is a
regular matrix with characteristic polynomial equal to f. This proves the
assertion. U

Corollary 5.0.9. The fibers of p are absolutely reduced. Furthermore, g" is
big in g.
Proof. By Lemma 5.0.8, each fiber of p has a generically reduced component.
Hence by Lemma 5.0.6, the fibers of p are generically reduced. Since p is flat,
its fibers are complete intersections. Thus by [Eis95, Exercise 18.9], they are
reduced.

To show that g" is big in g we let Z be its complement inside g. By the
above, for any ¢ € ¢ we have dim(p~!(c) N Z) < dim(Z). We obtain:

dim(Z) < dim(c — ¢"**) + max dim(p *(c)NZ) <

c€£7£7‘35

< dim(c) — 1+ max (dimp~'(c)) — 1 = dim(g) — 2

cEc—cTss

g

Recall that for an integer < € N we denote by g, := gxﬂ' the ¢-folded fiber
product of g with itself over ¢ with respect to the map p. A-priory this is a
scheme, but we can now show that it is reduced, so it is a variety.

Lemma 5.0.10. The scheme g, 18 reduced.

Proof. By Corollary 5.0.9 the fibers of p are reduced. Therefore, so are the
fibers of g, — ¢. This implies the assertion. O

6. EFFECTIVELY AN-FRS OVER THE ORIGIN

In this section we introduce a class of maps of algebraic variety to a vector
space that refines the notion of an-FRS maps (See Definition 6.0.2).

The definition of this property is designed in a way that adapts the original
Harish-Chandra’s argument for an-FRS property of the Chevalley map to
give some result also in positive characteristic. This enables us to prove this
property for the Chevalley map (see Theorem 6.0.4 below). We later use
this property in order to prove Theorem A.

Definition 6.0.1. We say that an action of G, on an affine space is positive
if, in an appropriate coordinate system, it is given by
Az, xy) = (A2, MMy,

with all a; positive.
18



Definition 6.0.2 (effectively an-FRS over the origin). Let X be a rectified
variety and let v : X — Y be an algebraic map to an affine space Y. Let
Gy, act positively on Y. Choose the standard rectification of Y.

We say that v is effectively an-FRS over the origin if for any m € N there
exist M such that for any k € N and a € Z we have

X,k 1 >
<f>/* (:um ) ? ta.BOYﬂk < ng
IMY,]{? <ta . B:7k>

The following follows immediately from Corollary 4.2.3(2).

Lemma 6.0.3. The notion of effectively an-FRS over the origin does not
depend on the rectification on the source.

In the this subsection we will prove the following:
Theorem 6.0.4. The Chevalley map p s effectively an-FRS over the origin.

Let us briefly explain the idea of the proof of this theorem:

e We first prove 2 statements on the effective an-FRS over the origin
property:

— It is local in the smooth topology (on X). See Corollary 6.1.2

— For G,,-equivariant maps between affine spaces, one can give
a criterion for the effective an-FRS over the origin property in
terms of the exponents of the actions of G,,. See Lemma 6.1.1
below.

e We then use the original Harish-Chandra’s argument:

— Proof by a descending induction that the Chevalley map re-
stricted to the complement of an invariant closed subset of N is
effectively an-FRS over the origin.

— The base of the induction follows from the fact that in this case
the origin is not in the image of the map. The fact that such
maps are effectively an-FRS over the origin is not completely
obvious, but we prove it in Lemma 6.1.3 below.

— For the step of the induction we use an analog of the Slodowy
slice (see Lemma 6.2.1 below). We use the locality of the effective
an-FRS over the origin property in order to deduce the statement
from an analogous statement for the slice.

— We prove the analogous statement for the slice using the crite-
rion for the effective an-FRS over the origin property for G,,-
equivariant maps.

In the next 2 subsections we provide some preparations for actual proof
which will be given in §6.3.

6.1. Basic properties of effectively an-FRS maps over the origin.
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Lemma 6.1.1. Let X = Al and Y = A’ be affine spaces with positive
actions of G,, given by
s (x1,...,x7) = (s"wq,...,8Yxr)
and
s (Yoo ya) = (8"y, 0 8"yy)
respectively. Assume that S, a; > ijl ;
Let ¢ : X = Y be an equivariant map such that p|x.o: (X N 0) = Y is

effectively an-FRS over the origin. Then ¢ : X — Y 1is effectively an-FRS
over the origin.

Proof. We begin by comparing the balls in X \ 0 to spheres in X. More
precisely, we fix m € N. For any k,7 € N, we denote by

Xk ._ i pXk _ gitl | pXik
Sy =1t Byt Nt - By

a sphere in X. To make the comparison, we choose standard rectifications on
X and choose the rectification on X \ 0 given by the cover with the comple-
ments of coordinate hyperplanes and the induced forms from the standard
form on X. It is easy to see that there exists m’ > m s.t. for any k we have

and moreover

km/ X\Ok X,k
14 > 1SX’§/~Lm .

We choose the standard rectification on 'Y and use the above comparison
to deduce that for any £ € N and a € Z we have:

X\0,k
<SO* (1S7§ZISMTXYLJ€) s 1ta'BOY’k> - gkm/ <g0* ('um 0, ) ) 1t“vBOY’k>
e (ta ) BS”“) e (ta ) Bgﬂk)

On the other hand, the assumption that ¢|x.o: (X N 0) = Y is effectively
an-FRS over the origin implies that there exists Ny s.t. for any k£ € N and

a € 7 we have
Ekm' * m/ ’ ;:B ' < EkNO
o)

Combining the last two inequalities we obtain that for any £ € N and a € Z
we have:

(6.1.1) <90* <1S§:’5’“"§’k> L gy >
o a Y.k
pYok (t - By >

By the equivariance of ¢ we obtain that for any integers i, k € N we have:

) =0 (o (- 1))
’ 20 !




We also have
i (15,)5:?MX71€> _ ki 153,33’5“)(’]6
and similarly
i a pYk —kid b;, Yk (ra—i pYk
t - 1t“~BS’(’k = 1ta*i-Bg(’k and MY’k (t 'BO ) =/ k Zb]/LYk (t . BO >
Thus, for any integers i € N, a € Z, and k € N, we obtain:
X,k X,k
(o (o) L) puns (o (™)) Loy
e <ta ) Bg(’k) ne: <ta ) BS”@)
(ki a; <90* ( 155513(”6)) ,1ta7i.33ak>
(—ki> b, Yk <t“*i ) Bg{,k)

Combining this with the assumption ) a; > > b; and the inequality (6.1.1)

we obtain
<90* <1S::fufl,k> ’1ta,B(¥7k>
a Y .k
MY’k (t - By >

Using the fact that BX* = | [, Sffbf we deduce that for any integers
a € Z, and k € N, we have:

<(p* (/’Lﬁ’k) 71ta.BOYvk> i <QO* (15‘%:5”%7]{:) 7]-ta.BOY’k>

-3

< E—kz—&—kNo

Yok <ta ) BS”“) = ne (ta . B}’“)
< Zg—ki-i-kNo < PF(No+1).
i=0
Taking M := Ny + 1 we get the required bound. U

Lemma 4.2.8, Lemma 4.2.10, and Proposition 4.2.7 give us:

Corollary 6.1.2. Let X be a p-rectified variety and let v : X — Y be an
algebraic map to an affine space Y. Let Gy, act positively on Y.

Let 0 : X — X be a submersion.

Then:

(1) if v is effectively an-FRS over the origin then so is vy o 4.

(2) if & effectively surjective and o4 is effectively an-FRS over the origin
then so is 7.

(3) if § is onto on the level of points for any field and vy o § is effectively
an-FRS over the origin then 7 is also effectively an-FRS over the
origin.

Proof.

(1) Follows from Lemma 4.2.8.

(2) Follows from Lemma 4.2.10.
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(3) Follows from (2) and Proposition 4.2.7.
U

Lemma 6.1.3. Let X be a p-rectified variety and let v : X — Y be an
algebraic map to an affine space Y. Let Gy, act positively on Y. Assume

that 0 ¢ v(X(F,)). Then vy is effectively an-FRS over the origin.

Proof. Fix m € N. By Corollary 4.2.9, there exists M; € N s.t. for any
ke N:

B <
Let A1,...,A; be the exponents of the G,, action on Y. Choose the rectifi-
cation on Y’ :=Y ~ {0} given by the open cover of Y’ by compliments to
coordinate hyperplanes, and their standard embeddings into Y’ x A!. Let
v X = Y ~ {0} be s.t. v factors through +'. By Lemma 4.2.2 there exists

my s.t. for any k € N we have 7/(BX*) C B?,il\{o}’k. Take
Note that
By M = BYE S BYS(0)
Fix a € Z and k € N.

Case 1. @ > mutl.
min; \;

(o (K5) Ty gy )
o Y.k
MY’k (t - By )

Case 2. ¢ < utl.
min; A\;

X,k
<’7* (:um ),1ta.38f,k> _ ,uﬁ’k(X(]ng((t)))) _ kM
ek (i BR) e (e ) T IR

<

< ng

g

6.2. Slices to nilpotent elements. We will need existence of slices for
nilpotent orbits in g that have a (,, action satisfying an appropriate condi-
tion. This is analogous to the approach of Harish-Chandra’s in his proof of
the boundedness of normalized orbital integrals. There the slice was defined
by an sly triple (a.k.a. Slodowy slice). However, we can not rely on sl
triples, so we have to do it in a more ad-hoc procedure.

Lemma 6.2.1. Let v € g(IF;) be a nilpotent element. Then there are:
e a linear subspace L C g
e a positive G, action on L.
s.t.
(1) the action map G x (v + L) — g is a submersion.

(2) For any nilpotent y € x + (L(F,) \ 0) we have dim G -y > dim G - z
22



(8) The Chevalley map p|,,1, intertwines the G,, action on xz + L (given
by the identification y — x + y between L and x + L) with the G,,
action on ¢ given by (A - f)(z) := A" f(A71- 2).

(4) If x is not reqular then the sum of the exponents of the G, action on

n(n+1)

L is larger than —=—.

Remark 6.2.2. Similar results were proven in wvarious contexts, see e.g.
[Pre03]. Since we would like to have an explicit construction, we include the
proof here for completeness.

For the proof we will need some notations:

Notation 6.2.3.

(1) Consider the action of G(F) x F* on g(F) where the first coordinate
acts by conjugation and the second by homothety. We denote this
action by (g,\) - A= X"1gAg™!.

(2) For an integer k > 0 let Ji, be the k x k nilpotent Jordan block.

-----

the corresponding block matriz. Here we assume that the sizes of A; ;

matches.
(4) For 2 integers ny,ny set
V;’Ll,nz = {{akl} € Ma/tnl,n2|akl — 0 fO?“l > ]_}

(5) For an integer k we set ty, : G,, — GLy defined by
te(A) = diag(1, A, ..., AF7h).

(6) For a nilpotent element in Jordan canonical form x € g(F,) with

blocks of sizes ny,...,ng we define maps t;; : Gy, — Maty,, xn, by
tn,(A)  fori=j
tij(A) = .
0 otherwise

Define t, : G,, = G by
ta(A) = BI({ti;(A)}).
(7) For x as above define ¢, : G,, = G x G,, by
Gu(N) = (to(X), A7).

(8) For x as above, define
L, = {BI({Ai;}ij)|Aij € Vaun,} C g

Proof of Lemma 6.2.1. We now construct our slices. WLOG we can assume
that = is a Jordan canonical form. We define:

(i) A linear space L := L,, see Notation 6.2.3(8).
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(ii) An action of G,, on L by
Ax A= da(N) - A,

see Notation 6.2.3(1,7).

It is easy to see that this is a positive action. It is evident that condition (3)
is satisfied:

P(A*A) = p(92(A)-A)) = p(AAd(1.(N))(A)) = p(Ad(L(A))(AA)) = p(AA) = A-p(A).

We now verify condition (4). Assume z is not regular, and let nqy > ng--- >
ny be the corresponding partition of n, with k£ > 2.
It is a simple verification that:

(a) In the block n; x n; the exponents are 1,2, -+ | n;.
(b) For i < j we have two blocks n; x n; where the exponents are

TZZ—TLJ—I—L , 1y
(c) For ¢ > j we have two blocks n; x n; where the exponents are
Lo nj.

To sum up we obtain that the sum of the G,, exponents is:

k k
1 1
Z ini(ni—l—l)—i- Z (ninj+n;) = 5(2 ni(n;+1)+ Z (2n;n;+2n;))
i=1 1<i<j<k i=1 1<i<j<k
1 . 1
= §(n2 +n)+ Z(] —n; > 5(712 +n).
=1

It remains to prove conditions (1,2). For (1) we first note that the action
map is submersive at point (1,z). Then we deduce (1) from the G,, action
*.

For (2) take a nilpotent element y € x4+ (L(F,) \.0). Using the action x we
see that (G x G,,,) - y > 2. Since y is nilpotent, we have (G xG,,,) -y = G-v.
Thus G -y > z. Assume, for the contradiction, that dim(G-y) < dim(G-z).
We obtain G -y 5 z. It remains to show that G-z Nz + L, = {z}. This
follows from the following easily verified facts:

e 1 is an isolated point of the intersection G -z Nx + L,.

e the intersection G - z N x + L, is G,,-invariant w.r.t. the action %
and the closure of any such G,,-orbit of a point in the slice x 4+ L,
includes .

To verify the first point we claim that the intersection of the tangent space
T.(G-x) and L, is zero. For x = J,, this follows from the following statement:
If the matrix [J,,, A] that has the first column equals to zero then [J,,, A] = 0.

A similar argument works for any direct sum of Jordan blocks. U
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6.3. Proof of Theorem 6.0.4.

Proof. Let N C g be the nilpotent cone. Enumerate the nilpotent orbits
{0} = 04,...0,, st. dimO; < dimO; for any i < j. Let N; = U;‘:l O,.
Note that Nj; is closed and Ng = (). We will prove by down going induction
on ¢ that for any ¢ > 0 the map p|,.n;, is effectively an-FRS over the origin.

The base of the induction i = m follows from Lemma 6.1.3.

For the induction step, we assume the statement holds for IN;,; and prove
it for N;. Let U =g~ N;;. Let x € O;11(F,) and let L be the linear space
given by Lemma 6.2.1 when applied to x.

Step 1. Reduction to G x L.
Consider the map

6: (GxL)UU — g~ N;

given on G x L by 6(g,1) := ¢ (z+1) and on U by the embedding
U C g~ N;. By Lemma 6.2.1 (1) ¢ is submersive. Also, it is onto

on the level of points over any field. Indeed, for any extension E /T,
we have O;;1(E) = G(F) - x and thus,

(6~ Ni)(E) = 0ia (E)UU(E) = (G(E) - x) UU(E) C 0(((G x L) UU)(E))

Thus by Corollary 6.1.2 it is enough to show that p o ¢ is effec-
tively an-FRS over the origin. Let ¢’ := §|gxr. Notice that p|y is
effectively an-FRS over the origin by the induction hypothesis.

Therefore it is enough to show that pod’ is effectively an-FRS over
the origin.

Notice that ¢'(G x (L~ 0)) € U by Lemma 6.2.1 (2). So, by
Corollary 6.1.2 we deduce that p o 5’|GX(L\0) is effectively an-FRS
over the origin.

Step 2. Reduction to L.

We can factor the map po ¢’ as p|(41) © shy © prr,, where sh, : L —
x + L is the shift map, and pry, : G x L — L is the projection. So,
by Corollary 6.1.2 it is enough to show that p|,ir o sh, : L — ¢ is
effectively an-FRS over the origin.

Also, by Corollary 6.1.2 we deduce that p|,(w0)0sh, is effectively
an-FRS over the origin.

Step 3. Proof that p|,.1, o sh, : L — ¢ is effectively an-FRS over the origin.
If z is regular nilpotent then p|, 1, o sh, is an isomorphism, and thus
is effectively an-FRS over the origin.

Otherwise, the assertion follows now from Lemma 6.1.1, since the
condition of Lemma 6.1.1 on the source L is given by Lemma 6.2.1(4).

g

7. AN-FRS MAPS AND JETS

In this section we relate the effective an-FRS property to jet schemes.

Specifically we prove:
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Proposition 7.0.1. Let v : X — Y be a flat G,,-equivariant map between
affine spaces with positive G, actions. Assume that it is effectively an-FRS
over the origin. Then there exists C' € N s.t. for every m € N we have

dim 7,,(y"*(0)) < C +mdim~~'(0).

Idea of the proof. The fact that v is effectively an-FRS over the origin pro-
vides a bound on the ratio between the measure of the preimage of a certain
ellipsoid in Y and the measure of the ellipsoid itself. If this ellipsoid would
be a ball then this ratio would be exactly the (normalized) number of points
of the jet scheme in question. So, we would get the desired bound on the
dimension from the Lang-Weil bounds. In our case, we get a bound on the
dimension of some other scheme (§7'(0) in the notation below). We can
embed our ellipsoid into a ball. This ball is the union of shifts of the ellip-
soid. So we need to bound the measures of the preimages of these shifts.
The Lang-Weil bounds translate the problem to a question on dimensions of
neighboring fibers of the same map §. We can bound these dimensions using
the semi-continuity of the dimension of the fiber. O

Proof. Choose the standard rectifications on X and Y. Since 7 is effectively
an-FRS over the origin, there exists M € N such that for any £,m € N we
have

Let n:=dimY and let {a;}?_, be the exponents of the G,, action on Y.
Set amax = maxa; and @y, = mina;. Take C': = M + api, dim(X).
For m € N consider the jet map J,,(7) : Tn(X) = Tn(Y). Let

By, = {<Z it Yit) € Taper(Y)(Epe) | iy = 0 for j < m} .
J J

We observe that the measure of an ellipsoid in Y can be calculated by
counting points of this set. Namely,

Y.k [m Y.kE\ #Evljm
/’L <t ) BO ) - ékman\ax dlm(Y) :

Also observe that

X,k Xk —1/m Yk H# T (V) (E)
<7* (/LO ) 71tm.33(7k'> = o (7 1(t 'BO )) = (kmamayx dim(X) :
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We get

#jmllmax (’y)_l(E?lf:n) = gkmamax dlm(X) <’y* <M())(7k) ? 1thOYYk>

0 () D)
:Ekmamaxdim(x) R luo ’ tm.BO’ uY,k <thY7k)

0
MY,kz <tm . Bg[vk>

<’V* (,U/O 7k) ) ]'tm~By’k>
Ekmamax(dim(X)—dim(Y)) 0
m Yk
Yok (t - By )
< Ekmamax dim('y’l(O))ékzM 1 Ek 7

#EF

where in the last step we used the fact that  is flat, as well as the inequality
established above.

Let E,, C Jman.. (Y) be the natural subvariety s.t. E,,(Fu) = E*. More
precisely,

E,, = {(Zyljtj,...,Zynjtj) € Jamuem(Y) |y =0for 1 <i<nandj< mal}.
J J

By the Lang-Weil bounds [LW54, Theorem 1], we obtain
A Tt (7)™ (B = 1 50D 10830 (T (1) (Bo)) (i) <
< M + Mama, dim(y7(0)) + liin sup logp (#E,,(Fu)) =
= M + Mapay dim(y7(0)) + dir;&)m)

Note that E,, C Jna,...(Y) has an algebraic group structure coming from
the additive structure on Y.

The action of G,, on Y induce an action on E,, and Jq,... (Y). Let
Z = Jnane(Y)/Ey and let € @ T (Y) — Z be the quotient map.
Consider the map

5 =E€0 jmamax (/Y) : jmamax (X) — Z
We have
dim(67(0)) = dim Jpay., (V) " H(Em) < M + mampax dim(y(0)) + dim(E,,)

By upper semi-continuity of the dimension of the fiber ([DG67,1V 13.1.3,13.1.15]),
we have a Zariski open U C Z s.t. for any = € U(F,) we have:

(7.0.1) dim(6~(z)) < dim(67(0)) < M + Mamax dim(y~(0)) + dim(E,,)

Using the action of G,, on Z we obtain that (7.0.1) holds for any x € Z(F,).
Let

Ry = {( it Y 4t € T (V) iy = 0 for j < mag}.
J J
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Set W = R,,,/E,,, with the natural embedding to Z. Using (7.0.1) we deduce
dim Finaya (V) (Rin) = dim (371 (W)) <
< M + Mapa, dim(y(0)) + dim(E,,) + dim(W) =
= M + Mapax dim(y(0)) + dim(R.,,,)

Consider the commutative diagram.

jmamax< ) mamax jmamax( )

rxl lry

~7mamm
jmamin ( ) jmamm ( )

were the vertical maps are the reduction maps. We note that R,, = ry'(0).
Clearly,

dim(ry'(0)) — dim(rx" (0)) = m(amin — Gmax) dim(y~1(0))

We have

Trnama (V)™ Rin) = (1Y 0T (1) 7 0) = (Frnannsa (1)01%) 7 (0) = 1’ ((Fonin (7)) 7 (0))-

Since rx is a quotient map, we get

ATy (7)70)) = dim(ry' (T, (1)) 71(0))) — di
= dim(Fname, (7)™ (Rin)) — dim(ry
< M + Mmapax dim(y(0)) + dim(R,,) —
= M + Mampay dim(y(0)) + dim(ry'(0)) — dlm(rxl(()))
= M + Map, dim(y1(0))

Now, fix m/. Let m be the largest integer s.t. mayn, < m', that is

m = [—] Consider the restriction map J (771(0)) = Trmay., (Y1(0)). Tts

min

fibers are of dimension < (m’ — Mmay;,) dim X < @y, dim X. We obtain
dim Jp (Y71(0)) < tmin dim X + dim Fpa,. (77 H(0)) = @min dim X + dim Fpe.. (1) 7H(0) <
< Gmin dim X 4+ M + My, dim(y71(0)) <
< Apin dim X + M + m/ dim(y~1(0)) = C + m’ dim(y1(0)).
]

5

=
=
o
~
o
SN~—
N~—

8. PROOF OF THEOREMS A, B, aAnND C

Proof of Theorem A. According to Theorem 6.0.4 the Chevalley map p : g —
¢ is effectively an-FRS over the origin. We apply Proposition 7.0.1 with p
and as p~!(0) = N, we obtain the result. 0O

Proof of Theorem B . Let Cy be as in Theorem A. Fix k. Take C' = Cj. By
semi-continuity of the dimension of the fiber ([DG67, IV 13.1.3,13.1.15]), we
have a Zariski open U C J,,(¢) s.t. for any x € U(F;) we have:

(8.0.1) dim(J,.(p) " H(x)) < din;gp_l(())) < O+ mdim(p~1(0)).



Using the action of G, on J,,(¢) and J;,(g) we obtain that (8.0.1) holds for
any = € Jp,(¢)(F,) as required. O

Proof of Theorem C. Let C be as in Theorem B. Fix 7 and let C; := iC. Let
pig —¢ be the projection. We deduce that for any = € J,,(¢)(F,) we
have:

dim(Jon (p1) " () = i dim(Tou (p) " (2)) <
< iC 4 midim(p~*(0))
= iC + mdim(p; *(0))
Note that by Corollary 5.0.5 the map p; is flat. Thus
dimn( Ty (<)) = dim( Ty (ps) " (2)) + dim(Ton () <
< iC + mdim(p; *(0)) + dim(TFn(¢)) = C; + m dim(g*<*).
O

9. ALMOST INTEGRABILITY

In this section we study several versions of integrability of an algebraic
variety. We will prove that they are equivalent under the assumption of
existence of a resolution (see Theorem 9.0.3).

Definition 9.0.1. Let X be a variety and U C X*™ be an open subset. We
say that (X, U) is:
(1) asymptotically almost integrable if for any:
e open affine V.C X
e top form w on V"
there is M € N s.t. for any m' € N and any rectification of U NV
we have
w| = 0.
F—voo LEM /B;jf‘v*kmvwgkntn) “
(2) Geometrically almost integrable if for any open affine (rectified) V C
X and any top form w on V™ there is a resolution of singularities
V — V., which is an isomorphism over V™ s.t. that one can extend
w to a rational form on V whose poles form an SNC' divisor with
multiplicities 1.
(8) Analytically almost integrable if for any
e open affine V C X,
e a rectification on VN U,
e a top form w on V™,
o keN,
there is M € N s.t. for any m € N we have

/ W] < M(m + 1),
B ™ FOV (F i [[1])
29



Remark 9.0.2. The notion of geometrically almost integrable does not de-
pend on U.

Theorem 9.0.3. Assume that X has a strong resolution (See §2.1(11)).
Then TFAE:

(1) (X, U) is asymptotically almost integrable.
(2) (X, U) is geometrically almost integrable.
(3) (X, U) is analytically almost integrable.

Idea of the proof. We assume WLOG V = X.

(1) or (3) = (2):

(2) = (1) and (3):

Proof.

(1)=(2):

We are given a strong resolution of X. We have to show that the poles
of w after the pull-back to this resolution are simple. We assume the
contrary, and take a generic point x on the divisor where w have a
non-simple pole. We replace the integral in (1) or (3) by an integral
over a small ball around x. This is a smaller integral so the bound
in (1) or (3) still valid for it. On the other hand we can compute it
using local coordinates near this point and using the knowledge on
the pole of w. A simple computation contradicts the bound provided
by (1) or (3).

We are given a resolution where all the poles of w are simple. The
integral in (1) and (3) can be computed on this resolution. This
can be done locally. The local computation is a computation of an
integral of a monomial top form on A” over a ball in the complement
to a union of coordinate hyperplanes. This computation gives the
required bound.

g

Let ~ : X — X be a strong resolution. Let V,w be as in Defini-
tion 9.0.1(2). WLOG assume X = V. Let Z = v (X \ U) and
U := 4 1(U). Note that U = U. Take V = X.

Let Z' C Z be the exceptional divisor. We have Z = Z' U Z"
where Z',Z" C Z are closed and have no common components. Let
& := v*(w) considered as a rational form on X.

The support of the poles of @ is contained in Z’ which is an SNC
divisor. Assume for the sake of contradiction that not all the poles
are simple. Let Zg be a component of Z’ where @ have a pole of
multiplicity f > 1. Let Z” C X be (the closure of) the zero-locus of
w.

Replacing ¢ with its power if necessary we may assume that there
is z € Zy(IFy) that is outside all the other components of Z and Z"".

Let V' be an affine open neighborhood of z that does not intersect
the other components of Z and Z"”. Choose a rectification of U.
Using the identification U 2 U we obtain a rectification of U. Choose
a rectification of V/ . Zg = UNV’ s.t. for any m, k € N we have

BﬁﬁV’,k - Bﬁ,k'



Finally, choose an arbitrary rectification on V.
Since -y is defined over Fy, for any k£ we have

VX (Fex[[t]) € X(Fox[[t])-
By the assumption, there is M € N s.t. for any m’ € N we have

1
lim —— jwl =0.
k—so0 (kM BYFOX(F i [[1))

For any m’ € N, we obtain:

0 < limsup — w
fs 00 ng B;’;\Zo’kﬂBvi’k(z)| |
< limsup - @] =1 @]
<limsup —— [ W= HSUD 28T | ok o .
kovoo LM BV E0kaR 1) R M YO )
<limsup — [ |o| < limsup — |w| = 0.
koo M TR (8, 1) koo LM S BU X (B )

Thus for any m’ € N we have:

lim —/ o] =0
kM :
k—oo £ B,Vn:\zo’kﬁBYi‘k(Z)

Note that this statement is independent of the rectification on V.
Since Zg is smooth, we can choose an affine V” C V' and an etale
map ¢ : V" — AdmX gt
— z € V'(F))
—¢(2) =0
_ ¢—1(AdimX—1) — ZO nvV"
Let 2; be the defining coordinate of A4mX=1 ¢ AdimX  Note that

% dl’l/\/\dl'g -
gb I = gw,
1

where g € O, (V").

Choose an arbitrary simple rectification on V” and choose the
rectification on V" \ Zg obtained by the embedding V” \ Zy —
V" x Al given by ¢*(x,).

For any m/, k € N we have

lim —/ lw] =0
kM
k—oo [ BTZ;'\ZO’kmBY{”k(z)
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" " /
/B;X, ~Zo kﬂBV k {xeBV k|val (z1( )))<m’}ﬂBV k( )

On the other hand, for any m/, k € N we have

@l

/ » @
BV} (=) val(ar (6(2))) <m')
/ v 9|
BV} *(2) val(ar (6(2)) <’}
d.’L’l VANRERIVAY d.ﬁEg
F

]

/t ok ([Nt ‘HIF [[£1]) X (¢F 5 [[¢]])dim X =1

d$ imX—1 i _
o ) T (M ]}

tFek[[t]]\tm HIF e [[2]])

-1 ik(f—1 1
- gk (Zﬁ )> Jk(dimX—1)

=1
ok — 1 pm'+DE(f=1) _ pk(f-1) 1
(k pR(f-1) — 1 fk(dim X —1)

— gk:(ffdimxfl) (gk — 1)(€m/k(f71) B 1)
R(f-1) — 1

So, for m’ > M + dim X

) k _ m'k(f—1) _
0o = lim gkogk(ffdlmel) (E 1)(£ ]') — lim 1 ’(.:)’
BV ~Zg,k BV/ k

(2)

k—00 oR(f-1) — 1 k—soo (kM

Contradiction.

=(3): Let V,w, k be as in Definition 9.0.1(3). Choose a rectification of

UNV. WLOG assume X = V. Let ¢ : X .=V - V=X be a
resolution of singularities as in Definition 9.0.1(2). Let @ = ¢*(w).
Let Z be the divisor of poles of @. Let U := ¢~ 1(U). Choose a
rectification on U. We have to show that there exists M s.t. for any
m we have

/ lw| < M(m +1)M
B F X (F i [[8])

By Lemma 4.2.5, this statement does not depend on the rectification
on U. By the valuative criterion we have X (F . [[t]]) = ¢~ /(X (Fu[[t])).
Here ¢ is interpreted as a map X(Fu((t))) — X(Fu((£))).

So it is enough to show that for some rectification of U there exists
M s.t. for any m we have

/~ o] < M(m+1)M
BIPOX(F . [14)
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Let W C X be the regular locus of @. We have U ¢ W. Thus,
for any rectification of W we can choose a rectification of U s.t.
BYk c BW* for any m, k € N. Therefore, it is enough to show that
for some rectification of W there exists M s.t. for any m we have

/ &) < M(m + 1)
Ba FOX(F i [[t])

Let X = Ule V; be an open affine cover such that there are:

— etale maps 7; : V; — A¢

— monomial rational forms w; on A¢ with powers > —1, and

— regular functions g € Ox(V;),
satisfying lv, = gi7; (wi)-

It is enough to show that for any ¢ there is a rectification of V,;NU
and M s.t. for any m we have

iy wi)| < M(m+1 M
/mew,kmvi S [7i (wi)| < M(m +1)
Let W, be the regular locus of w;. This is a complement to coordinate
hyperplanes in A%, So it is equipped with the standard embedding
into A?*! which gives us a simple rectification on W;. We can find a
section on V;N'W s.t. BYi"W:k © 4~1(BWik) for any m, k € N.

Let A; € Ns.t. for any field F' and any = € F? we have #~; ' (z) <
A. For any k, m we obtain:

)l < | hw) <A [ o
/vakamww[tn) 7 (B O e [1]1) B VR e [])

m m

So, it is enough to show that for any ¢ there is M € N s.t. for any m
we have
|wi| < M(m + 1)M.
By "M OE i [[])
This is a straightforward computation.
(3)=-(2): The proof is similar to the implication (1)=-(2) and we will not use
this implication.
(2)=-(1): The proof is similar to the implication (2)=-(3) and we will not use
this implication.
O

10. ALMOST INTEGRABILITY OF g,
In this section we prove the following:

Theorem 10.0.1. Let ¢ € N be an integer. Let U; C g, be the preimage of
c"**. Then (g,,U;) is asymptotically almost integrable.

Idea of the proof. We use the bound on the dimension of the jet schemes of
g, (see Theorem C). This bound gives us a bound on # 7, (g,)(F) for large
33



k. This bounds the L’ norm of p, (,u%’k) 1 ox. Since p is smooth over ¢"**,

the measure p, (,u%’k) is m-smooth in large balls in ¢"*. Thus we get a bound

on the L' norm of p*(u%’k) over large ball in ¢"**. This bounds the volume of
a large ball in U; as required. U

Proof. Let ¢ be as in Theorem C and let M = c+ 1. Fix m € N. Let wj

be the standard top form on g (coming from the identification g = A™) and

w, be the standard to form on ¢ (coming from the identification ¢ = A").

Xwei

Let Wy, = Wy - This is a rational top form on g, Recall that g" is the
smooth locus of py : g — ¢. Thus w, is regular and invertible on (g")*<'.
By Corollary 5.0.9, g" is big in g. Since p is flat (see Corollary 5.0.5), this
implies that (gT)Xii is big in g, Therefore W, is regular and invertible on
g°™. Let p' : g — ¢ be the projection. Choose the standard p-rectification
of ¢ and g. Choose the simple p-rectification on ¢"** given by the embedding
¢ — ¢ x Al using the discriminant and the top-form induced from ¢. This
gives simple p-rectifications on g™*® and Uj;.

By Lemma 4.2.11 there exists m’ s.t. for any k there is an m’-smooth
function f; on C*(BYF) s.t.

T‘Ss7k
(po)*(lBg”“”%” ) = fumgy
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7
D+« <|wg|1Bﬂvk>
[ N s
BYikapSt BEknBE* e

0

g7'557k ’L
_ / - (Lygemn )
B

ETSS’kﬁBE’k |wc| |(,L)C|
m 0
= 7
1 i
— m BsrssvknBE,k (fk *x (’wgle%]:n/)> ‘wc’
= m m 0

o mm'k ‘

p <1 Mgrss7k KA

* Bg,k m )

—e | ° (ol e )| e
BS W FnBE* |l —m/

788 k

o[ (o () ) b
<ot [ (e (laltgge) e ) o
3 /B(p*(iwguBg,k)*(132,;,))1%\

BeB§"* /B,

lwgl (1 (B) N BYY)

> ( (D) )'“"<B>

BeBy* /B,

=g S (gl (B)n BN

BeB§* /By,

= (S (3 () 0) bl (B

TE Tt () (Fyr)
_ é(i—l)nm’k—z‘m’an Z (# ((jm/ (p))_l(x))))l
€T, ()(Fyr)
= (ki 7 (8,) (Foe) = €™ 0 T (g, ) (F ).

) 7

Therefore
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1 g—m’kdimgi#jm/(g,)aﬁ‘fk)
< lim —— < 1 =i
05 B0 57 oo paos 190 < 110 (i
 HTw(@)Fr) . HTw(s) ()
= lim — = lim —
k00 gk(M—&-m dimg,) ko0 gk(c—&—l—&-m dimg,)
jm’ . F jm/ . IF
< lim #Tw(g)Ew) o #Iw(@)(Ee)
k00 ék(lerlm]m/(gi)) k00 gk(dlmjm/(gi))

The last equality follows from the Lang-Weil bound. So

1
k—soc0 (KM B}iivkmBgi’k | gi' ’

as required. U

11. PROOF OF THEOREM D

We will need the following:

Lemma 11.0.1. Let ¢ : X — Y be a flat map of smooth (u-rectified)
varieties. Assume that the smooth locus of ¢ is big in X. Let U C Y be
an open dense subset of the locus of reqular values of ¢. Let i,k € N. Let
¢; : X; = XXY" 5 Y be the projection. Let V = ¢;(U).

Assume that (X;, V) is analytically almost integrable.

Then ¢.(ug™) € L (BY*) for any i < i.

Proof. WLOG assume that the p-rectifications of X and Y are simple.

X,k \ %
Step 1. IM > 0 s.t. ¥Ym € N we have anL]L,kmB(\J(,k (%) Yk < MmM.

Using the embedding X; — X’ we obtain an embedding of X; into
an affine space. Let wx, wy be the forms on X and Y and let
wx, = wx"¥'. This is a rational form. The condition implies that
it is regular on a big subset of X; and hence can be extended to the
smooth locus of X;. This together with the embedding above gives
us a p-rectification of X;. Choose a u-rectification on U, and choose

a rectification of V s.t. for any m € N we have
BV,k — BXi,k N QS-_l(BUJC).

Since (X;, V) is analytically almost integrable we can find a constant
M € N s.t. for any m € N we have

/ lwx,| < Mm™M.
BY B
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Let m € N. We obtain:

¢ (:UO ’ |
Yk wWX;

BY*FnBY * 1 o7 (BYFnBY F)nBY i
/¢ LB Fng; L (B F)nBR "

X,k
/(BX'k)ﬂ¢1(BS(’k)ﬁBo '

/Bm kaplik

Step 2. there is 0 < g € Lis°(BY*) such that ¢*(“° e L{(BY*).
Take

min{m > 1|y € BU*}M+2 if y € BU*
9(y) = .
0, otherwise

For any m > 1 we have:

Xk ¢ X k i
Du(p1p ") _ Du(piy ")
(BU* BY* ynBY* gMYak Ky (BY* BY* ynpY ok mM—&-Q'uY,k Hy
__ b / o)\
mMHE Jopun gusjagxe \ pk

Xk \ ¢
< 1 / D« (119 )
m(M+2)i (BTUn,k)mBS(,k ,UY’k

It remains to show that g € Liso°(BX*). It is easy to see that g|,u.

loc
is a norm function as described in §3. Thus by Proposition 3.0.1
L<oo ( BY k)

loc

37



Step 3. End of the proof.
Let i/ <iandlet A > 1 be such that % + % = l, By the previous

step g € LA (BY%) and ¢*u“yo 2 e Li (BYF).
Let m € Z~o. We obtain:
® glpvi € LA(BY k)
o 2UGD . Li(BYH
gu¥ok "By m /e
We recall the generalized Holder inequality. Suppose that:
e 1,1, 7 are positive and satisfy % = % + %
o f1 € L"(BY®), fy € L"?(BYF).
Then

[frfelle < [Lfulle | f2l
See [WZ15, Chapter 8, Exercise 6].
Thus we have:

[l =11 pyrg— Il < o0,
gu¥

om (Mo )
||1BY,k R A
m 9

< |1pxrgllalll gy
as requested.
O

Proof of Theorem D. Using the homothety action of G,, on g we can assume,

WLOG, that p < c,ug’1 for some constant ¢ > 0. Hence we can assume,
WLOG, that o = pi&".

Let U; C g, be the preimage of ¢"** as in Theorem 10.0.1.

By Theorem 10.0.1 (gi, U;) is asymptotically almost integrable. By The-
orem 9.0.3, this together with the assumption implies that (gi, U,) is ana-
lytically almost integrable. By Lemma 11.0.1, applied to the map p : g—c,
this implies the assertion. Note that the rest of the properties of p required
by Lemma 11.0.1 are verified in §5. U

12. ALTERNATIVE VERSIONS OF THEOREM D

In Theorem D one can replace the condition of existence of strong resolu-
tion of g with one of the following 2 conditions:

(1) the defining ideal of g inside g** has monomial principalization (see
Definition 12.0.1 below)

(2) (a) The defining ideal of N inside g has (monomial) principalization
(b) g, has a resolution (not necessarily strong).

Definition 12.0.1 (Monomial Principalization).

(1) An ideal sheaf I on a smooth variety X is called locally monomially
principal if there exist
e a finite Zariski open affine cover X = JU;,
e a collection of etale maps ¢; : U; — A% and
e monomials f; on A%
such that for any i we have I|y, = ¢} (f;)Ou,.
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(2) Given an ideal sheaf I on a smooth variety X, we say that ¢ : X - X
18 a monomial principalization of I if it satisfies:

e X is smooth and ¢ is a proper birational map (a modification).

e The pulled-back ideal sheaf ¢*(I) is locally monomially principal.

Since the difference between these 2 versions of Theorem D is technical
and it is not clear how useful it is going to be, we will not give complete
proofs of these versions but only a sketch.

12.1. Sketch of the proof of Theorem D with condition of strong
resolution replaced with Condition (1). The proof is based on the fol-
lowing version of [Mus01, Theorem 3.1]

Theorem 12.1.1. Let X C M be a closed subvariety of a smooth algebraic
variety. Let v : M — M be a principalization of the defining ideal sheaf
Ix of X inside M Let a;,b; be as in [Mus0l, Theorem 3.1]. That is a;
are the coefficients of the components of the pre-image of Ix and b; are the
coefficients of the components of the discrepancy divisor of ~.

Then, the following statements are equivalent:

(i) For every i > 1, we have b; > (dim(M) — dim(X))a; — 1.
(ii) There is a constant ¢ s.t. dim J,,(X) < (m + 1)dim X + ¢, for every
m > 1.
(11i) There exists M € N s.t. for any m,k € N we have

H#In(X)(Fp) < MmM pkmdim X

The proof of this theorem is parallel to the original proof of [Mus01, The-
orem 3.1]. One also has to use the Denef’s formula, but one can use the
usual Denef formula and not the motivic one.

Similarly to the proof of Theorem 10.0.1, this theorem implies that, under
assumption (1), the variety g, is analytically almost integrable.

The rest of the proof is the same as the proof of Theorem D.

13. PROOF OF THEOREM E

13.1. an-FRS maps of analytic varieties. Let F' := Fy((¢)). Note that
we can extend the notion of an-FRS morphisms (see Definition 1.3.5 (2)) to
the set-up of morphisms between F-analytic varieties in a natural way.

We require the following straightforward lemma about properties of an-
FRS maps.

Lemma 13.1.1. Let v : X — Y be a morphism of smooth F-analytic va-
rieties. Let §; : X; — X for i € I be a (possibly infinite) collection of
submersions. Then:

(1) if v is an-FRS then, for each i, v o d; is an-FRS.

(2) if U;er 06(Xs) = X and v 0 0; is an-FRS for all i, then v is an-FRS.
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13.2. Harish-Chandra descent for an-FRS maps.

Notation 13.2.1. Denote

o g:=g(F)

e g°° := the collection of semi-simple elements in g, i.e. those elements
with a separable minimal polynomaial.

® Ninsep C g - be the locus of all matrices whose characteristic polyno-
mial is totally inseparable (i.e. has a single root over the algebraic
closure). Note that it has a natural structure of an algebraic variety.

i Ninsep = Ninsep<F)

® Ninsep,s := Ninsep \ g where g" is the smooth locus of p.

o G :=G(F)

o forx € g* denote by a, : G X g, — @ be the action map

e For a map o : X — Y of smooth F-analytic varieties denote by
o™ C X to be the collection of regular points.

° 5 :=3(F)
o N :=N(F)
Lemma 13.2.2. Uxegss\3 @ (a¥9) = g\ Nipsep-
Proof. Let A := Uzegss\;, a,(ah9) take y € g\ Njpsep we have to show that

y € A.

Case 1: The minimal polynomial of y is irreducible.
Let f be the minimal polynomial of y. we can write f(s) = g(s”")
where ¢ is separable polynomial. Let z := y?". It is left to show
that (1,y) is a regular point of «,. In other words we have to show
that g, + [g,y] = g. Passing to the orthogonal compliment w.r.t.
the trace form, we need to show that g N [g,y]* = 0. Now:

]J_

g, N[g.y]" =[g.z]Ng, Clg,z]Ng, =0

Case 2: The minimal polynomial of y is a power of an irreducible polynomial.
Let f = g* be the minimal polynomial of y, with g being irreducible.
We note that using rational canonical form we can find x € g s.t.
Ad(G) -y 5 x and the minimal polynomial of = is g. By the previous
case, v € A. Since A is open we are done.

Case 3: The minimal polynomial of y is product of 2 co-prime polynomials.
In this case we can use the Primary decomposition theorem (from
linear algebra) to find z € g** \ 3 s.t. g, O g,. Now the claim is

proven as in Case 1.
O

Lemmas 13.2.2 and 13.1.1 give us:

Corollary 13.2.3. Assume that Theorem E holds for any smaller value of
n. Then p]g\N 1s an-FRS.

insep
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13.3. Slices to nilpotent orbits. The following Lemma is a version of
Lemma 6.2.1.

Lemma 13.3.1. Assume char(F,) > 5. Let x € N(F;) be a non-regular
element. Then there exist

e a linear subspace M C g, and
e a positive G,, action on M,
such that
(1) the action map G X (x + M) — g is a submersion.
(2) for any nilpotent y € x-+(M(F;)\0) we have dim Gg,-y > dim Gg, -z
(3) The Chevalley map p|.+m intertwines the G, action on x+M (given
by the identification y — x + y between M and x + M) with the G,,
action on ¢ given by (X f)(y) := A\"f(A7L - y).
(4) If in addition x is not subreqular, then the sum of the exponents of
the G,, action on M 1is larger than ”("TH) + 1.
(5) 3 C M is G,, invariant and the exponent of the action of G, on 3 is
1.

The proof is analogous to the proof of Lemma 6.2.1. We will start with
some preparations.

Notation 13.3.2. Let x be a nilpotent element in Jordan canonical form.
Let L, be the slice defined in Notation 6.2.3. Denote

(1) M2 := {{zy;} € Ly|zp, = 0}
(2) M, = M0 + ;.

Proof of Lemma 15.3.1. WLOG we may assume that z is in a Jordan form
and the size of the largest block is smaller than char(F,).
Take M := M,. Define the action of G,, on M by

Ak A= gy (N) - A

where ¢, is the morphism defined in Notation 6.2.3(7) and - is the action
described in Notation 6.2.3(1).
It is easy to see that this is a positive action.
Conditions (1,2,4) are proven in the same way as in Lemma 6.2.1.
Conditions (3,5) are evident.

4

13.4. Proof of Theorem E. We prove the theorem by induction n. Through-
out the section we assume the validity of the result for smaller values of n.
The following is obvious:

Lemma 13.4.1. p|y is an-FRS.
We obtain:
Corollary 13.4.2. Let Ninsep s := Nipgep \ g7 Then p]g\Nmsep,s 15 an-FRS.

Remark 13.4.3. Assume char(IF,) 5. Then it is easy to see thal Nipsep.s C

N + 3.
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The following is a global non-uniform version of Lemma 6.1.1.

Lemma 13.4.4. Let v : Al — A’ be a polynomial map. Assume that:
(1) we are given positive actions of G,, on Al and A7 by

s-(x1,...,27) = (sMxy, ..., M)

and
s (Y1, u1) = (8", ..o, 8yy)

respectively.

(2) we are given an action x of G, on A7 s.t. for any z € G4(F;) and
x € AI(F,) we have y(z + 2) = zxy(x). Here G, embeds into Al as
the first coordinate.

(3)  preserves the Haar measure on F.

(4) 22 h > 1432, i
(5) M =1
(6) Y|arar : (AT AY) — A7 is an-FRS.

Then v is an-FRS.
Proof. WLOG we may assume that g is an Haar measure on a ball B C
Fy((t))! around the origin. Using the G,, action we may assume WLOG

that B is the unit ball F,[[¢]] .
Define another action of G,, on A’ by:

s (21,...,07) = (21,8m9,..., M),

For i € N, define C; := t'* B\t x B and v; := ulg,.

Let S; C F[[t]] be the collection of polynomials of degree < ¢ — 1. We
will also consider S; as a subset of Fy((t))! using the embedding A! C A’
corresponding to the first coordinate. Note that

SES;

This implies

V; = g_iZJI:l Ai Z (Shs(tl ’ VO)) )

SES;

where sh, stands for shift of a measure by s.

Denote
g = 7«(0)
A7 1
and let
M = |g|]e



We obtain:

sES; sE€S;

) A1

—2z Mzs* zwmzs*(i (

SES; SES;

S S () () -

s€S;

_Z€ 13 Ayt JluJZS*< AJl)S

SES;

<zg—mz o (") = Mzg—mz(AJJ):M@—%@W

SES; SES; =0

—M Z A < oMt
i=0
This implies the assertion. U

Lemma 13.4.5. Assume charF, > n/2. Let O C N be a non-reqular
nilpotent orbit. Then for any field E/F, we have

(3+O)(E) =3(E)+O(E).

Proof. Let x € (3+ O)(F). First note that it is non-regular as an element in
x € g(E) This implies that it is non-regular as an element in g(£). Let f be
its characteristic polynomial and g be its minimal polynomial. Let h = f/g.
Note that both h, g are defined over E. Also, for some A € E and k € N we
can write: g = (33 —MFand h = (z — )\)"_k. Let m = min(k,n — k). We
get that (z — \)™ is defined over E and that 0 < m < p. This implies that
A € E, which implies the assertion. U

Lemma 13.1.1 implies the following:

Corollary 13.4.6. Let vy : X =Y be a morphism of algebraic varieties. Let
0: X — X be a submersion. Then:

(1) if v is an-FRS then so is y o d.
(2) If §(X(Fe((t)))) = X(Fe((t))) and v o0 is an-FRS then so is 7.
The classical argument for the bounds of Cauchy and Lagrange gives:

Lemma 13.4.7. Let f € ¢(Op). Then any root A € F of f satisfies A € Op.

Lemma 13.4.8. Let f € Op[x] be a monic polynomial in one variable with
coefficients in Op. Then

deg(f)
/OF val(f(x))dx < 1
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Proof.
Case 1: f(x) =

/ val(x :Z/ val(z ZmVol{erF |:E|—£m}dx—CZm€m
|z|=£—™

m=0

with C' = vol({z € Op : |z] =1}) =1 — ¢, but

= = d 1
S-S - (S| —a ()] -
K

()., e

LI =12 T =12
To sum up,

T=7 4
B 14 1\ 1 deg(f)
/OFval(ZE)d:B——(g_l)z (1_?)_6—1_ v

Case 2: f(z) = (x — ) for A € Op
Follows from previous case.

Case 3: f(z) = (x — ) for A € Op
Let A\g € Op be s.t.

[A = Aof = min [A—pl.

It is easy to see that val(z — \) < wal(x — )\g) for any x € Op and
the assertion follows from previous case.
Case 4: f(z) = (z — \)* for A € Op
Follows from previous case.
Case 5: General case
Follows from previous case and Lemma 13.4.7.

Lemma 13.4.9. The addition map add : N x 3 — g is finite.
Proof. This follows from the following Cartesian square:
N x 3 —add g
| o)
3 ¢
O
Lemma 13.4.10. Let m : A2 — Al be the multiplication map. We have

A21 All
m*(#o ):T(z)ﬂo )

where 01
r(z) = 7 (val(z) +1).
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Proof.
ma (e ) Op A 0p) = (m™ (' Op ~ 71 0))) =

T

PN (HOp ~ £ 0p)) x (7 0p ~ " 0p)) =

i=0
r (é — 1)2 —r

—ZE A IOF\tOF) 28—2(T+1)€

Using the action of OF, this implies the assertion. O

Proof of Theorem E. Let N° C g be the cone of non-regular nilpotent el-
ements. Enumerate the nilpotent orbits {0} = Oy,...0,, s.t. dimO; <
dim O; for any ¢ < j. Let N; UZ O,. Note that N; is closed and
Ny = Q) Therefore, by Lemma 13.4.9, N + 3 are closed (and Ng 43 = 0).
We will prove by down going 1nduct10n on i that for any i > 0 the map
Plgw(N;+5) 18 an-FRS.

The base of the induction ¢« = m follows from Corollary 13.4.2. For the
induction step, we assume the statement holds for N;,; and prove it for N;.
Let U = g~ (N;11 +3). Choose a nilpotent element x € O;,1(F,). Let M
be the linear space given by Lemma 13.3.1 when applied to z.

Step 1. Reduction to G x M.
Consider the map

6 (GxM)UU = g~ (N; +3)

given on G x M by 6(g,1) := ¢g- (x+1) and on U by the embedding
U C g~ (N; +3). By Lemma 13.3.1(1) it is submersive. Also, it is
onto on the level of points over any field. Indeed, for any extension
E/F; we have (Oiy1 + 3)(E) = Oiy1(E) +3(E) = G(E) - (x + 3)
where the first equality is by Lemma 13.4.5. Thus,

(g~ (N;i +3))(E) = (041 +3)(E)UU(E) =
= (G(E) - (z +3)) UU(E) C6(((G x M) LUU)(E)).

Thus, by Corollary 13.4.6, it is enough to show that p o § is an-
FRS. Let ¢’ := d|gxm- Notice that p|y is an-FRS by the induction
hypothesis. Therefore it is enough to show that p o ¢’ is an-FRS.
Notice that ¢'(G x (M ~\ 3)) C U by Lemma 13.3.1(2). So, by
Corollary 13.4.6 we deduce that p o §'|gxm-;) is an-FRS.
Step 2. Reduction to M. .
We can factor the map pod’ as p|(zim) © shy 0prv, where sh, : M —
x+M is the shift map, and pry; : G x M — M is the projection. So,
by Corollary 13.4.6 it is enough to show that p|,in o sh, : M — ¢
is an-FRS.
Also, by Corollary 13.4.6 we deduce that p|,; ;) ©she is an-FRS.
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Step 3.

Step 4.

Proof that p|,in o sh, : M — ¢ is an-FRS when x is not subregular.
The assertion follows now from Lemma 13.4.4 and the condition on
M given by Lemma 13.3.1(4,5).
Proof that p|,in 0 sh, : M — ¢ is an-FRS when z is subregular.
In this case Lemma 13.4.4 is not applicable. So, we provide a direct
argument. Using the action of G, on M it is enough to show that
P (™) has bounded density.

Without loss of generality we assume z is in Jordan form of type
(n —1,1). More precisely = = J,,_1(0) & J1(0).

Note that, until now, we only use the fact that M satisfies the
conditions of Lemma 13.3.1.

So we can choose any such M. Choose M as in the proof of
Lemma 13.3.1. Explicitly,

M={c(f)+(a—1)e,1n+zlz€5f€cacAl)

Here ¢(f) is the companion matrix corresponding to f € ¢ where the
coefficients are located in the first row.
Notice that M is the space of matrices of the form

1

z 1

0 =z 1

0 0 =2 1
O --- 0 0 2 «
O -~ 0 0 0 =z

Denote
M, ={c(f) +(a—1e,1alf €Ecac A}

It is easy to see that for any c¢(f) + (o — 1)e,—1,, € My we have
p(e(f) + (@ =1)en1n) = f = f(0) + af(0).

Let us write ¢ = A" '@ A! where A"~ ! represents the leading n— 1
coefficients of an element in ¢ and A! corresponds to the constant
term. Now we have

T n—1
pelpg ™) = g R (a2),
where m : A2 — A is the multiplication map.
This together with Lemma 13.4.10 implies that

el ™M) =

where ® € L'(¢) is given by
(—1
2(g) = 11+ val(g(0)),

where g € ¢.
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From this we deduce p.(u,

by

o) = [ Blsha(o)az =

SMDY — pust, where h e L(c) is given

-1

(val(g(2)) + 1)dz.
Ofp

Here sh, is the shift by z of a polynomial.
The assertion follows now from Lemma 13.4.8 as

h(g) =

(-1

1 f—1
(val(g(2)) + 1)dz < ~deg(g) + —— < 2 41
¢ Jo, ¢ =

!

is a bounded function.

*, 12

BY*.BXk, 14

BI, 23
F, 39
G, 40
Jk, 23
L1T0c7 loc
N, 40
Ninsep7 40
W, 17
a9, 40
Qy, 40

L., 23
M,, 41
MY, 41
Ninsep,87 40
Ninsep7 40
Xsing’ 11
X5m 11
3, 40

g, 40

gss7 40
Tm, 2
,U/X’k, 15
pin*, 15
b, 23

<, 12
ow(f), 17
~, 12

O, 11

X, 12

Lo 12

INDEX

m-smooth, 15
p, 2

q, 17

tij, 23

tr, 23
w-degree, 17

abstract norm, 12

almost analytically FRS, almost
an-FRS, 4

analytically almost integrable, 29

analytically FRS, an-FRS, 4

asymptotically almost integrable,
29

big open set, 11
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