
p-adic-6

Algebra $B_{H T}=\sum_{q \in \mathbb{Z}} \mathbf{I}_{B}(q)$, where $B=C_{K}$.
Claim. Hodge-Tate modules are modules admissible for the algebra $B_{H T}$.
6. Lecture 6. Period ring $B_{D R}$.
7. Lecture 7. Witt vectors and the construction of the period ring $B_{D R}$.
7.1. Witt rings. We fixed a prime number p.
7.1.1. Witt construction for p-algebras.

Definition. 1. A p-ring is a discrete valuation ring B with a decreasing system of ideals b_{i} such that $b_{i} b_{j} \subset b_{i+j}$ that satisfies the following conditions
(i) $v(p)>0$
(ii) B is complete with respect to ideals b_{i} and multiplication by p on B is injective.
(iii) The residue algebra $A=B / \mathfrak{p}$ is a perfect algebra of characteristic p.
2. We say that B is a strict p-ring if $b_{i}=p^{i} B$ for all $i \geq 0$
Claim. The functor $B \mapsto A=B / p B$ defines an equivalence of categories between the category of strict p rings and perfect algebras of characteristic p.

The inverse functor $W: A \mapsto W(A)$ is called Witt construction.

46
7.1.2. General Witt constriction. Witt discovered that one can extend the functor W to all algebras. Namely to every algebra A he constructed in a functorial way an algebra $W(A)$ and a projection $p r: W(A) \rightarrow A$.

Let me describe his construction.
Given an algebra A consider the sets $S(A)$ and $T(A)$ each isomorphic to the product $\prod_{i \in \mathbb{Z}_{+}} A_{i}$ of infinite number of copies of $A_{i}=A$. We denote by $s_{i}: S(A) \rightarrow A$ and $t_{i}: T(A) \rightarrow A$ the coordinate functions.

We define the Witt map of sets $W: S(A) \rightarrow T(A)$ by sequence of Witt polynomials w_{i}, namely $t_{n}=w_{n}\left(s_{i}\right)$ where

$$
w_{n}=\sum p^{i} s_{i}^{p^{n}-i} \quad \sum p^{i} s_{i} \phi^{n-i}
$$

In other words,
$w_{o}=s_{0}, w_{1}=s_{0}^{p}+p s_{1}, w_{2}=s_{0}^{p^{2}}+p$ g $_{1}^{p}+p^{2} s_{2} \ldots$.
Let us define on the set $T(A)$ the structure of the alge-
bra with coordinate-wise addition and multiplication. We would like to introduce on the set $S(A)$ the structure of an algebra in such a way that the map $W: S(A) \rightarrow T(A)$ is a morphism of algebras.

Theorem 7.2. There exists a unique way to define structures of algebras on sets $S(A)$ for all algebras A such that
(i) These structures are functorial in A
(ii) The map $W: S(A) \rightarrow T(A)$ is a morphism of algebras for every algebra A.

The algebra $S(A)$ obtained in this way is called the Witt algebra of A and is usually denoted by $W(A)$.
\diamond

$$
\begin{aligned}
& z^{\prime}=\text { true. of } Z \text { by } p \\
& z^{\prime} \subset Q \\
& A<A^{\prime} \\
& S(A)<\delta\left(A^{\prime}\right) \\
& \text { Ct-pert } \rightarrow N / A \ \rightarrow \text { viveri } \\
& \text { (} \mathbb{P}_{\beta} \text { algemph } \rightarrow W(A) \text {. }
\end{aligned}
$$

48
It is easy to check the following
Proposition 7.2.1. 1. Consider the natural projeclion $p r: W(A) \rightarrow A$ to the zero's component and denote by I its kernel. Then I is an ideal of $W(A), W(A)$ is complete with respect to the powers of this ideal and for every n the $W(A)$-module I^{n} / I^{n+1} is canonically isomorphic to A.
2. Let A be a perfect 霓 algebra, $\left(B, b_{1}\right)$ a p-ring.

Then

$$
\operatorname{Hom}(W(A), B)=\operatorname{Hom}\left(A, B / b_{1}\right)
$$

$$
F_{k}=\operatorname{cal}(\pi \mid, \alpha] .
$$

field
49
7.3. Construction of the period field $B_{D R}$. We start with a p-adic K, consider $\bar{K}, C=C_{K}$.

Let $O=O_{K}$ be the ring of integers in C, \mathfrak{m} its maximal ideal. Then $O / \mathfrak{m}=\bar{k}$ is an algebraically closed field.

$$
O=O_{c_{k}}
$$

Consider $\mathrm{p}^{\text {-algebra }} A_{O} / p O$ and let $A=R\left(A_{0}\right)$ be its perfectization.

Claim. The natural morphism $A \rightarrow A_{0}$ canonically lifts to the morphism $W\left(A_{1}\right) \rightarrow O$

$$
\begin{aligned}
& \theta_{0}^{\circ}=0 / \$ 0 \\
& f \rightarrow+t_{0} \\
& W\left((t) \rightarrow r=O_{c}\right. \\
& A_{0} \text { - not perfect. }
\end{aligned}
$$

$$
\begin{array}{ccc}
2 & \text { (to }-t_{0} \\
- &
\end{array}
$$

$$
R\left(f_{0}\right\}<\left\{c_{0}, a_{1} \ldots a_{n} \ldots . . \begin{array}{l}
a_{i} \in P_{0} \\
a_{n+1}^{p}=a_{4} .
\end{array}\right.
$$

$$
A_{0}=6 / P 6 \text { mo }
$$

It is quite a long proof, but the main step is given by the following key lemma.
\qquad

Lemma ı.s.1. Le a $\cup v$ oe amy quean comıatтьтия pu
and topologically equivalent to $p O$. Then $R(O / \mathfrak{a})=$ $R(O / p O)=A$.

To prove this we define the set $R(O)$ in the same way as $R\left(A_{0}\right)$ and show that as a set $R(O)=R(A / \mathfrak{a})$ for any ideal \mathfrak{a} topologically equivalent to $p O$.

$$
\begin{aligned}
& B_{\text {PR }}^{+} \text {: compaction on } W(A) \\
& w-r \text { to }
\end{aligned}
$$

$$
\text { If } \frac{t}{\sqrt{c r \theta}} \text { ger. elen.or }
$$

$$
D \rightarrow 2 \rightarrow W(A) \rightarrow 0
$$

Lis generded by leenct.

$$
w(A)=\left\langle a_{0}, a_{1} \ldots, a_{n} \ldots\right\}, a_{i} \in A
$$

$$
\{\theta, 1, \theta \ldots\}
$$

(t-char. p.

$$
W(A) \nexists p=p \cdot 1
$$

$$
1=(1,0,0, \ldots, 0)
$$

B-any alary.

$$
W(B) \quad \tilde{p}(p, 0, \ldots 0)
$$

$$
p=p-6
$$

$$
\sim_{w(A) \rightarrow W(0)}^{T \text { P平-P }}
$$

$$
\begin{aligned}
& a_{0}, a_{1} \ldots a_{n} \in b_{0} \\
& \text { ton be lifted remiquely } \\
& \rightarrow b_{0} f_{1}-s_{u} \quad \text { in } 0
\end{aligned}
$$

$$
\begin{aligned}
& A:=P Q R(6 p 0) . \\
& H=R(0 / 00) \\
& R(b)=\left\{a_{0}, a_{1} \ldots a_{n}, \ldots c \theta\right\} \\
& a_{n+1}^{b}=a_{n} \text {. } \\
& \text { Sublime, } R(6) \rightarrow R / \sigma / \sigma) \text { is } \\
& \text { a bigestom. }
\end{aligned}
$$

$$
\begin{gathered}
R(b)=\left(a_{0}, a_{1}, \ldots \mid a_{n}=a_{n+1}^{p}\right) \\
\tilde{p}=\left(p, p^{\prime / p}, \ldots \cdot \mid\right. \\
R(b)^{-}=R(t) \\
W(A) \nexists \widehat{p}, W(p) \Rightarrow p
\end{gathered}
$$

ceerm $\tau=\sigma-p$ is senurctor of $=\operatorname{ker} \theta$

$$
B_{D_{R}}^{A}:=\text { completim of } W(A)
$$

$$
\text { wito pnein \& } l \text {. }
$$

$$
\begin{align*}
& R(A-A \rightarrow A \rightarrow O C O O \\
& \theta: W C O \tag{ken}
\end{align*}
$$

$W(A)$ cemple wrto 2

$$
\left.B_{B R}^{\infty}=\frac{W(\overline{A N}}{w(\&)} \notin \frac{1}{p}\right]
$$

$$
1 \rightarrow J \rightarrow B R^{\top} \rightarrow 0
$$

$$
J) J^{2} \simeq C(1)
$$

over \dot{Q}_{p}
Jl $T^{3} \Rightarrow$ line invenind wav astim of r
and Facts there as erchotomit chavatier.

- $B H R^{+}$is a discrete valruig,

J-man-ideal

$$
\begin{aligned}
-B+\sqrt{3}+\sqrt{J} & \approx c \\
ग / T^{2} & =c(1) \geqslant Q_{p}-l_{n}
\end{aligned}
$$ invarmen of 1

$$
B D R=\text { Frat- fued }+B_{D}^{4} D_{R}
$$

$$
\begin{aligned}
& \begin{array}{l}
\ldots I^{2} \rightarrow \tilde{L} \rightarrow B_{D R}^{+} \rightarrow 0 \\
\ldots-
\end{array} \\
& \Gamma_{\infty}<\Gamma=\operatorname{tal}\left(\pi / /_{\infty}\right) \\
& \Gamma r_{\infty}=\operatorname{Gal}\left(k_{\infty} \mid k\right) \\
& \rightarrow \operatorname{tint}\left(\mu_{p \infty}\right)=\overbrace{p}^{*} \\
& L-c_{1} \\
& m=2 L^{2} \text {. } 0 \text {-module. } \\
& B_{G R}=F_{\operatorname{rac}}\left(\theta_{O R}+\right): B_{i} \\
& B_{D B}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1) is } A R \text { is } 4 \text { field. } \\
& a \cdot B D Q \approx d\left[t^{2}\right]\left[t^{-1}\right] \\
& \text { Imraniont stringers. } \\
& B D R \text { i's disuruer freed. } \\
& \text { 别 - Ain of eivegrest } \\
& \text { I- max ideal. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { BOR }
\end{aligned}
$$

$$
\begin{aligned}
& r--\infty \\
& x \text { - scot pea! vawirky awerls } \\
& \operatorname{lem}_{\operatorname{et}}\left(X_{\pi}, Q_{B}\right) \\
& B D_{R} Q_{Q p} H_{e t}\left(X_{p}\right)^{W}=t_{0 R}(x)
\end{aligned}
$$ define the map $\theta: W(A) \rightarrow O$ ．

Using properties of Witt construction we can see that this is a morphism of rings．It is easy to see that it is onto． Let us describe the kernel $L=\operatorname{Ker}(\theta)$ ．
Choose a primitive p－th root ξ of 1 and consider ele－ ment $z=(1, \xi, \ldots \in R(O)$ ．Set $u=z-1$

Claim．（i）$v(u)=p / p-1$
（ii）The module $\mathbb{Z}_{p} u$ does not depend on choices．
Here p odd．For $p=2$ similar．

