
Hardness Of Approximation

Lecture 5: Finishing NP-hardness of gap3Lin(1
2 + δ, 1− δ)

Instructor: Irit Dinur and Amey Bhangale Scribe: Roie Salama

1 Reminder from Last Week

Last week we described a reduction to gap-3Lin. The sketch is as follows:

1. Start with an instance I1 of gap-3Lin(0.99, 1− ε).

2. Construct a ”Smooth linear Label Cover” by doing smooth parallel repetition on I1.

3. Construct the final instance I2 of gap-3Lin.

Check the previous lecture notes for more details. In this lecture, we prove the completeness and

soundness of the reduction, thereby finishing the proof of NP-hardness of gap-3Lin( 1
2 +δ, 1−δ) for every

constant δ > 0.

2 Completeness and Soundness

2.1 Completeness

Claim 2.1. If val(I1) = 1− ε⇒ val(I2) ≥ 1− kε

Proof. In this case, the instance I1 is (1− ε) satisfiable. We fix this assignment σ to the variables and set

fu to be the Hadamard encoding of σ restricted to the variables in u. Clearly, this assignment satisfies

the folding property as it is coming from one fixed global assignment. Now, by union bound for at least

1− kε fraction of U , all the constraints are satisfied by σ. Thus, for these fu’s, the 3Lin test passes with

probability 1. Hence, overall the acceptance probability is 1− kε and thus val(I2) ≥ 1− kε.

2.2 Soundness

Claim 2.2. Assume δ � O(β
√
k). If V al(I2) ≥ 1

2 + δ ⇒ the value of the Label Cover instance ≥ δ4

128

Proof. By averaging, for at least δ
2 of the u′s , fu passes the test with probability greater than 1

2 + δ
2 .

Now, using Claim 4.1 from the previous lecture, for every such u we have | f̂u(S) |≥ δ for some S ⊆ [3k]

such that the vector 1S satisfies the clauses Cu1 , C
u
2 , . . . , C

u
k (constraints corresponding to u). Call these

u’s ”good” , and also these S′s ”good”.

Note that good S′s are ”rare” , in the sense that for every function fu , at most 1
δ2 of it’s coefficients

are greater than δ , that follows from the fact that
∑
S f̂u(S)2 = 1.

For by the sub-code covering property, we have

f̂u(S) := E
x∈{0,1}3k

[fu(x)χS(x)]

(Claim 3.2, lecture 4) = E
v∈N(u)

E
y∈{0,1}3k−2βk

[fu(y↑uv)χS(y↑uv)±O(β
√
k)

= Ev∈N(u)[f̂v(S
↓uv )]±O(β

√
k)

1
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Here, S↓uv is an operation which takes a string from the domain of fu to the domain of fv in a natural

way by deleting the extra coordinates. Thus, for a good S, we have

Ev∈N(u)[f̂v(S
↓uv )] ≥ δ −O(β

√
k) ≥ δ

2
,

assuming δ � O(β
√
k). Note that for an edge (u, v) the label pair (1S , 1S↓uv ) satisfies the constraint on

the edge (u, v) for every good S. Thus, the above inequality says that for a typical neighbor of a good

u, the Fourier coefficient corresponding to the projected label is also heavy. More formally, by averaging

argument, at least δ
4 fraction of v ∈ N(u), |f̂v(S↓uv )| is δ

4 .

This gives a randomized strategy to get a non trivial satisfying assignment to the Label Cover instance.

For every good u, assign a random label from the following set

Lu := {1S | f̂u(S) ≥ δ and 1S satisfies Cu1 , C
u
2 . . . , C

u
k }.

Also, for v ∈ V , assign a random label from the following list

Lv :=

{
1T | f̂v(T ) ≥ δ

4

}
.

(Here fv is embedded in fu and it does not matter which u one chooses, as we get the same function

because of the folding.) We know |Lv| is of size at most 16
δ2 . For a good u, |Lu| ≥ 1 and suppose we

pick a label 1S . Using the above argument, for at least δ
4 fraction of v ∈ N(u), the label 1S↓uv is present

in Lv. For such neighbors, the probability that the constraint on (u, v) is satisfied by the randomized

labeling is at least δ2

16 (this is because we have to pick the correct label from a list of size at most 16
δ2 ).

Thus in expectation, for at least δ
2 fraction of u (these are the good u’s), for at least δ

4 fraction of the

neighbors of u, the constraint is satisfied with probability at least δ2

16 . Overall, at least δ4

128 fractions of

the constraints are satisfied by the randomized labeling in expectation.

Recall that we are setting k = 1√
ε

and β = 1
k0.6 . Thus, the in the soundness case, the value of the

Label Cover instance is at most 2−Ω(βk) = 2−Ω(k0.4) and hence from the above claim val(I2) is at most 1
2 +

O(β
√
k) in the soundness case for large enough k. Therefore we get that gap-3Lin

(
1
2 +O

(
1
k0.1

)
, 1− 1

k2

)
is NP-hard. Setting k a large enough constant proves NP-hardness of gap-3Lin( 1

2 + δ, 1 − δ) for every

constant δ > 0 .

3 Boolean functions and influence

Definition 3.1. for f : {−1,+1}n → {−1,+1} define its ith influence by

Infi(f) = Prx∼{−1,+1}n [f(x) 6= f(x(i))],

where x(i) means flipping the i-th bit of x .

For example, for the parity function

Parity(x1, ..., xn) =

n∏
i=1

xi

∀i : Infi(Parity) = 1
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It is easy to see that the ith influence is precisely the following:

Infi(f) =
∑
i∈S

f̂(S)2

Next, we define

Inf
(1−δ)
i (f) =

∑
i∈S

(1− s)|S|−1f̂(S)2

called the δ-attenuated influence. While there can be as many as n coordinates of a Boolean function

whose influence is large (eg. Parity has all the influences 1), it is bounded in case of δ-attenuated

influences of any Boolean function.

Claim 3.2. for every f : {−1,+1}n → {−1,+1}

| {i ∈ [n] | Inf (1−δ)
i (f) ≥ ε} |≤ 1

εδ

Proof.
∑
i Inf

(1−δ)
i (f) =

∑
i∈S(1− δ)|S|−1f̂(S)2 =

∑
S⊂[n] | S | (1− δ)|S|−1f̂(S)2 ≤

∑
S

1
δ f̂(S)2 ≤ 1

δ

and the result follows (because otherwise the sum on the ε-heavy influences alone would exceed 1
δ ).
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