p-adic-Lecture-12
Monday, 11 January 2021 13:25

p-adic-
Lecture-12
12. Lecture 12. More about (ϕ, Γ)-Modules

$$
\begin{aligned}
& K \text { pradic foeln , } K C \pi \\
& G_{k}=\operatorname{Gel}(K>K) \text {. } \\
& B=\widehat{K} \\
& \operatorname{Rep}\left(G, k, Q_{p}\right) \\
& \text { Rep (Gt, Eps), Lep Gkitipl } \\
& \operatorname{Rep}(\text { Gik, Cp) } \\
& V \operatorname{Vef}\left(G_{x_{2}} Q_{p}\right) \rightarrow \operatorname{Rep}\left(Q_{e} \cdot C_{p}\right) \\
& V(\omega)=N \omega c_{p}
\end{aligned}
$$

Reviod riug et
$\operatorname{Rep}\left(G, Q_{p}\right) \rightarrow \operatorname{Rep}(\sigma \in A)$ raddost

$$
\begin{aligned}
& k \subset \mathscr{L}<c_{0} \\
& \mathcal{Z}=12_{\infty}=k\left(\mu_{p \alpha}\right) \\
& \text { H=6al (布) Ms } \\
& r=e(x / k 1 \\
& 1 \rightarrow \mathrm{H} \rightarrow G_{k} \rightarrow i \rightarrow 1 \\
& \operatorname{Rep}\left(G_{k}, e_{r}\right)= \\
& p_{p o}\left(T, \operatorname{Tep}\left(M Q_{p}\right)\right)
\end{aligned}
$$

E-field of chav. P.

$$
\begin{aligned}
& C=\operatorname{Ce}\left(E^{-S P} \mid E\right) \\
& \operatorname{Rep}\left(G_{1}, \mathbb{F}_{P}\right) \simeq e \text {-modules over } \text { Fsap }^{\text {sin }} \\
& U: W \rightarrow W O E E^{\text {®P }} \\
& D \text { : } V-\varphi \text {-menaover } E^{\text {sep }} \\
& \text { - } v \rightarrow V^{p a 1}
\end{aligned}
$$

Thm. Thes is squir. of

Genowl identognt

$$
\begin{aligned}
& H \rightarrow H \rightarrow G_{x} \rightarrow F \rightarrow 1 \\
& H=\sec (E)
\end{aligned}
$$

$$
\begin{aligned}
& \text { parla, Q1 } \\
& \text { Pep (} \mathrm{On}, \mathrm{mp} \text {) }
\end{aligned}
$$

Goal. coutonet a prade algotise A with autinn oft and an opecobr Φ sit fres $A=E^{\text {sep. }}$

$$
\frac{\theta^{\varphi=1}=z_{p}}{G_{2} w\left(2^{2 q}\right)}
$$

Problem Eicz not perfoct

$$
\text { P. Parleve } E \text { fy } F=\text { parEl }
$$

perfarjuction of E

$$
E \subset E \quad, \quad \text { R(} B 1-
$$

inecpab partat E.

$$
\begin{aligned}
& \text { eqn E EPf } \\
& G l_{F}=G a l_{E} \\
& \operatorname{Rep}(\text { Col (F), INP) - e-mud overk }
\end{aligned}
$$

$\operatorname{Rop}\left(G_{F}, \sum_{p}\right)=\varphi$ rued $\cdot \operatorname{arev}$

$$
\begin{aligned}
& A=W(F) \\
& K \quad c \varphi=K_{\infty} \quad c R
\end{aligned}
$$

Then we can envtern

$$
E \text { sit. } G a e_{E}=H
$$

witt $G^{\text {sel }}$ is aequm
磁-G
$\left.\operatorname{Rep}\left(G, Z_{p}\right)=\operatorname{Rept}, \varphi\right) \operatorname{pan} A$.

Exompres R,

$$
E=k^{\prime}(p)
$$

T-ruiformion in sone vies

$$
E \subset E
$$

存 $\subset W(\bar{B})$
$t_{1}=$ Generstad of I_{2} and reich. CHI
\boldsymbol{K}-finite entemin of Qp
LI matiobelion entenn in

$$
\text { K } \subset \mathcal{L}<\vec{L}
$$

K'aptey)-pentert fied. Foher- A

$$
A=Q_{k}{ }_{w(k)} w\left(k^{0}\right)
$$

$$
k^{\prime}=k
$$

1) On ff we have chuceie 4 - cacen Ascur Foblexicus onler
21 we hour concocicl actim of r Geferm)

$T=\operatorname{cal}(ध(r e))-$
$=G e\left(k^{\infty} / k\right)=\left(k k^{n}\right)$ moman

$$
\begin{aligned}
& \operatorname{Rep}\left(G_{p}, Q_{p}\right)= \\
& =(u, r) \text { undres oner, she } \\
& A \zeta Q, \text { of }
\end{aligned}
$$

$$
A>Q_{2 \sum_{p}} A
$$

1) e is bopective $\varphi=M \rightarrow M$ -

$$
\begin{aligned}
& \text { Q-linear, r-equar. } \\
& \text { roictive }
\end{aligned}
$$

2) \& re-invariant lettice in r!
(1) $\operatorname{Rep}\left(\omega_{k}, \operatorname{Rep}_{p}\right)=$
(φ, T)-medules ver ti, etce

We did cuntrvetims
$t \quad y=<_{\infty}$, sat ue dar do it murse sanala (sohelrue)

Def a perfectiod freed is a foeld rt chas. n

$$
\begin{aligned}
& \text { - Gae }(K) \Rightarrow W_{k} \text { - Unire group. } \\
& \left.I_{k} \rightarrow \operatorname{Gol} / \mu\right) \rightarrow \operatorname{Gal}(k)=\underline{2} \\
& 1 \rightarrow I_{r} \rightarrow w_{k} \longrightarrow \quad \begin{array}{c}
0 \\
2
\end{array}
\end{aligned}
$$

-•••uv,
with a veluatim vi $\rightarrow \leftrightarrow \infty$ setion L is cemplete wro v.
(2) v is net deviete
(3) FV? $Q_{I} P p \theta_{L} \rightleftarrows \tau_{s}$ onto

Theidal example Ms

$$
z=K_{\infty}
$$

Tietener coustuation
Supmere 2 is pafert.
(e) $b_{L}^{3}=\operatorname{tin} \omega_{L} \quad \omega_{L} \stackrel{P}{T} \varphi_{2}$

$$
\begin{gathered}
\left.O_{L}^{b}=L x_{e}, \cdots \leftarrow x_{n} \in \mathscr{m} x_{i} \in L\right\} \\
x_{n}=x_{n+1}^{p}
\end{gathered}
$$

ceenn. 102^{3} hes netoral ebuble of fied of char p. It is gurfect.

$$
v\left(x_{0}, \ldots\right) \quad:=v-\left(x_{0}\right)=\underbrace{v(x)}_{p n}
$$

v-quenatio on L°, L^{b}-rompect mant on
is v-craplode fieq perfect itt has a va typoay

$$
\begin{aligned}
& W\left(L^{\infty}\right)=\left\langle x_{0}, x_{1} \ldots x_{1} \ldots\left(x_{0} L \frac{1}{l}\right)\right. \\
& \sum p^{i} \text { Teich }\left\langle x_{i}\right\rangle .
\end{aligned}
$$

Fieed with p-dide verces, -
weabi toplery

$$
W K\left(L^{b}\right)_{-}=772_{i}^{6}
$$

$w\left(C^{b}\right)$ is sumisen
($\mathrm{F}_{\mathrm{p}} \mathrm{C}$ 梠)

$$
\begin{aligned}
& W\left(L^{0}\right)=\left\{\sum x_{i} p^{c} \text {): } x_{i} \in L^{b}\right\} \\
& \text { sinicer } t \\
& 2^{p}[u] \\
& L^{b}=h l(t)=\ln \left[[t a]\left[t^{\prime}\right]\right. \\
& w\left(L^{b}\right) \text { is sinfeer to } \\
& k[2 t]]\left[H^{-1}\right][[M]] \\
& k[\text { [t. u] }] \\
& \therefore \quad v_{p}+v
\end{aligned}
$$

