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In this first lecture we begin with an introduction to expander graphs and a couple
of applications. We will meet these applications in “high dimensional” form later on in
this course. We then give a definition of high dimensional expanders (Definition 3.5)
through the notion of links and simplicial complexes.

1 Expander Graphs
Recall, G = (V,E) is a graph with set of vertices V and set of edges E. Throughout the
course, we assume the edges are undirected, but could be weighted. We now give several
definitions for expanders.

Assume that G = (V,E) is a d-regular graph. The probability of a vertex set S ⊆ V
is

P[S] = |S|
|V |

.

The probability of a set of edges F ⊆ E is defined in a similar manner:

P[F ] = |F |
|E|

.

Expander graphs are graphs with no “bottlenecks”. More precisely, for ∅ , S ⊂ V
with P(S) ⩽ 1

2 we ask what is the probability to choose a random edge from a random
vertex in S and land inside S. If this probability is much higher than the probability of
S then the set S is “non expanding”. Define the leaving probability of S to be

h(S) = P
u∼v

[u < S | v ∈ S] = P(E(S, S̄))
P(S) = |E(S, S̄)|

d|S|

where E(S, S̄) is the set of edges between S and its complement S̄ = V \ S.

Definition 1.1. The edge expansion (aka Cheeger constant) of a graph is

h(G) = min
S⊂V,|S|⩽|V |/2

h(S).

We say that G is an ε - edge expander if for all non-empty S ⊊ V , ϕ(S) ⩾ ε. In
words, geometrically, this definition says that for every subset of vertices S the ratio of
its boundary and its area is bounded from below. Namely, it has a large perimeter.

Example 1.2 (Clique, Cycle, Grid, Plane-vs.-Plane).

– The complete graph Kn on n vertices, where every vertex is connected to every
other vertex, including to itself. Here h(S) = |S̄||S|

n|S| = 1 − P[S] for every S, so
taking the minimum over all S such that |S| ⩽ n/2 we get h(G) = 1

2 .
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– The cycle graph has h(G) = O(1/n).

– The grid. Consider the following family {Gn} of subgraphs of Z2. The vertices of
Gn are {(i, j) : 0 ⩽ i, j ⩽ n}, i.e. vertices in a square of side length n. The edges
connecting adjacent vertices as in the figure.

This family is not a family of expanders for any constant ε > 0. Indeed, for any
n let Sn be the set of vertices in the form of a rectangle with side lengths n and
[ n

2 ]. Then Sn contains half the vertices of Gn, namely Ω(n2) vertices whereas the
boundary of Sn contains O(n) edges. Thus, h(G) = O( 1√

|V |
) and tends to zero as

n → ∞.

– The Grassmann graph. Let Gr(Fm
q , ℓ) be the graph whose vertices are all ℓ-

dimensional subspaces of Fm
q . Connect two vertices if they intersect on an ℓ-

dimensional subspace. One can see that after ℓ steps there is good probability that
we reach a completely uniform subspace, so there are no significant bottlenecks
and the graph is an expander. However, the degree is not bounded.

It is not trivial to construct a sequence of expander graphs where the degree of all
vertices remains uniformly bounded as the number of vertices increases. However, there
are known constructions for such objects, both random and deterministic.

1.1 Random walks
The random experiment we just described is a first step in a possibly longer random walk
on the graph. At every step, assume we are on v, we choose a random edge containing
v, and them “move” to the other endpoint of the edge.

Question 1.3. What is the probability distribution describing the t-th vertex in the
random walk?

Let pt : V → R be the distribution at time t. After one step of the random walk, the
probability to by at point u is

pt+1(u) =
∑
v∈V

A(u, v)pt(v)

where A(u, v) is the probability to move to v and is equal to 1/d if v ∼ u and to 0
otherwise.

The matrix A is called the transition probability matrix, and we can write the above
in vector notation as

pt+1 = Apt.

Lemma 1.4. Let G be a d-regular graph and let A be the transition probability matrix of
the simple random walk on G.

1. A1 = 1
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2. A(u, v) = A(v, u), so A is self adjoint.

3. A is diagonalizable with real eigenvalues 1 = λ1 ⩾ λ2 ⩾ · · · ⩾ λn and a correspond-
ing basis of eigenvectors 1 = f1, . . . , fn.

4. λ2 < 1 iff G is connected

Let us write p in the basis of the eigenvectors, and apply the matrix A for several
steps,

p =
∑

i

αifi, Atp =
∑

i

αi(λi)tfi.

We see that if λ2 < 1 then as t → ∞, Atp → α11.

1.2 Spectral expansion
We are now ready to give the spectral definition of expansion:

Definition 1.5 (Spectral Expander). A graph G is a λ - one-sided spectral expander if,
let {λi} be eigenvalues of the random walk matrix of G,

λn ⩽ · · · ⩽ λ2 ⩽ λ.

It is a λ - two-sided spectral expander if

−λ ⩽ λn ⩽ · · · ⩽ λ2 ⩽ λ.

The notion of a one-sided spectral expander is strictly weaker than the two-sided
expander. For example, the complete bipartite graph is a one-sided expander for λ = 0,
but not a two-sided expander, since its most negative eigenvalue is λn = −1.

The definition above is “morally” equivalent to having no high staying probability.
Indeed Cheeger’s inequality says that

(1 − λ2(G))/2 ⩽ h(G) ⩽
√

2(1 − λ2(G)).

In the literature, it is common to refer to the second largest eigenvalue of the normalized
Laplacian of the graph, which is L = I − A in this case, so λ2(L) = 1 − λ2. A nice
exposition is found in Trevisan’s blog, [1].

One example for a theorem that shows a connection between the combinatorial prop-
erties of a graph and its spectral expansion is the following,

Lemma 1.6 (Alon-Chung). Let G = (V,E) be a d-regular λ-one-sided expander. Let
T ⊆ V be such that the graph induced on T , denoted G(T ), has average degree at least
δd. Then |T | ⩾ (δ − λ) · |V |, and the number of edges in G(T ) is at least (δ − λ)δ · |E|.

We define an inner product on the space of functions f : V → R, by ⟨f, g⟩ =
Ev∈V f(v)g(v) = 1

|V |
∑

v∈V f(v)g(v). When the graph is not regular, the expectation is
defined not with respect to the uniform measure but rather with respect to the stationary
distribution on the vertices.

Proof. Denote p = P[T ] and f = 1T . We can write f = p1 + h with ⟨h,1⟩ = 0. We get

δ · p ⩽ ⟨f,Mf⟩ = ⟨p1 + h,M(p1 + h)⟩ ⩽ p2 + λ⟨h, h⟩ ⩽ p2 + λp.

where the last inequality is because ⟨h, h⟩ ⩽ ⟨f, f⟩ = p. When rearranging, this gives the
lemma. □
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2 Applications of expanders
2.1 Rapid mixing
Suppose we have a deck of cards, and are interested in getting the cards in a random
order. Namely, one of 52! permutations. We can think of the graph whose vertices are
all possible permutations, and put an edge between σ and τ if there is a card-shuffle
move that brings you from one to the other. If we manage to bound the second largest
eigenvalue of this graph by 1 − ε then we can write,

p0 =
∑

i

αiψi

for p0 the initial distribution and {ψi} the eigenvectors of the graph. After t steps,

pt =
∑

i

αiA
tψi =

∑
i

αiλ
t
iψi

For all i > 1, λt
i → 0 as t increases. For i = 1, λt

i = 1t = 1. So the distribution
becomes more and more similar to the uniform distribution.

2.2 Error Correcting Codes
A linear error correcting code is a linear subspace C ⊆ Fn

2 . The rate of the code is dimC
and the relative distance of the code is the minimum Hamming distance between a pair
of distinct codewords,

dist(C) = min
x,y∈C

[P
i
[xi , yi] ⩾ δ.

A family of codes Cn ⊆ Fn
2 is sometimes called “good” if it has constant rate and constant

relative distance (i.e lower bounded by a parameter ε for all n). A random subspace is
“good” with high probability. However, there is a major drawback. Given a word w that
is close to the code, there is no efficient algorithm for finding the nearest codeword (this
is called decoding).

Over the years many explicit good families error correcting codes have been dis-
covered. One beautiful example is that of expander codes, discovered by Sipser and
Spielman.

Definition 2.1 (Expander Codes). Let G = (V,E) be a d-regular graph. Let C0 ⊆ Fd
2 be

a code on d-bits with relative distance δ. The code C(G,C0) is given by

C(G,C0) =
{
w ∈ FE

2
∣∣ ∀v ∈ V, w|Ev

∈ C0
}
.

It turns out that when G is a λ-one-sided expander, the code C(G,C0) has relative
distance at least δ(δ − λ).

3 High Dimensional Hypergraphs
We have spent most of the lecture discussing expansion and giving examples of appli-
cations. We are now in shape to generalize expanders to higher dimensions. The first
object that comes to mind is a hypergraph,

Definition 3.1. A hypergraph is a pair (V,E) with V a set of vertices and E a set of
subsets of V .

4



In the first part of the course we will focus on special types of hypergraphs called
simplicial complexes.

Definition 3.2. A simplicial complex (abbreviated s.c.) is a hypergraph that is downwards
closed under containment. Namely, if S ∈ E and S′ ⊂ S then S′ ∈ E. S ∈ E is called a
face.

We usually partition a simplicial complex X to

X = X(0) ∪X(1) ∪ · · · ∪X(d)

where X(i) is the set of faces of size (i + 1), or dimension i. In particular, X(0) are
identified with the vertices of the simplicial complex.

We say a simplicial complex is of d-dimensional if the maximal face size is d+ 1.

Example:. Consider the hypergraph below:

Then
X(2) = {{a, b, c}, {a, c, d}}

X(1) = {{a, b}, {b, c}, {a, c}, {b, c}, {c, d}}
X(0) = {{a}, {b}, {c}, {d}}

An important definition is that of a link. This is like a neighborhood in a graph, but
is a richer structure than just a collection of vertices,

Definition 3.3 (Link). Let X be a d-dimensional simplicial complex and s ∈ X(i). The
link of s is a (d− i− 1)-dimensional simplicial complex defined by:

Xs = {t ∈ X | s ∪ t ∈ X, s ∩ t = ϕ} .

For example, in the figure above, the link of a is the graph Xa(0) = {b, c, d} and
Xa(1) = {{b, c}, {c, d}}.

Definition 3.4. Let X be a simplicial complex and k < d some non-negative integer. The
k-skeleton of X is the subspace of X that is the union of faces of dimension ⩽ k.

We are ready to define high dimensional expansion:

Definition 3.5 (λ-high Dimensional Expander). Let λ < 1. A d-dimensional pure simpli-
cial complex X is a λ-two-sided (resp. one-sided) high dimensional expander if:
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1. The 1-skeleton of X is a λ-spectral two-sided (resp. one-sided) expander, and

2. For any i ⩽ d − 2 and all s ∈ X(i) the 1-skeleton of Xs is a λ-spectral two-sided
(resp. one-sided) expander.

Example 3.6. The d-dimensional complete complex on n vertices, which consists of all
subsets of {1, ..., n} of size ⩽ d + 1, is an example for a two-sided high dimensional
expander. The 1- skeleton of every link is a complete graph, which is a

(
1

n−d

)
-two-sided

spectral expander (check!).

Constructing bounded degree two-sided HDXs is challenging. For graphs, there are
well known algebraic constructions, random constructions and combinatorial construc-
tions (see next week’s lecture), where the degree of every vertex is uniformly bounded
(when the number of vertices goes to infinity).

For simplicial complexes, even 2-dimensional, there are some combinatorial construc-
tions that achieve weak expansion in the links. However, the only known constructions
with arbitrarily good link expansion are algebraic. We will see some of these in future
lectures.
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