Hardness Of Approximation
Lecture 2: Hardness of gap(0.99, 1 — €)-3LIN, LTCs, and Fourier Analysis

Instructor: Irit Dinur and Amey Bhangale Scribe: Orr Paradise

The PCP theorem implies N'P-hardness of approximating formula satisfiability. In this lecture we will
take our first steps towards showing NP-hardness of approximating solutions to linear equations.

Definition 0.1. An instance of gap(s,¢)-3LIN is a system of linear equations over Fy, with each equa-

tions in the system consisting of three variables.!

The problem is distinguishing between instances for
which there is an assignment that satisfies at least a c-fraction of equations, and instances in which no

assignment satisfies more than an s-fraction of equations.
Theorem 0.2. For alle >0, gap(3 +¢,1 — €)-3LIN is N'P-hard.

Theorem 0.2 is an example of the strong results obtained using the PCP theorem: For any instance
of 3LIN, finding an assignment that satisfies at least half of the equations is trivial (try the all-true and
all-false assignments), and if the instance is solvable then a solution can be efficiently found by Gaussian
elimination. However, if the instance is even slightly not-solvable (i.e. almost all of its equations can be
simultaneously satisfied), then finding a solution even slightly better than trivial is hard.

Today we will develop some of the tools used in obtaining this result, and obtain a weaker version of

it:

Theorem 0.3 (Theorem 0.2, weaker). For all € > 0, gap(0.99,1 — £)-3LIN is N'P-hard.

1 Discrete Fourier analysis

Remark 1.1. For convenience, we switch to multiplicative Boolean notation: bit b € {0,1} is replaced
with (—1)® € {£1}, and a Boolean function f: {0,1}" — {0,1} is replaced with h: {0,1}" — {£1}
given by h(zx) = (—1)/®),

We define an inner product on {*1}?" by (f,g) = E.[f(z)g(z)]. The Fourier characters are
Xa: {0,1}" — {£1} given by xu(z) == (—1)%=i=1 %% for each a € {0,1}". Observe that these func-
tions are multiplicative, i.e. xo(z +Y) = Xa() - Xa(y), which is analogous to linearity in the different
notation of Remark 1.1.

Claim 1.2. The Fourier characters form an orthonormal basis for {£1}2".

Proof. For any a,b € {0,1}",

{(Xa> Xb) = Eg

ﬁ (_1)(ai+bi>xi] _ H B, [(-pere]

i=1 i=1

where the rightmost inequality uses independence of the z;’s. Now, for any ¢ € [n], if a; # b; then
E,,[(—1)@itb)?] = B, [(-1)%] = 0 and so if a # b we have (x4, Xs) = 0. On the other hand, if
a; = b; then B, [(—1)(@itt)zi] = B, [(=1)°] = 1, therefore if @ = b then (x4, xs) = 1. We showed that

{Xa}aefo,13» s a set of 2™ orthonormal vectors and thus is an orthonormal basis for {£1}%". O

1We assume instances do not have contradictions. That is, that each equation in the system has an assignment that
satisfies it.

Orr Paradise — Lecture 2: 2

As with any orthonormal basis, each function f: {0,1}"™ — {%1} can be uniquely written as a linear

combination of the Fourier characters; f = ZaE{O 1}n f(a)xa, where f:: (f, Xa)- By orthonormality,

(f. f) = <Z Fla)xa: Y f(b)xb> =" @) F®) (xarxp) = D fla)?
a b a,b a

This identity, known as Parseval’s equality, implies that »_ Fla)? = Ey[f(2)?] =1, since f(x) € {£1}.
These basic facts will suffice for now, but we’ve barely scratched the surface discrete Fourier analysis—

the reader is enthusiastically referred to [ODol4] for more.

2 Locally testable codes

Theorem 0.3 is proved by a reduction from (a strong version of) the PCP theorem which replaces each
constraint with a gadget based on a locally testable code (LTC). An error correcting code C' C {0,1}™ is
a set of codewords such that any two distinct codewords are far apart. Such a code is locally testable if
it admits a tester T that distinguishes between inputs in the code and those far from it based only on
a few queries. A formal and deeper discussion can be found in [Goll7, Chapter 13]; we move on to two

concrete examples.

2.1 The Hadamard code

Viewing elements of {0, 1}2" as Boolean function on n bits, the Hadamard code, denoted Had C {0,1}2",
consists of all linear functions Boolean functions; that is, f € C if and only if for all z,y € {0,1}™ it
holds that f(x) + f(y) = f(x + y), with addition over Fa. The local test tests that this property holds

for a random choice of x and y as follows.
Algorithm 2.1 (Hadamard codeword test). Given access to a function f: {0,1}" — {0,1}:

1. Sample z,y € {0,1}" uniformly at random.

2. Query f(z), f(y) and f(z +y).
3. Accept if and only f(z) + f(y) = f(z +y).

The tester issues three queries to f, and it is clearly complete: it accepts a linear f with probability

1. The soundness of the Hadamard tester is captured by the following claim.

Claim 2.2. For any ¢ € [0,1/2], if f: {0,1}" — {0,1} is accepted by the Hadamard tester (Algo-
rithm 2.1) with probability at least % + €, then there exists a Hadamard codeword h € Had such that
P [f(2) = h(@)] = & +e=.

Proof. Fourier analysis is more convenient in multiplicative notation, so we will equivalently show that
for each g: {0,1}" — {£1}, if P, [g(z)g(y) = g(z + y)] > 3 +¢ (i.e. the test accepts g w.p. at least 1 +¢)
then there is a € {0,1}" such that P,[g(z) = x4(x)] > 5 + &. This suffices, as the Fourier characters
{Xa}a form the Hadamard code Had.

The first step is tying the agreement of g with any x, to g’s respective Fourier coefficient:

9(a) = Ec[g(x)xa(2)] = Pa[g(2) = Xa(2)] + (=1)P2[g(z) # Xa(z)] = 2 Pe[g(z) = Xa(x)] =1 (1)

At the other end, we tie the acceptance probability of g with its Fourier coefficients, observing that

the equation g(x)g(y)g(z + y) = 1 holds if and only g is accepted when the tester samples x,y € {0,1}",

Orr Paradise — Lecture 2: 3

and is equal to —1 otherwise. Thus
Eayl9(@)g(y)g(z +y)] =2 Plg is accepted] — 1 > 2¢ (2)

Combining Equations (1) and (2), what’s left is to find an a € {0,1}" with g(a) > E; ,[g(z)g(y)g(z + v)].
To do this, we utilize our newly-gained knowledge in Fourier analysis:

Eqylg(@) - 9(y) - 9(x +y)] KZQ a)Xa(x) <Zg Xo(y > (xcm+y)) (3)

= Z g(a) - g(d) - g(c) - Ez y[xa(@)x6(y)Xxc(z +y

= > 4(a) - §(b) - 9(0) - Eulxa(@)xe(@)] - By o (1) xe(v)]

Where the last two equations use the independence of x and y, multiplicativity of x., and orthonor-
mality of the Fourier characters. Lastly, we recall that > g(a)? = 1 since g is Boolean, so letting amax

be a maximizer of max, g(a), we have

E.ylg(2) - g(y) - 9(x +y)] = Z §(a)3 < 9(amax) - ﬁ(a)2 = g(amax)

a,b,c a

2.2 LTC soundness: 99% vs. 1%

In general, the soundness of LTC tests has different interpretations depending on the correlation of the

input with the code.

e Suppose the test passes with probability 99%. A stability result shows that if an input passes with
high probability then it is close to some codeword. An example for such a result is Claim 2.2 when

e is close to 1/2.

e At the other end, if an input passes the codeword test with probability slightly better (say, 1%
more) then a random input, then it is nontrivially correlated with a codeword. Claim 2.2 resides

in this regime as well, when taking ¢ to be close to 0.

— As a follow-up, we might seek to obtain a list-decoding bound on the number of codewords
that can be nontrivially correlated with the input. For the Hadamard code, this corresponds
to a bound on the number of a € {0,1}" for which g(a) > e. Recalling that Y, g(a)? =1 for

Boolean g, we have that at most 1/¢2 codewords can be e-correlated with g.2

2.3 The long code

We say that f: {0,1}" — {0, 1} is a dictator function if there exists ¢ € [n] such that for all x € {0,1}"
it holds that f(z) = z;. The long code consists of all dictator functions on n bits, and is denoted by
Dict. It’s local test is described below:

2In fact, this bound is tight: A Boolean function f: {0,1}* — {£1} is bent if |f(a)\ =27%/2 for all a. For any ¢ = 2~*
consider a bent function f: {0,1}* — {£1} with domain extended to {0,1}" by “ignoring” the last n — k coordinates. For
more on bent functions and their applications, see [ODol4, Section 6.3].

Orr Paradise — Lecture 2: 4

Algorithm 2.3. Fix a parameter § € [0, 1]. Given access to a function f: {0,1}" — {0,1}:
1. Sample z,y € {0,1}" uniformly at random.

2. Sample p € {0, 1}" according to the following process. For each i € [n], with probability J sample
; uniformly at random from {0, 1}, and with probability 1 — d set u; = 0.

3. Accept if and only if f(z) + f(y) = f(x +y + p).

Algorithm 2.3 is the same as the Hadamard code test (Algorithm 2.1), except for the addition of a

notse vector p which is used to distinguish between a dictator function and any other linear function.

Claim 2.4 (Completeness of the long code test). If f € Dict then the long code test accept with
probability 1 — /2.

Proof. Suppose f(z) = z; for all z. The test passes if and only if u; = 0, which occurs with probability
1-4¢/2. O

The soundness claim is proved using Fourier analysis so we switch back to multiplicative notation,
replacing addition with multiplication and bit b with (—1)°. In particular, the test checks that g(z)g(y) =
g(x +y+ p), where u; is uniformly sampled from {£1} with probability §, and is set to be 1 with
probability (1 — 9).

Claim 2.5 (Soundness of the long code test). For a € {0,1}", the Hamming weight of a, denoted |al,
is the number of i € [n] for which a; = 1. For all 6 € [0,1], if g: {0,1}™ — {£1} is accepted by the long
code test with probability at least 3 + ¢ then max, g(a) - (1 — §)lel > 2¢.

Claim 2.5 means that if g passes the test with good probability then not only is it correlated with a

multiplicative function x,, but it must be that a is sparse, i.e. that y, depends on few variables.

Proof. The proof follows the proof of Claim 2.2, except we need to account for the noise vector in
Equation (3). For each a € {0,1}",

E,[Xa(1)] = B, [H <—1>a“”] = [IE. (=) = =)

i=1

where the rightmost equality is because if a; = 0 then E,,[(—1)*#i] = 1, and otherwise E,,, [(—1)%#i] =
Eul(=D*]=1-0.

Now, just as we calculated Equation (3), we have

Eaylg(@) - g(y) - gz +y+m)] =D d(a)-Gb) - §(0) - Ealxa(®)xe(®)] - By [xo(1)Xe(®)] - Eplxe(w)]

a,b,c

=> 9@’ (1~)" < maxg(a) - (1 - §)!"

3 Hardness of gap(0.99,1 — §)-3LIN

With these tools in hand, we may now begin working towards a proof of Theorem 0.3. The proof is by

reduction from (a strong version of) the PCP theorem:

Theorem 3.1. For alle > 0, gap(e, 1)-LabelCover is N'P-hard. Furthermore, N'P-hardness holds even

when instances G = (U, V, E,II) are guaranteed to have the following properties:

Orr Paradise — Lecture 2: 5

2y

2y

Figure 1: An example of a projective constraint II,, ,: [7] — [3]. Notice how the top layer projects onto
the bottom one.

e Biregularity: any two vertices on the same side (U or V') have the same degree.

e Projectivity: for any {u,v} € E, each o, € ¥,, has ezxactly one o, € X, such that (oy,0,) € I ,.
In other words, we can think of IL,, ,, as a function IL,, ,: ¥, — 3. (See Figure 1)

vl variables (see Figure 2),

The main idea behind the reduction is to replace each vertex w with 2
and add linear equations asserting that an assigment to these variables corresponds to a long code of a
label o, € ¥,, that satisfies the constraints in which w participates. Rather than explicitly describing
the system of linear equations, we shall describe a probabilistic verifier of these assertions—the equation
system is obtained by enumerating over the random coins of the verifier just as in the equivalence of the
“proof system” and the “gap(-)-LabelCover” views of the PCP theorem.

[Zw

Given a biregular and projective instance G' = (U, V, E, II) of LabelCover, create 2/>+| variables for

each w € U U V. Given access to an assignment, the verifier runs as follows:

1. Sample a uniformly random edge {u,v} € E. Denote the assignment to the 21=ul variables created
from u by f:{0,1}*« — {0,1}. Similarly, let g: {0,1}** — {0,1} denote the assignment to the

2/=v1 variables obtained from v.
2. Do one of the following tests with probability 1/3 each:

(a) Run the long code test (Algorithm 2.3) on f.
(b) Run the long code test on g.

(c) Check that the labels (allegedly) encoded by f and g are consistent with the constraint II,, ,:
uniformly sample z € {0,1}** and y € {0,1}* and check that

fly) + f(@+y) =g() (4)

where, for each o € ¥,,, the oth coordinate of Z is Z, = =g

u,v(0)"

Before turning to the analysis of the reduction, let’s have another look at the consistency test. Suppose
[and g are indeed long codes of labels o, € ¥, and o, € X, respectively. Then, f(z) = Z,, = Tm, , (0.)
and g(z) = z,,. Now, if o, and o, satisty I, ,, (i.e., IL, ,(0y) = 0y)) then Equation (4) holds for any
choice of x,y.

Why do we add and subtract f(y) to the consistency check? While z is uniformly distributed in
{0,1}®+, ¥ is not at all uniformly distributed in {0, 1}*«, so if we were to check only that f(7) = g(z), an
adversary could corrupt an encoding of a non-satisfying label on the support of Z so that the consistency
check passes. In other words, step 2a tests that f is close to some long code codeword f’, but such
closeness only guarantees that f and f’ agree on a uniformly random input, while Z is not uniformly
random. This pitfall is avoided using self-correction: with y € {0, 1}« distributed uniformly at random,
the queries to y and y 4 Z are uniformly random (though dependent), and if f was a valid codeword then

the self-corrected value f(y) + f(y +) will equal the original one f(Z).

Orr Paradise — Lecture 2: 6

f(000) | £(001) | £(010) | £(011)
f(100) | f(101) | f(110) | f(111) ——-

Figure 2: The reduction replaces each vertex (circle) with variables corresponding to the long code of a
label (square). In this example, |, | = 3 for each v € U and |3, | = 2 for each v € V.

3.1 Up next

The reduction almost works (consider the all-zeros assignment). In the next lecture, we will fix the

reduction and analyze its soundness, proving Theorem 0.3.

References

[ODo14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. ISBN:
978-1-10-703832-5. URL: http://www.cambridge.org/de/academic/subjects/computer-
science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-

boolean-functions.

[Gol17] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017. ISBN:
978-1-107-19405-2.

http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions

	Discrete Fourier analysis
	Locally testable codes
	The Hadamard code
	LTC soundness: 99% vs. 1%
	The long code

	Hardness of gap(0.99, 1-)(0.99, 1-)(0.99, 1-)(0.99, 1-)- 3LIN
	Up next

