Hardness Of Approximation
Lecture 5: Finishing NP-hardness of gapBLin(% +0,1—90)

Instructor: Irit Dinur and Amey Bhangale Scribe: Roie Salama

1 Reminder from Last Week

Last week we described a reduction to gap-3Lin. The sketch is as follows:
1. Start with an instance I; of gap-3Lin(0.99,1 — ¢€).
2. Construct a ”Smooth linear Label Cover” by doing smooth parallel repetition on I7.

3. Construct the final instance I of gap-3Lin.

Check the previous lecture notes for more details. In this lecture, we prove the completeness and
soundness of the reduction, thereby finishing the proof of NP-hardness of gap—3Lz'n(% +0,1—9) for every
constant 4 > 0.

2 Completeness and Soundness

2.1 Completeness
Claim 2.1. Ifval(l1) =1—e=val(lz) > 1— ke

Proof. In this case, the instance I; is (1 —¢) satisfiable. We fix this assignment o to the variables and set
fu to be the Hadamard encoding of ¢ restricted to the variables in u. Clearly, this assignment satisfies
the folding property as it is coming from one fixed global assignment. Now, by union bound for at least
1 — ke fraction of U, all the constraints are satisfied by o. Thus, for these f,’s, the 3Lin test passes with
probability 1. Hence, overall the acceptance probability is 1 — ke and thus val(I3) > 1 — ke. O

2.2 Soundness

Claim 2.2. Assume 6 > O(BVEk). If Val(Iy) > 1+ 8 = the value of the Label Cover instance > %

Proof. By averaging, for at least g of the u's , f, passes the test with probability greater than % + g.
Now, using Claim 4.1 from the previous lecture, for every such u we have | f,(S) |> & for some S C [3k]
such that the vector 1g satisfies the clauses C},C¥, ..., Cy (constraints corresponding to ). Call these
w’s "good” , and also these S’s ”good”.

Note that good S’s are "rare” , in the sense that for every function f, , at most 5% of it’s coefficients
are greater than d , that follows from the fact that 3¢ f,(S)% = 1.

For by the sub-code covering property, we have

fu(S) = E _ [fu(z)xs(z)]

z€{0,1}3k

(Claim 3.2, lecture 4) = E E [Fuly™)xs (™) £ O(BVE)
vEN (u) y{0,1}3k =28k

= EvEN(u) [ﬁJ(Siuv)] + O(/B\/%)
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Here, S¥v is an operation which takes a string from the domain of f, to the domain of f, in a natural

way by deleting the extra coordinates. Thus, for a good S, we have
f(gluv VEk 5

assuming 0 > O(BVk). Note that for an edge (u,v) the label pair (1g, 1g1.., ) satisfies the constraint on

the edge (u,v) for every good S. Thus, the above inequality says that for a typical neighbor of a good

u, the Fourier coefficient corresponding to the projected label is also heavy. More formally, by averaging
argument, at least ¢ fraction of v € N(u), | f,(S+w)

is §
4
This gives a randomized strategy to get a non trivial satisfying assignment to the Label Cover instance.

For every good u, assign a random label from the following set
Ly = {1s | fu(S) > 6 and 1g satisfies C,C¥ ..., C}}.

Also, for v € V, assign a random label from the following list

t={ie 1502 3}

(Here f, is embedded in f, and it does not matter which u one chooses, as we get the same function
because of the folding.) We know |L,| is of size at most 2. For a good u, |£,| > 1 and suppose we
pick a label 1g. Using the above argument, for at least g fractlon of v € N(u), the label 1g..,, is present
in £,. For such neighbors, the probability that the constraint on (u,v) is satisfied by the randomized
labeling is at least ﬁ (this is because we have to pick the correct label from a list of size at most m)
Thus in expectatlon for at least ¢ 5 fraction of u (these are the good w’s), for at least 2 fractlon of the

neighbors of u, the constraint is satlsﬁed with probability at least 2 E Overall, at least fractions of

128
the constraints are satisfied by the randomized labeling in expectation. O

Recall that we are setting k = ﬁ and g = ko% Thus, the in the soundness case, the value of the
Label Cover instance is at most 2-2(%) = 2-2*+"*) anq hence from the above claim val(Iz) is at most %Jr
O(BVk) in the soundness case for large enough k. Therefore we get that gap-3Lin ( +0 (kO T ) ;1= k%)
is NP-hard. Setting k£ a large enough constant proves NP-hardness of gap—3Lin(§ + 4,1 — 4) for every
constant 6 > 0 .

3 Boolean functions and influence

Definition 3.1. for f: {—1,+1}" — {—1,+1} define its i'" influence by

Infi(f) = Procq-11y01f (@) # )],
where 9 means flipping the i-th bit of x .

For example, for the parity function

Parity(zq, ..., Hml

Vi : Inf;(Parity) =1
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It is easy to see that the i*" influence is precisely the following:

Infi(f) = Zf(S)Z

i€S

Next, we define

Infl=0(f) = (1 - 5)5171 f ()2

€S
called the d-attenuated influence. While there can be as many as n coordinates of a Boolean function

whose influence is large (eg. Parity has all the influences 1), it is bounded in case of J-attenuated

influences of any Boolean function.
Claim 3.2. for every f:{-1,+1}" — {-1,+1}

_ 1
i€ ] | Infi" () 2 e} 1<
Proof. 35 Inf{* ™" (f) = Sies(1 = )51 f(8)? = Xgepy | 1 (1= )5S < S 5/(9) <
and the result follows (because otherwise the sum on the e-heavy influences alone would exceed %)
O
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