Monday, 21 December 2020 14:03

p-adic-Lecture-9

55

9. Lecture 9. Descent in Tate-Sen theory

Let K be a p-adic field. Fix its algebraic closure \bar{K} and denote by C its completion in norm topology.

Denote by $K_{\infty} \subset \bar{K}$ the field extension of K by all roots of 1 of degrees p^n , and denote by L the completion of K_{∞} in C.

We denote $G = Gal(\bar{K}/K)$ and consider the closed subgroup $H = Gal(\bar{K}/K_{\infty} \subset G)$. We denote by Γ the quotient group $\Gamma = Gal(K_{\infty}/K) = G/H$.

9.1. Generalities on descent. Consider, more generally, the situation where a topological group G acts on a topological field C. Let H be a closed normal subgroup of G, $\Gamma = G/H$, $K = C^G$, $L = C^H$.

Let Rep(G, C) denote the category of finite dimensional C-vector spaces with continuous semi-linear action of the group G. Similarly consider the category $Rep(\Gamma, L)$.

We say that there is a **descent** from C to L if these categories are naturally equivalent.

In general case, consider the pair of adjoint functors

 $R:Rep(G,C)\to Rep)\Gamma, L \text{ and } I:rep(|gam,L)_\to Rep(G,C)$ given by

$$R(V) = V^H$$
, $I(W) = C \otimes_L W$

We have canonical morphisms of functors $i:Id\to R\cdot I$ and $j:I\cdot R\to Id$.

Functor I clearly preserves the dimension. We will see that always $\dim(R(V)) \leq \dim(V)$.

Proposition 9.1.1. The following conditions are equivalent

- (i) Functors I and R are mutually inverse eauivalences of categories
 - (ii) Functor R preserves dimensions.

Indeed, functor R is left exact. If it preserves the dimension then it is exact and conservative.

Consider the adjunction morphism $j: I \cdot R \to Id$. I claim it is an isomorphism.

Since the functor R is conservative it is enough to show that its composition with the functor R, i.e. morphism of functors $R \cdot I \cdot R \to R$ is an isomorphism.

However, we know that the composition $R \to R \cdot I \cdot R \to R$ is an identity morphism and looking at dimensions we see that the morphism $R \cdot I \cdot R \to R$ is an isomorphism.

57

We have seen that not always we have a descent. Here is some criterion for the descent.

Claim. Suppose that for every d the cohomology group $H^1_{cont}(H, GL(d, C))$ is trivial. Then there is a descent from C to L.

Now let us come back to situation when $H = Gal(\bar{K}/K_{\infty})$ and show that in this case we have a descent. This result is due to Tate and Sen. It reduces the study of the cat-

egory Rep(G, C) to the study of much simpler category $Rep(\Gamma, L)$. It is much simpler since the groups Γ is almost isomorphic to \mathbb{Z}_p .

Remark on the proof of this result in the paper by Brion and Conrad.

Let us recall some things from cohomology theory.

58

9.1.2. Cohomology. 1. Discrete groups. $H^0(G,A), H^1(G,A)$. If A is a commutative group we can also define $H^i(G,A)$. One of definitions to use cochain complex $0 \to C^0 \to C^1 \to \dots$ where C^i is the groupd of functions fro G^i to A.

Theorem 9.2. Let M/L be a finite Galois extension of fields with the Galois group G = Gal(M/L). Then

- (i) $H^{i}(G, M^{+}) = 0$ for all i > 0.
- $(ii)\ H^1(G,GL(d,M))=1\ (\mathit{Hilbert\ 90})$
- **9.2.1.** Continuous cohomology. The same definition with continuous functions.

Let us discuss different levels of acyclicity. Suppose we have a complex $aA \to B \to C$ with morphisms d, d'. We say that it is acyclic at place B if it satisfies the following condition

Acyclicity 0. Kerd' = Imd.

Now suppose that our groups are equipped with metrics and differentials d,d' are continuous (i.e. bounded) morphisms. Then we can impose some stronger conditions

Acyclicity 1. There exists a constant C > 0 such that If $b \in B$ is a cycle then there exists an $a \in A$ such that da = b and $||A|| \le C||b||$.

In fact, it is better to consider slightly stronger condition

Acyclicity 2. There exists a constant C > 0 such that for any $b \in B$ we can find an element $a \in A$ such that $IIa|| \leq C||b||$ and $||b - da|| \leq C||d'b||$

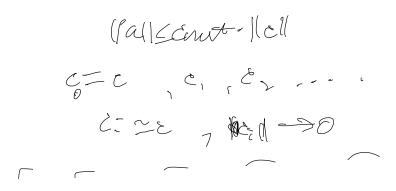
21011 = 01811 110611 = 01811 18-dall = 01188); Consider the situation as before. Let a profinite group H constinuously act on the field $C = C_K$ Let us set $L = C^H$.

Theorem 9.3. Suppose that the complex defining the continuous cohomology is strongly acyclic, i.e. it satisfies the condition Acyclicity 2 at C^1 . Then $H^1(H, GL(d, C) = 1)$.

Kant (of) =0 g= Liebld, cs= Strongly acyclic. Let e fe a coepple The Le Lu, ol (d. d)) contin, Step 1. Europh to forl an open sor. HoreH sxe la is trivial. a serverpords to some repri (P,V) ofti Pleo is triviel. So I can descent to Has fall Me to ~ time entermon of h, For frite entury tilbara

cit scenty Choose swell ne fil of 1ch GL(d. E) and take Hot pa(V) Choose du C'édeal et l. llall=p-vtod rec. 0 = [x[] \land. consoler ideal 7 202, 7 2 hd 1/24/3 = 1 Mct (d, I). U= 1+ Nat(2, D)_ <6(d, C)_ Mo: p-(U). eles Es trivial in celeur compare H'(M, U) and H'(ito, H) M2Mot(d.I). pol ~ U w -> /+ m C: 170 - O, c'r 76 - M. c'=lats, E-smell act

c = 2 , s & 1 = = = | el



approx. by & the > & Lld, mi, c, th = & & C(d, d).

61

Let us see how to prove this stronger acyclicity condition 2 in our case when L is the closure of the field K_{∞} .

Given a cochain $c \in C^1(H, C)$ we can approximate it by a function c' that is locally constant on H and lies in \bar{K} .

Hence we can assume that there exists a subgroup H_0 of finite index in H that corresponds to a finite field extension M/L such that our cocycle reduces to a cocycle $c' \in C^1(H', M)$, where $H' = H/H_0$ is a finite group.

 \sim So we should just check that for all these finite groups we can choose the same constant C in condition Acyclicativ 2.

This would follow from the following theorem due to Tate.

Theorem 9.4. For any finite extension M/L we have $tr(O_M)$ contains the maximal ideal \mathfrak{m} of the ring O_L .

We will prove this later.

Now let us recall ho to prove the acyclicity of the cohomology $H^1(Gal(M/L), M)$.

Reminder from cohomology theory. Let (C, d) be a complex of abelian groups.

Homotopy is on operator $D: C^{\cdot} \to C^{\cdot}$ of degree -!. Such homotopy induces an endomorphism ν_D of the complex C^{\cdot} via $\nu_D = dD + Dd$.

Morphism ν_D induces zero morphism on cohomologies. Thus, if this morpism is identity (or is invertible) this would guaranty acyclicity. In fact this is the standard way to prove acyclicity.

Let M/L be a finite Galois extension. Let us recall how to prove that $H^i(G, M) = 0$ for i > 0. Choose an element $m \in M$ such that tr(m) = 1. Such an element defines a homotopy $D = D_m$. On 1 cochains it is given by $\sum c_i g_i \mapsto \sum c_i g_i(m)$. It is clear that $\nu_D = Id$ that implies acyclicity. such that tr(m) = 1 and ||m|| < 2. Then the corresponding homotopy D_m has norm ≤ 2 and hence Acyclicity 2 condition holds with the constant c = 2.

Plant Glade C) = LI forder.

Describ Pep (6,c) = Dep (5, 1/2).

Is not vedered 6,

Vet(K) = Dep (7, 1/2).

Obstruction is given by

Sen operator Dsen.

Interesting to consider

When years of the consider of the consideration of the consi

T: (V, D: V - V) > Rep [V, L)

Lov selve certonias

Vot.

Compairen between pade fields

and field in char. p.

H-assente veluston book ker

verelue field, then

Let I be a love for field.

a lan p, We vent to abordy; to forithe fold entering. F CF , FORGA, Feartern Film - marin meronal mep-ent. Fins = LXER [70 PC For early F 3 > K chew 0 Fells >> 12 M/1/2 - Flrike ent. to:n >/o is onto to/ On > Oka is alment outs