11. Representations of Galois groups and (ϕ, Γ)-MODULES
W -padic

$$
\bar{R} \partial R \quad G_{k}=\operatorname{Gec}(\bar{E} / K)
$$

$$
k=K_{\infty} c \widetilde{k}
$$

$$
r=\text { Gal }\left(k_{\infty}(k)\right.
$$

$$
H=\varepsilon e\left(k\left(k_{2}\right)\right.
$$

$$
l \rightarrow H \rightarrow G_{R} \rightarrow i \rightarrow 1
$$

$$
H \text { cal (}
$$

E-field ofchov. p.
Iufrumel clain Eor, fircld E of chaw. is it is easy to desevice cetegovy Pep(σ_{E})

V-a breld.
Gel(

$$
\overline{k_{1}} \underset{\rightarrow}{\mathbb{K}_{\nu}}
$$

$$
\operatorname{Rep}(G-2, a x)
$$

Irpumal Clerku. Lot E be o Freld.

$$
\text { of ebar. } p_{1}
$$

Then we can expliviteg desevbe $\operatorname{Rep}\left(G_{E}, T_{p}\right)$

Inill descrite save catrany P (E) and for every als eloure

EDK I will custorut

campotob $C_{\text {E }}$

Diepassion.
Suppose we have camm. algebress it, B^{2} and a
movphism
$N: A \rightarrow B$
v_{*} Res i $\mu(B) \rightarrow \mu(\theta)$
V* Ext: $\mu|A| \rightarrow M(B)$

$$
M \rightarrow B B_{A}
$$

ceaster Ert is comonicel bebe adivint to Res.

M is Atrmodule, UrBrad.
suppore $\quad c: \rightarrow C$
Def. E module over it is a medule Mover it treetter
wita semilinear mapl.

$$
\begin{aligned}
& \varphi_{M}+M \rightarrow M \\
& \text { i.l. } \quad \varphi_{M}(a m)=\varphi(a) \varphi_{M}(m) \\
& \varphi_{M}: M \geqslant \operatorname{Res} M \\
& \varphi_{M}^{\prime} \cdot E \text { ret } M \Rightarrow M
\end{aligned}
$$

Def. φ_{M} is salled etale it φ_{m}^{\prime} is an izonowphism

Theavem let $i s$ be a frield of chow $p>0$. ب:b-G Frobenias musulion

$$
\varphi\left(a r z a^{p}\right.
$$

Kemider cabery $\Phi(E)$ of elle e-modules avor E Then this cateervy is
universal cabege of
rurn of bolo grimp wen
Ip.
suppore trat E is not perfect
Then we have exauple of etall φ Tudule arev $\frac{1}{}$

$$
M=E, \quad \varphi_{m} \simeq \varphi .
$$

$$
i \rightarrow \operatorname{Res} M
$$

e_{π}^{\prime} is an isom.
Contoretion of equidence
contorution of funtan V and O. wh have choren same sepicanplite estennn E. ou E we lave two cetions.
(iscretim of Gal ($\left.\epsilon^{-1} \mid E\right)$
(i) Opevatur Erbenions $a \rightarrow a^{i}$

They a comulte

Tehnial caina

$$
E \subset E^{s} c \bar{E}
$$

$\bar{\beta} \mathbb{F}^{s}$ is dempee uscp.
wit $(E M / E)=\operatorname{Aut}(E / E)$

Thin Fumbtar D, U sive motbeg inverse equivelerce of cotegaves $\theta(E)=$ Bep $($ Golt E) EA

$$
-\bar{T}_{1}-\operatorname{trivinew}^{\sim} \cdot \tilde{F_{p_{-}}}
$$

$$
\begin{aligned}
& V(\mu)=(E \hat{E} Q)^{E v=1} \\
& D(W)=\left(E^{s} \otimes W\right)^{\text {Gre }\left(B^{n}(B)\right.}
\end{aligned}
$$

$$
\begin{aligned}
& V(\mathbb{I})=\left(E^{2}\right)^{M=1} \\
& D(E)=E)^{\text {calcosin }(B)} E E
\end{aligned}
$$

Lot $\mathrm{E}: M \rightarrow \mu \mathrm{Be}$ ramitereairmp over E when of it etal
(i) Suppure Eis revpect Then $\varphi: i s$ etal if e is a bivection.
(ii) scoponc $E^{\prime} \supset E$.

Then re con cerroler

$$
M^{\prime}=E n t \tilde{S}^{\prime}(M)=E \otimes
$$

M' has netswol catemin \checkmark semillmer e, e^{\prime} $r M \longrightarrow M^{2}$
cecion. $\left(\varphi, \alpha_{1}\right)$ is etsle ift (x, mis is itale Griterion, $e=M \rightarrow M$ remilchean

Then r is etsele
(i) For sume presfat ent. $\xi^{\prime} \supset E$, ent. If e is bisats,
(ii) Ea any perfect ent-titc
ent. (Ex Mi) is abosicotro)
(iic) $\varphi\left(M_{1}\right)$ qenerbin r as E-indule.
(iv) Cheore a lanta to of Maris

$$
\varphi\left(e_{i}\right)=\sum a_{-i}^{\prime \prime} e_{i}
$$

cursider metribe etrof a, y). r is retrle it is irerstrbe

If ve eamider everthe cmp fin and B-metoine $G(d$. If neecting bax

$$
A_{f}=B \operatorname{tere}_{\operatorname{Cep}}(B)^{-1}
$$

- obseln are formevoted

Ip-undules with cutoin.
action of Gole ($B=3$)
I have to malce a alcice. Let an arce a couplebie our ovig $0_{\text {of }}$ wita p unotormbier and $c_{a}\left(L_{p}\right)=, \varphi_{i}: Q_{E}+C_{e}$,
Ereufect $\omega_{z_{0}}=W(E)$
We are $E=k i(u l)$, ll-verfat ofchork intevertrad onlysin

Fix this dexba O_{8}
Then wole can mole const vention as befare
Linaaxlet $F(E$ be any sepes finite enterron.
Then we can bancrolly comtarnt $C_{P}>C_{S}$ unta sinitear prsperties.
Heve we can defire

$$
\begin{aligned}
& \omega_{E D}=U U_{F} \varphi_{E} \\
& \overline{\theta_{E^{3}}} \text {-enspection. }
\end{aligned}
$$

constrution lit usare tho区点 as period domain

$$
\begin{aligned}
& \left(\theta_{i+1}\right)^{\sec (E n / E)}=C_{\delta} \\
& V: Q\left(E, U_{z}\right)^{e t} \rightarrow \operatorname{Rep}\left(\operatorname{Gel}\left(E^{N}(\vec{E}), 2 z_{p}\right)\right. \\
& \theta=\operatorname{Rep}(\operatorname{cosp}) \rightarrow Q\left(E C_{E}\right) \text { et }
\end{aligned}
$$

Teeven $V_{C} D$ ave equit. of retegmies, mutually swe. complet. wiz \& , unst divality.

Example, $E=k((a))$, $k-n$

$$
\begin{aligned}
& \left.\sigma_{i}:=\quad \omega(k)(l e)\right)= \\
& \begin{aligned}
&= \sum_{n=-\infty}^{\infty} \sum_{n}^{\infty} \operatorname{ann}^{n} \mid a_{n} \rightarrow 0 h_{n} \\
& n \rightarrow-0
\end{aligned} \quad \operatorname{Req}_{\phi}\left(\operatorname{Gal}(E)(E), D_{p}\right) \quad . \\
& \text { Rep (Gal (E')d. } \\
& k \text { - vepr of Gol o } \\
& Q_{p} \text {-vectos }
\end{aligned}
$$

\& -mudrles over
Mr fo-dibl-veter
l_{0}, tractine eviéar actin etaet, on.
HZ 4 rivocivanté

