
High Dimensional Expanders - Homework 2

Due: December 31, 2018

Instructions: You are welcome to work and submit your solutions in pairs. We prefer that you
please type your solutions using LaTex. Please email your solution to yotamd@weizmann.ac.il.

Remark Unless stated otherwise, all simplicial complexes in the exercise are pure, and
equipped with a distribution on the top-level faces.

1 From One-Sided HDXs to Two-Sided HDXs

In class we talked about the fact that constructing bounded-degree families of two-sided HDXs
is a difficult task. In this exercise we show how to obtain a two-sided HDX from a one-sided
HDX. More specifically, In this exercise we show we can easily construct a two-sided HDX from
a one-sided HDX, by moving to the k-skeleton. Let X be a d-dimensional simplicial complex,
and let k < d. Recall that the k-skeleton of X is the simplicial complex obtained by removing
all faces of dimension ≥ k + 1, that is:

X(k) =
k⋃

j=−1
X(j).

The distributions (πk, ..., π0) on the different levels on the complex X(k) are the same as in
the original simplicial complex X. Note that even when πd was uniform, πk is not necessarily
uniform.

We shall prove that if X is a λ-one-sided link expander, then its k-skeleton is a λ′-two-sided
link expander, where λ′ = max{λ, 1

d−k+1}.

1. Recall that in class, we proved that for every 2-dimensional simplicial complex X and
λ < 1. If

(a) Its 1-skeleton is connected.

(b) For every v ∈ X(0), it holds that Xv is a λ-one-sided spectral expander. In other
words, if the eigenvalues of the adjacency operator Av are

λv1 ≥ λv2 ≥ ... ≥ λvkv ,

then λv1 ≤ λ.

Then the 1-skeleton of X is a λ′ = λ
1−λ one-sided spectral expander.

We now prove a similar bound but from the opposite direction. Let X be a 2-dimensional
simplcial complex, and assume that for every v ∈ X(0), all the eigenvalues of the adjacency
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operator of Xv are bounded by λ from below. I.e. if the eigenvalues of the adjacency
operator Av are

λv1 ≥ λv2 ≥ ... ≥ λvkv
then for any 1 ≤ i ≤ kv, λvi ≥ λ. Show that all the eigenvalues of the one-skeleton are
bounded from below by λ

1−λ .

Remark Recall that any graph without selfloops has a negative eigenvalue. For λ < 0,
λ < λ

1−λ , so this means that the lower bound actually improves compared to the top-level.

2. Let k < d be positive integers. Recall that a k-skeleton of a d-dimensional simplicial
complex X is X ′ =

⋃k
i=−1X(i). Deduce from the previous item, that for for any d-

dimensional simplicial complex X, the eigenvalues of the links of the k-skeleton are lower
bounded by − 1

d−k+1 .

Note that in this item we didn’t need any expansion properties for this item!

Remark This bound is tight. For example, consider the complete d-partite complex -
the clique-complex obtained from the d-partite graph, with uniform probability on X(d).
The underlying graph of the link of a face σ ∈ X(k) is the complete (d− k)-partite graph.
This graph has a negative eigenvalue of −1

d−k+1 .

2 Upper and Lower Walks in the Complete Complex

This question analyzes the expansion of the upper walk in the complete complex. In part A we
give a lower bound on the second eigenvalue of the upper walk, and in part B we show that
this lower bound is tight in the complete complex, and find a combinatorial description to the
eigenspaces of DU .

Recall that when we consider the upper walk on the edges, we actually consider a graph
G = (V = X(1), E = EX(2)) where we connect two elements e1, e2 ∈ X(1) if their union is
contained a triangle in X(2).

Part A:

1. Let X be the 2-dimensional complete complex. Show that the second eigenvalue of
D↘1U↗2 is at least 1

2 − on(1). Find an explicit vector f ∈ `2(X(1)) s.t.

〈D↘1U↗2f, f〉
〈f, f〉

≥ 1

2
− o(1)

Hint: Consider the indicator for star around a vertex v ∈ X(0), i.e. the set

Ev = {e ∈ X(2) : v ∈ e}.

What is the probability of choosing an e′ /∈ Ev when taking a step in the upper walk, given
that you begin with some edge e ∈ Ev?
How does this connect the following expression?

〈D↘1U↗21Ev ,1Ev〉
〈1Ev ,1Ev〉
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2. Generalize this to the d-dimensional complete complex and D↘d−1U↗d. That is, Show
that the second eigenvalue of D↘d−1U↗d is at least

(
1− 1

d+1

)
− on(1). Find an explicit

vector f ∈ `2(X(d− 1)) s.t.

〈D↘d−1U↗df, f〉
〈f, f〉

≥
(
1− 1

d+ 1

)
− o(1)

3. (bonus) is this bound true for an arbitrary simplicial complex on n vertices?

Part B:

1. Let X be the 2-dimensional complete complex on n vertices, and let f : X(1) → R be
some real valued function on the edges. Show that we can decompose f to three parts:

f(x) = U↗0U↗1f
=−1 + U↗1f

=0 + f=1,

where

• U↗0U↗1f
=−1 is constant.

• D↘−1f=0 = 0.

• D↘0f
=1 = 0.

Show this decomposition is orthogonal.

Hint: Use the well-known fact from linear algebra that if U is adjoint to D (U = D∗)
then (kerD)⊥ = ImU .

2. Recall that
D↘1U↗2 =

1

3
I +

2

3
M+

1 ,

where M+
1 is the non-lazy upper walk. Show that in the complete complex the following

identity is also true:

U↗1D↘0 =
1

n− 1
I +

n− 2

n− 1
M+

1 ,

where M+
1 is the same non-lazy operator. Conclude that

D↘1U↗2 =

(
1

3
− 3

4(n− 2)

)
I +

(
2(n− 1)

3(n− 2)

)
U↗1D↘0.

3. Use the previous item to show that U↗0U↗1f
=−1, U↗1f

=0 and f=1 are eigenvectors of
D↘1U↗2 (when they are different from 0). Calculate their respective eigenvalues. In this
item you may assume that n is large, and calculate the eigenvalues asymptotically.
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