
Hardness of Approximation - Problem Set 2

Due: 30 May 2019

1. In this exercise problem, we will construct an efficient PCP for the class NP with
q queries. Suppose we want to verify a proof written in binary using q queries. In
this setting, a random ‘proof’ (and hence a proof of a wrong statement) is accepted
with probability at least 2−q, assuming non trivial local views. Thus, with each extra
query, we cannot hope to reduce the soundness by a (multiplicative) factor less than
1
2 .

We can quantify this parameter by looking at the ratio q̄ := q
log2(1/s)

where s is the

acceptance probability of incorrect proofs (i.e soundness of the PCP). This ratio is
called the amortized query complexity of the PCP (i.e the number of queries needed to
reduce the soundness by 1

2 on average). The main goal of this exercise is to construct
a PCP with 1 + oq(1) amortized query complexity.

(a) As we have seen in the proof of NP-hardness of gap-3LIN(12 + ε, 1 − ε) , one
can replace BLR linearity test with any other q-query linearity test for some
constant q. Consider replacing the BLR linearity test with the following test for
checking a given function f : {0, 1}n → {0, 1}

t-fold BLR test:

• Select pairs {xi, yi}ti=1 each from {0, 1}n independently and u.a.r.

• Accept iff for every i ∈ [t], f(xi) + f(yi) = f(xi + yi), otherwise reject.

This test makes 3t queries. Clearly if f is a linear function, then the test accepts
with probability 1. Show that if the test accepts with probability at least 1

2t +δ
then f is 1

2 + Ω(δ) correlated with some linear function.

(b) Use the above t-fold BLR test (instead of BLR test in the proof of NP-hardness
of gap-3LIN(12 + ε, 1 − ε) ) to construct a PCP verifier for NP with q = 3t
queries that accepts a correct proof with probability at least 1 − ε and every
‘proof’ of a wrong statement is accepted with probability at most 2−t + ε, for
all ε > 0. What is the amortized query complexity of this PCP?
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(You will need to modify the t-fold BLR test to exclude some linear functions,
similar to the modification we did in the proof of NP-hardness of gap-3LIN(12 +
ε, 1− ε))

(c) How can we get a PCP with an improved amortized query complexity? In the
t-fold BLR test, we first query 2t locations x1, y1, . . . , xt, yt. Apart from the t
checks, one can try to check if f(yi)+f(yj) = f(yi+yj), f(xi)+f(xj) = f(xi+xj)
or even f(xi) + f(yj) = f(xi + yj), for i 6= j. Each of these checks needs to
query f at only one additional location! Can we hope to reduce the soundness
by 1/2 for each of these checks? So we modify the test as follows:

Complete Graph Linearity Test:

• Select {x1, x2, . . . , xt} each from {0, 1}n independently and u.a.r.

• Accept iff for every i 6= j, f(xi) + f(xj) = f(xi + xj), otherwise reject.

Here, we are doing
(
t
2

)
correlated BLR linearity tests. Surprisingly, the soundness

of the above test is 2−(t
2), as if we are performing

(
t
2

)
BLR tests independently!

This is what we will prove next.

i. Let g : {0, 1}n → {−1,+1} be such that g(x) = (−1)f(x). Show that the
acceptance probability is

Pr[Accept] =
1

2(t
2)

+
1

2(t
2)
·
∑

∅6=S⊆([t]2 )

E
x1,x2,...,xt

 ∏
(i,j)∈S

g(xi)g(xj)g(xi + xj)

 ,
where

(
[t]
2

)
:= {(i, j) | 1 ≤ i < j ≤ t}

ii. For any ∅ 6= S ⊆
(
[t]
2

)
, we want to conclude the following:

E
x1,x2,...,xt

 ∏
(i,j)∈S

g(xi)g(xj)g(xi + xj)

 ≥ δ
︸ ︷︷ ︸

(?)

=⇒ ∃T ⊆ [n], s.t. |ĝ(T )| ≥ δ.

Without loss of generality, assume (1, 2) ∈ S. Thus the expression inside
the expectation has g(x1), g(x2) and g(x1 + x2). We will keep these two
variables as is and fix the remaining random variables. Show that there
exist fixings of x3 = a3, x4 = a4, . . . , xt = at such that∣∣∣∣∣∣ E

x1,x2,...,xt

 ∏
(i,j)∈S

g(xi)g(xj)g(xi + xj)

∣∣∣∣∣∣
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≤

∣∣∣∣∣∣∣∣ E
x1,x2

g(x1)g(x2)g(x1 + x2)
∏

(1,j)∈S
j 6=2

g(x1)g(aj)g(x1 + aj)
∏

(2,j)∈S

g(x2)g(aj)g(x2 + aj)


∣∣∣∣∣∣∣∣

iii. If we define functions, h : {0, 1}n → {−1,+1} and h′ : {0, 1}n → {−1,+1}
as

h(z)
def
= g(z)

∏
(1,j)∈S
j 6=2

g(z)g(aj)g(z + aj)

and
h′(z)

def
= g(z)

∏
(2,j)∈S

g(z)g(aj)g(z + aj),

then from the assumption (?) and (ii), conclude∣∣∣∣ E
x1,x2

[
h(x1)h

′(x2)g(x1 + x2)
]∣∣∣∣ ≥ δ. (??)

iv. From (??), using analysis similar to the analysis of the BLR test, conclude
that there exists T ⊆ [n], s.t. |ĝ(T )| ≥ δ.

(d) Use the Complete Graph Linearity Test to construct a PCP with q-queries,
completeness 1− ε, and amortized query complexity 1 + oq(1), for every ε > 0.
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