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Irreducible representations of product of real reductive groups

Dmitry Gourevitch, Alexander Kemarsky

Abstract. Let G1, G2 be real reductive groups and (π, V ) be a smooth admissible
representation of G1×G2 . We prove that (π, V ) is irreducible if and only if it is the completed
tensor product of (πi, Vi), i = 1, 2, where (πi, Vi) is a smooth, irreducible, admissible
representation of moderate growth of Gi , i = 1, 2. We deduce this from the analogous
theorem for Harish-Chandra modules, for which one direction was proven in [AG09, Appendix
A] and the other direction we prove here.

As a corollary, we deduce that strong Gelfand property for a pair H ⊂ G of real
reductive groups is equivalent to the usual Gelfand property of the pair ∆H ⊂ G×H .
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1. Introduction

Let G1, G2 be reductive Lie groups , gi be the Lie algebra of Gi . Fix Ki - a maximal compact
subgroup of Gi (i = 1, 2). Let M(gi, Ki) be the category of Harish-Chandra (gi, Ki)-modules
and M(Gi) be the category of smooth admissible Fréchet representations of moderate growth
(see [Cas89, Wall92]). We also denote by Irr(Gi) and Irr(gi, Ki) the isomorphism classes or
irreducible objects in the above categories.
In this note we prove

Theorem 1.1. Let M ∈ Irr(g1 × g2, K1 ×K2). Then there exist Mi ∈ Irr(gi, Ki) such
that M = M1 ⊗M2 .

The converse statement, saying that for irreducible Mi ∈ M(gi, Ki), M1 ⊗ M2 is
irreducible is [AG09, Proposition A.0.6]. By the Casselman-Wallach equivalence of categories
M(g, K) 'M(G), these two statements imply

Theorem 1.2. A representation (π, V ) ∈ M(G1 × G2) is irreducible if and only if there
exist irreducible (πi, Vi) ∈M(Gi) such that (π, V ) ' (π1, V1)⊗̂(π2, V2).

Finally, we deduce a consequence of this theorem concerning Gelfand pairs. A pair
(G,H) of reductive groups is called a Gelfand pair if H ⊂ G is a closed subgroup and the
space (π∗)H of H -invariant continuous functionals on any π ∈ Irr(G) has dimension zero or
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one. It is called a strong Gelfand pair or a multiplicity-free pair if dim HomH(π|H , τ) ≤ 1 for
any π ∈ Irr(G), τ ∈ Irr(H).

Corollary 1.3. Let H ⊂ G be reductive groups and let ∆H ⊂ G×H denote the diagonal.
Then (G,H) is a multiplicity-free pair if and only if (G×H,∆H) is a Gelfand pair.

An analog of Corollary 1.3 was proven in [vD09] for generalized Gelfand property of
arbitrary Lie groups, with smooth representations replaced by smooth vectors in unitary
representations.

An analog of Theorem 1.2 for p-adic groups was proven in [BZ76, §§2.16] and in
[Flath79]. For a more detailed exposition see [GH11, §§10.5].

1.1. Acknowledgements. We thank Avraham Aizenbud and Erez Lapid for useful re-
marks.

2. Preliminaries

2.1. Harish-Chandra modules and smooth representations.

In this subsection we fix a real reductive group G and a maximal compact subgroup
K ⊂ G . Let g, k denote the complexified Lie algebras of G,K .

Definition 2.1. A (g, K)-module is a g-module π with a locally finite action of K such
the two induced actions of k coincide and π(ad(k)(X)) = π(k)π(X)π(k−1) for any k ∈ K
and X ∈ g .

A finitely-generated (g, K)-module is called admissible if any representation of K
appears in it with finite (or zero) multiplicity. In this case we also call it a Harish-Chandra
module.

Lemma 2.2 ([Wall88], §§4.2). Any Harish-Chandra module π has finite length.

Theorem 2.3 (Casselman-Wallach, see [Wall92], §§§11.6.8). The functor of taking K -finite
vectors HC :M(G)→M(g, K) is an equivalence of categories.

In fact, Casselman and Wallach construct an inverse functor Γ : M(g, K) → M(G),
that is called Casselman-Wallach globalization functor (see [Wall92, Chapter 11] or [Cas89]
or, for a different approach, [BK]).

Corollary 2.4.

(i) The category M(G) is abelian.

(ii) Any morphism in M(G) has closed image.

Proof. (i) M(g, K) is clearly abelian and by the theorem is equivalent to M(G).

(ii) Let φ : π → τ be a morphism in M(G). Let τ ′ = Imφ , π′ = π/ kerφ and φ′ :
π′ → τ ′ be the natural morphism. Clearly φ′ is monomorphic and epimorphic in the category
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M(G). Thus by (i) it is an isomorphism. On the other hand, Imφ′ = Imφ ⊂ Imφ = τ ′ .
Thus Imφ = Imφ .

We will also use the embedding theorem of Casselman.

Theorem 2.5. Any irreducible (g, K)-module can be imbedded into a (g, K)-module of
principal series.

Lemma 2.2, Theorems 2.3 and 2.5 and Corollary 2.4 have the following corollary.

Corollary 2.6. The underlying topological vector space of any admissible smooth Fréchet
representation of moderate growth is a nuclear Fréchet space.

Definition 2.7. Let G1 and G2 be real reductive groups. Let (πi, Vi) ∈ M(Gi) be
admissible smooth Fréchet representations of moderate growth of Gi . We define π1 ⊗ π2

to be the natural representation of G1 ×G2 on the space V1⊗̂V2 .

Proposition 2.8 ([AG09], Proposition A.0.6). Let G1 and G2 be real reductive groups.
Let πi ∈ Irr(gi, Ki) be irreducible Harish-Chandra modules of Gi . Then π1 ⊗ π2 ∈ Irr(g1 ×
g2, K1 ×K2).

We will use the classical statement on irreducible representations of compact groups.

Lemma 2.9. Let K1, K2 be compact groups. A representation τ of K1×K2 is irreducible
if and only if there exist irreducible representations τi of Ki such that τ ' τ1⊗ τ2 . Note that
τi are finite-dimensional, and ⊗ is the usual tensor product.

Corollary 2.10. Let G1 and G2 be real reductive groups and (πi, Vi) ∈M(Gi). Then we
have a natural isomorphism (π1 ⊗ π2)HC ' πHC1 ⊗ πHC2 .

3. Proof of Theorem 1.1

Throughout the section ρi always denote irreducible representations of K1 , σj always denote
irreducible representations of K2 . For a representation V of K1 (or of K2 ) we will denote by
V ρ (resp. by V σ ) the corresponding isotypic component.
Let K := K1 ×K2 and g := g1 × g2 .

Let (π, V ) be an irreducible admissible (g, K) - module. We show that there exist
non-zero irreducible and admissible (g1, K1)-module V1 and (g2, K2)-module V2 and a non-
zero morphism V1

⊗
V2 → V . From the irreducibility of V and V1

⊗
V2 , we obtain that

V ' V1

⊗
V2 .

Let’s first find the module V1 . Choose τ ∈ Irr(K) such that the isotypic component
V τ is non-zero. By Lemma 2.9 τ ' ρ ⊗ σ for some ρ ∈ Irr(K1), σ ∈ Irr(K2). Let W be
the (g1, K1)-module generated by V τ . Note that since the actions of (g1, K1) and (g2, K2)
commute, W is also a K2 -module and W = W σ . We claim that W is an admissible (g1, K1)-
module. Indeed, let ρ1 be an irreducible representation of K1 . Then W ρ1 ⊆ V ρ1⊗σ and as a
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corollary
dim(W ρ1) ≤ dim

(
V ρ1⊗σ

)
<∞,

since V is an admissible (g, K)-module.

Now by Lemma 2.2 W has finite length and thus there is an irreducible admissible
(g1, K1)-submodule V1 ⊆ W . Thus, we finished the first stage of the proof.
Let

W ′
2 := Hom(g1,K1)(V1, V ).

Clearly, W ′
2 6= 0. Since actions of (g1, K1) and (g2, K2) on V commute, W ′

2 has a natural
structure of (g2, K2)-module. Take any non-zero morphism L ∈ W ′

2 and let W2 ⊂ W ′
2 be the

(g2, K2)-module generated by L .

Let us show that W2 is admissible. Choose σ2 ∈ Irr(K2). Let ρ2 ∈ Irr(K1) such that
V ρ2

1 6= 0. Then V ρ2
1 generates V1 and thus for any L′, L′′ ∈ W σ2

2 if L′ agrees with L′′ on
V ρ2

1 then L′ = L′′ . This gives a linear embedding from W σ2
2 into the finite-dimensional space

HomC(V ρ2
1 , V ρ2⊗σ2). Thus W2 is an admissible (g2, K2)-module.

Thus W2 has finite length and therefore there is an irreducible admissible submodule
V2 ⊆ W2 . Define a linear map φ : V1

⊗
V2 → V by the formula

φ(v ⊗ l) := l(v)

on the pure tensors. Clearly, this is a non-zero (g, K)-map.

The result V1

⊗
V2 ' V follows now from the irreducibility of V and of V1

⊗
V2

(Proposition 2.8).
Remark 3.1. An alternative way to prove this theorem is to remark that the category M(g, K)
is equivalent to the category of admissible modules over the idempotented algebra H(g, K)
of K -finite distributions on G supported in K (see [Flath79]), then show that this algebra is
the tensor product of H(gi, Ki) and thus the proofs from [BZ76, Flath79] extend to this case.
We estimate that such proof would be of similar length, but slightly less elementary.

4. Proof of Theorem 1.2 and Corollary 1.3

Proof. [Proof of Theorem 1.2] First take πi ∈ Irr(Gi), for i = 1, 2. Then πHCi ∈ Irr(gi, Ki)
and by Proposition 2.8 πHC1 ⊗πHC2 ∈ Irr(g1×g2, K1×K2). By Corollary 2.10 (π1⊗π2)HC '
πHC1 ⊗ πHC2 ∈ Irr(g1 × g2, K1 ×K2). This implies π1 ⊗ π2 ∈ Irr(G1 ×G2).

Now take π ∈ Irr(G1 × G2). Then πHC ∈ Irr(g1 × g2, K1 × K2) and by Theorem
1.1 there exist (Mi) ∈ Irr(gi, Ki) such that πHC ' M1 ⊗M2 . By Theorem 2.3 there exist
πi ∈ Irr(Gi) such that πHCi 'Mi . Then πHC ' πHC1 ⊗ πHC2 ' (π1 ⊗ π2)HC and by Theorem
2.3 this implies π ' π1 ⊗ π2 .

Corollary 1.3 follows from Theorem 1.2 and the following lemma.

Lemma 4.1. Let H ⊂ G be real reductive groups. Let (π,E) and (τ,W ) be admis-
sible smooth Fréchet representations of moderate growth of G and H respectively. Then
HomH(π, τ) is canonically isomorphic to Hom∆H(π ⊗ τ̃ ,C), where τ̃ denotes the contragre-
dient representation.
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Proof. For a nuclear Fréchet space V we denote by V ′ its dual space equipped with the
strong topology. Let W̃ ⊂ W ′ denote the underlying space of τ̃ . By the theory of nuclear
Fréchet spaces ([T67, Chapter 50], we know HomC(E,W ) ∼= E ′⊗̂W and HomC(E⊗̂W̃ ,C) ∼=
E ′⊗̂W̃ ′ . Thus we have canonical embeddings

HomH(π, τ) ↪→ Hom∆H(π ⊗ τ̃ ,C) ↪→ HomH(π, τ̃ ′)

Since the image of any H -equivariant map from π to τ̃ ′ lies in the space of smooth vectors˜̃τ , which is canonically isomorphic to τ , the lemma follows.
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