02/12/2020 OneNote

p-adic-Lectre-5.pdf

Monday, 23 November 2020 14:09

p-adic-Lectre-

36

5. Lecture 5. Some linear and semi-linear ALGEBRA

5.1. Abstract semi-linear algebra, Period rings and admissible representations. It is always easier to solve purely algebraic problems that do not deal with topology. So consider the following abstract situation.

Setup Fix a field F and an group Γ . We denote by $Rep_F(\Gamma)$ the category that consists of pairs (ρ, V) , where V is a finite dimensional vector space over F and ρ is an F linear action of Γ on V.

We do not consider any topology here.

 $Rep_F(\Gamma)$ is a symmetric tensor category over the field F, i.e on this category we have the natural tensor product $\otimes = \otimes_F$. Here $\mathbf{I}_F = (Id, F)$ is a unital object and for any object (ρ, V) we can define the dual object (ρ^*, V^*) .

It turns out that a good way to study this category and some of its interesting subcategories is to consider its semi-linear generalization.

Namely, suppose we have a commutative F-algebra Bwith 1 and an action r of the group Γ on the F-algebra V.

Consider the category $Rep_B(\Gamma)$ that consists of pairs (ρ, M) , where M is a finitely generated B-module and ρ is a semi-linear action of Γ on M, i.e. it satisfies $\rho(g)(bm) =$ $r(b)\rho(m)$.

This is also a tensor category. Moreover, we have a natural tensor functor $E_B: Rep_F(\Gamma) \to Rep_B(\Gamma)$ given 02/12/2020 OneNote

37

by $E_B(V) = B \otimes_F V$. The object $\mathbf{I}_B = E_B(\mathbb{F})$ is the unital object in this category.

OneNote 02/12/2020

Let $K:=B^{\Gamma}$ be the ring of Γ -invariants in B. In fact it is better to define the ring K in categorical terms, namely

$$K = End(\mathbf{I}_B)$$

Assumption 1. We assume that K is a field.

We define the functor $D_B: Rep_F(|Gam) \to Vect(K)$ by $D_B(V) = Hom(\mathbf{I}_B, E_B(V) = E_B(V)^{\Gamma}$.

Note, that we have a canonical morphism $\alpha_V: D_B(V) \otimes_K$ $\mathbf{I}_B \to E_B(V)$

5.2. Case of a field B.

First consider the case when the algebra B is a field. Later we will also consider some rings that are not fields but have good properties

Proposition 5.2.1. Suppose B is a field. then for any V the morphism $\alpha_V: D_B(V) \times_K \mathbf{I}_B \to E_B(V)$ is injective.

Definition. An object $V \in Rep_F(\Gamma)$ is called B-admissible (or simply admissible) if the morphism $\alpha_V: D_B \otimes_K \mathbf{I}_B \to$ $E_B(V)$ is an isomorphism.

Theorem 5.3. Fix a field B as before.

Consider the category $Rep_F(\Gamma)$ of F-representations of the group Γ and distinguish inside it the full subcategory $Adm_F(\Gamma)$ of B-admissible modules. Then

- (i) The category $Adm_F(\gamma)$ is an abelian subcategory closed with respect to subquotients (but not extensions)
- (ii) This is a tensor subcategory, closed with respect to tensor product, symmetric and exterior powers and duality.

Proof of the proposition

(i) Abelian K-linear category. Finite length. Socle of M, notation Soc(M)

Claim. (i) Socle(M) is isomorphic to a direct sum of

02/12/2020 OneNote

simple objects.

(ii) For any simple object L we have Hom(L, Soc(M)) =Hom(L, M)

Now let us consider any K linear category and let I be a simple object such that K = End(I) I claim that for any object M we the natural morphism $Hom(I, M) \otimes_K I \rightarrow$ M is an injection.

Enough to check this for the submodule Soc(M). In this case this is obvious.

41

Proof of the Theorem.

Admissibility condition for V can be written as

$$\dim(D_B(V)) = \dim(V)$$

- (i) Subquotients
- (ii) Let W be admissible and V be any representation. I claim that we have a natural isomorphism

$$D_B(V) \otimes_K D_B(W) \approx D_B(V \otimes W)$$

Indeed, we have an isomorphism $D_W(B) \otimes \mathbf{I}_B \to W \otimes_B \mathbf{I}_B$. Hence

$$E_B(V \otimes W) \approx V \otimes W \otimes \mathbf{I}_B \approx V \otimes (E_B(W)) \approx E_B(V) \otimes D_B(W)$$

this implies that

$$D_B(V) \otimes_K D_B(W) \approx D_B(V \otimes W)$$

(iii) This implies compatibility with symmetric and exterior powers.

(iv) If L is one dimensional admissible, then L^* is also admissible.

42

is one dimensional admissione G-module,, and hence D is admissible.

Now we see that $W^* \approx L^* \otimes \Lambda^{d-1}(V)$ is also admissible.

43

5.4. Regular period rings. Now consider more general case. Let B be an F-algebra with an action of the groups Γ . Let us assume the following conditions

Assumption 1. B is a domain.

We denote by C the field of fractions of B.

Assumption 2. $K = B^{\Gamma}$ coincides with C^{Γ} . In particular, it is a field.

Assumption 3. Let L be any one dimensional representation of Γ . Then any nonzero morphism $\beta: \mathbf{I}_B \to E_B(L)$ is an isomorphism.

Definition. The algebra B satisfying conditions 1-3 is called **regular**

Theorem 5.5. Suppose B is a regular algebra. Then all the statements from theorem above hold for the functor D_B

5.6. Hodge-Tate representations. Let us come back to the field $F = \mathbb{Q}_p$.

Let $\mathcal{L} \in Rep_F(\Gamma)$ be the Tate module. For any $q \in \mathbb{Z}$ we introduce q-twisting by

$$V(q) := V \otimes \mathcal{L}^{\otimes q}$$

Consider the ring of periods $B := C_K$.

A representation $V_1Rep_F(\Gamma)$ is called **Hodge-Tate** if $D_B(V)$ is isomorphic to a direct sum of modules of type $\mathbf{I}_B(q)$.

Proof of 5.6
Injectivity,

DB(U) ATB - FB(U) is injective.

John DE(U) OTE - EE(V)

44

We have seen that by Faltings' theorem all cohomology groups of bprojective smooth varieties are of his type. In fact it is possible to describe the category of Hodge-Tate modules as the category of admissible modules with respect to some algebra B_{HT} .

This is based on the following theorem.

Theorem 5.7. $Hom(\mathbf{I}_B(q), \mathbf{I}_B(r)) = 0$ if $q \neq r$ and equals K if q = r

 $Ext^{1}(\mathbf{I}_{B}(q), \mathbf{I}_{B}(r)) = 0$ nif $q \neq r$ and is one dimensional over the field K if q = r

Y /k - elg-voriety, PM: Smooth

Hod (Ki) - F-module oner F-Re

F= Gel (K)

A A 1/ 1/ 1/ 1

45

BH is regular algare.

Thun (Tate),

Hum (F

P(Q)) See = 0 8/70

. = 12 9=0