
Lecture 10: LTC (cont.) and quantum LDPC codes

Irit Dinur

January 11, 2023

In this lecture we will complete the proof that the LTCs that we constructed last
week are in fact locally testable. We will then describe the so-called quantum LDPCs
show how the same 2-chain gives rise to a quantum LDPC with constant relative rate
and distance.

1 LTCs
We have defined the left right Cayley complex given a group G and two sets of generators
A,B ⊂ G. Given two codes CA ⊆ FA2 and CB ⊆ FB2 we have defined the code

C(X,CA, CB) =
{
f ∈ FX(2)

2

∣∣∣ ∀a, g, b f([a, g, ·]) ∈ CB and f([·, g, b]) ∈ CA
}

We assume that |A| = |B| = d for simplicity, and let k = dim(CA) = dim(CB). We
started proving that this code is locally testable, and cosidered the following local cor-
rection algorithm,

Algorithm: given a word f ∈ FX(2)
2 .

1. Every g ∈ G chooses wg ∈ C0 ⊗ C0 that is closest to f(·, g, ·).

2. Let E′ = {{g, g′} ∈ X(1) | wg / wg′}, where wg / w′g means that the local views
disagree on some common square.
For each g, if there is another choice of wg that minimizes the number of sets in
E′ touching g, then switch to that local view.
Repeat until no more available switches.

3. If E′ = φ output f̃ the codeword obtained from the combined local views. Else
output fail.

We saw that the algorithm doesn’t get stuck in an infinite loop, and that if it doesn’t
fail then dist(f̃ , f) = O(wt(Hf)). It remains to prove,

Lemma 1.1. If E′ , 0 at the end of the algorithm, then |E′| = Ω(|E|).

Proof. We prove this by propagation. We will devise a random walk from edge to edge
and show that it expands and that starting from E′ there is some decent probability to
reach E′ after one step. This will imply, via the Alon-Chung lemma, that E′ is large.
The random walk starts from an edge e and then with probability 1

2 goes to a parallel
edge, and with probability 1

2 goes to an opposite edge; where

1

– Parallel edge: Given an edge [a, g] a parallel edge is an edge [a, gb] for any b. Given
an edge [g, b] a parallel edge is an edge [ag, b] for any a.

– Opposite edge: Given an edge {u, v} an opposite edge is obtained by first choosing
one of the endpoints, say u, and then moving to a neighbor u′ of u in the graph
(X(0), X(1)), and then taking a random edge {u′, u′′} containing u′.

It is not too hard to see that this random walk is an arbitrarily good expander.

Claim 1.2. Let λ upper bound the second largest eigenvalue of Cay(G,A) and Cay(G,B).

– Let Mopp be the random walk moving from e to an opposite edge e′ according to
the above process. Then λ(Mopp) 6 λ.

– Let M|| be the random walk moving from e to a parallel edge e′ according to the
above process. The edges split to at most |A|+ |B| connected components, and on
each one, λ(M||) 6 λ.

How is this walk useful for us? we now show that every edge e ∈ E′ implies that
many of its neighbors are also in E′.

1. If uv ∈ E′ then there are a constant fraction of squares s touching uv for which
wu(s) , wv(s).

2. For each such square, suppose it is s = {u, v, w1, w2}. Either vw1 ∈ E′ or w1w2 ∈
E′ or w2u ∈ E′ because they cannot all agree on s.

3. Either u or v is "heavy", namely many of its adjacent edges are in E′; or the edge
uv has many parallel edges (like w1w2) that are in E′.

4. If u (or v) is heavy, then many of the "opposite" edges are in E′.

For the last item, we rely on the coboundary expansion of the tensor code, also known
as agreement testability. Fix a heavy g. Let MA be the d × d matrix whose rows are
collected from the A neighbors of g. Let MB be the d × d matrix whose columns are
collected from the B neighbors of g. We chose g as a heavy vertex, which means that
an ε fraction of its neighbors disagree with it. Since we are at the end of the run of the

2

algorithm, the local view wg is the tensor codeword that agrees with a maximal number
of rows in MA and columns in MB .

Now we recall the definition of agreement-testability:

Definition 1.3 (agreement testability). Let β > 0. Let Ci ⊂ {f : [ni]→ F2} for i = 1, 2.
We say that C1 ⊗C2 is β-agreement testable if for every w1 ∈ C1 ⊗Fn2

2 , w2 ∈ Fn1
2 ⊗C2,

there exists w ∈ C1 ⊗ C2 such that

P
i∈[n1],j∈[n2]

[w1(i, j) , w2(i, j)] > β2 · (Pi [w1(i, ·) , w(i, ·)] + P
j
[w2(·, j) , w(·, j)]).

In our case, if CA ⊗ CB is β-agreement testable then for w1 = MA and w2 = MB ,
there is some M that satisfies the definition, so

wt(MA +MB) > β · 1
2(P

i
[M(i, ·) ,MA(i, ·)] + P

j
[M(·, j) ,MB(·, j)]).

We get, for wg that is at least as good as M , wt(MA +MB) > β · 1
2 (distrows(MA, wg) +

distcols(MB , wg)) = βε.
What is wt(MA + MB)? it is the fraction of entries (a, b) on which MA(a, b) ,

MB(a, b). This corresponds to the fraction of neighbor pairs ag, gb of g that disagree on
[a, g, b], namely:

wag([a, g, b]) , wgb([a, g, b])

Whenever this happens, either the edge [ag, b] ∈ E′ or [gb, a] ∈ E′. Therefore, we get a
large fraction of opposite edges that are in E′. �

All in all we have seen that if Cay(G,A) and Cay(G,B) are good expanders, and
if the tensor code CA ⊗ CB is a coboundary expander, then the global code is locally
testable.

2 Tensor codes: agreement testability and coboundary ex-
pansion

Let C ⊂ Fn2 and denote k = dim(C), and m = n − k. Let G ∈ Fn×k2 be a generator
check matrix for C.

Fk×n2

Fk
2

2 Fn
2

2

Fn×k2

G⊗I

G⊗I

I⊗G

I⊗G

Figure 1: Chain complex of a tensor code.

In more compressed form we have Fk2

2
δ0−→ (Fk2)2n δ1−→ Fn2

2 , where δ0 = I⊗G+G⊗ I
and δ1 = G⊗ I + I ⊗G.

3

Claim 2.1. This is an exact sequence, namely Ker(δ1) = Im(δ0) which is the space
corresponding to tensor codewords.

Given f ∈ (Fk2)2n, if wt(δ1f) is small, does it mean that dist(f, Im(δ0)) is small?
This depends whether the chain in Figure 2 has coboundary expansion. This turns out
to be equivalent to the notion of agreement testability. Recall the definition

Lemma 2.2. The chain in Figure 2 has β coboundary expansion iff the code C ⊗ C is
β-agreement-testable.

3 A chain complex
Let us give a cohomological interpretation to the code and proof we have just seen. The
collection of wg can be packaged as w ∈ (CA ⊗ CB)X(0), w(g) = wg. We can define a
map δ0 from the such chains on thevertices to chains on the edges, where the edge uv
sums the appropriate row of wu and of wv. So for w ∈ (C ⊗ C)X(0),

δ0w([a, g]) = w(g)(a, ·) + w(ag)(a−1, ·)

and similarly for an edge [g, b]. We get δ0w ∈ CX(1).
Next, we can define a map from the edges to the squares by having each square sum

over the four appropriate bits on its four edges. So, for f ∈ CX(1),

δ1f([a, g, b]) := f([a, g])(b) + f([a, gb])(b−1) + f([g, b])(a) + f([ag, b])(a−1).

We get a chain complex

(CA ⊗ CB)X(0) δ0−→ CA
XB(1) × CXA(1)

B
δ1−→ FX(2)

2 (3.1)

Claim 3.1. This is a 2-chain, namely δ1 ◦ δ0 = 0.

Proof. For a fixed square and each of its four vertices, the vertex sends the value to the
square twice, for two edges, and this gets cancelled. �

Even more intrestingly, the lemma stated above can be cast in these terms. Letting
w be the collection of local views at the end of the algorithm, and letting f = δw, we
see that E′ = supp(f). We say that f is locally minimal with respect to vertex moves
if the weight of f is minimal with respect to changes of the form f ← f − wg for any
wg ∈ CA ⊗ CB . The proof we have seen for Lemma 1.1 above shows that

Lemma 3.2. For any 0 , f ∈ Ker δ1, if f is locally minimal with respect to vertex moves,
then wt(f) > Ω(1).

Indeed, in the proof, the structural property of E′ = supp(f) that was used is the
following. If e ∈ supp(f) then it affects a δ fraction of the squares s touching it. In order
for δ1f(s) = 0, there must be at least one other edge in the square that is non-zero, so
e′ ∈ supp(f). This also gives

Corollary 3.3 (cosystolic distance). . If f ∈ Ker(δ1)\Im(δ0), then dist(f, Im(δ0)) > Ω(1).

4

4 Quantum CSS codes
A quantum (CSS stabilizer) code is a subspace of quantum states on n qubits. For more
on this see [2, 1]. Errors are modeled as single bit flips in either the X or Z basis. A code
is designed so that even if some bounded number of errors (= bitflips in X or Z basis)
occur, the original state can be recovered.

The code subspace is specified by a local Hamiltonian, and is a simultaneous
eigenspace of a bunch of "parity check" operators. Unlike the classical case, the parity
checks can apriori be applied in a continuum of bases. By linearity it suffices to restrict
to two bases for each bit (which span all others): the X and the Z basis. So designing
this codespace amounts to designing two parity check matrices HX , HZ specifying parity
checks in X basis, and in Z basis.

The dimension of the code is the number of qubits minus the dimensions of the parity
checks, namely n− dim(HX)− dim(HZ).

The codes CX , CZ are not arbitrary, rather, HX , HZ must have mutually orthogonal
rows (mod 2). Namely,

rows(HZ) ⊥ rows(HX)

or C⊥Z ⊆ CX , or HX ⊆ H⊥Z .
The reason for this is that each row in HX stands for an operator of the form I⊗ I⊗

X ⊗X ⊗X ⊗ I, with the X’s placed where the 1’s would be. Similarly for the matrix
HZ . The code is the simultaneous eigenspace of the operators in all of the rows. In order
for it to be non-empty, all operators (i.e. all rows) must commute. Clearly every pair
of operators from HX commute with each other, and similarly for a pair of operators
from HZ . In order for an HX operator to commute with an HZ operator, we must
have the corresponding rows have inner product 0 mod 2, because X and Z operators
anti-commute, (XZ = −ZX).

Every element in CZ is viewed as an ‘error’ as it moves a codeword to another code-
word. However, elements in C⊥X , as parity checks, by definition stabilize the codewords
so these are not errors. Therefore, the Z errors are only CZ \ C⊥X , and the X errors,
symmetrically are CX \ C⊥Z . The minimum distance is the minimum waight of any of
these words. We define the quantum minimum distance to be

dQ = min(dZ , dX)

where

– dX = min
{
|x|
∣∣ x ∈ CX \ C⊥Z }

– dZ = min
{
|z|
∣∣ z ∈ CZ \ C⊥X}

Homological point of view
Let HT

Z = δZ and let HX = δX and we get

FrZ
2

δZ−→ Fn2
δX−→ FrX

2 (4.1)

In which case the quantum code is the cohomology KerδX/ImδZ .

Quantum LDPC codes on the left-right complex
The chain defined in (3.1) essentially gives rise to a quantum LDPC code.

5

(Fk2)XA(1)

(Fk2

2)X(0) F
X(2)
2

(Fk2)XB(1)

δ1,B

δ0,B

δ0,A

δ1,A

Here δ0,A applies GA ⊗ I to f(g) for every vertex g, and then distributes the k-bit rows
of the result among the A neighboring edges. Every edge adds the twi k-bit vectors that
it gets from its two vertex endpoints. We get

δ0,Af([a, g]) = (GA ⊗ I)f(g)[a, ·] + (GA ⊗ I)f(ag)[a−1, ·].

and similarly

δ0,Bf([g, b]) = (I ⊗GB)f(g)[·, b] + (I ⊗GB)f(gb)[·, b−1].

Next, the map δ1,B , for each vertex g, collects the d× k bits from the A neighbors of
g, and applies (I ⊗GB) to this matrix. It then gets an d× d matrix which it distribute
to the neighboring squares. Similarly δ1,A does the same, and each square adds the four
bits it receives from each of its neighbors.

One can see that both maps δ0, δ1 are LDPC: each output bit depends on a constant
number of input bits.

Rate. If dim(CA) = (1− ε)d and dim(CB) = εd we get positive rate.

Distance. For one direction this essentially follows from Lemma 3.3. Let f ∈ FX(1)·k
2 .

Assume f ∈ Ker(δ1). To show distance, we assume f , 0 has small weight, and deduce
it must belong to Im δ0. We use an algorithm.

Algorithm: given a word f ∈ FX(1)·k
2 .

1. For every g ∈ G, if there is some wg ∈ Fk
2

2 so that f − δ0(wg) is zero on more edges
touching g than before, let f ← f − δ0(wg).1

2. Repeat until no more available moves.

3. Output f .

Clearly, every step of the algorithm decreases the number of edges on which f is non-
zero, so if wt(f) = ε initially, it can only be less than ε after the algorithm terminates.
Let

E′ = {e ∈ E | f(e) , 0} .
We will use the same walk as above to show that E′ must be large.

For each edge e, let we be the result of stretching f(e) to a codeword using CA or CB .
We view we as an assignment for the squares touching e. Since δ1f = 0, every square
receives contributions from its four edges that sum to zero. Therefore, if e ∈ E′, by the
distance of CA, CB , at least δ fraction of its squares are nonzero. Each of these squares
must receive contribution from an additional edge, therefore one of its three other edges
must also be in E′.

1We are thinking of wg ∈ FX(0)×k2

2 by putting zero everywhere other than on g.

6

1. If e = uv ∈ E′ then there are a constant fraction of squares touching e for which
we(s) , 0.

2. For each such square, suppose it is s = {u, v, w, x}. either vw ∈ E′ or wx ∈ E′ or
xu ∈ E′ because the total sum must be zero.

3. Either u or v is "heavy", namely many of e’s adjacent edges are in E′; or e has
many parallel edges that are in E′.

4. If u (or v) is heavy, then many of the "opposite" edges are in E′.

The only step that needs checking is the last step. Suppose v is "heavy". By coboundary
expansion, many of the neighbor-pairs of v must disagree, otherwise v would have "made
a move" to reduce the number of non-zero edges touching it.

References
[1] Anthony Leverrier and Gilles Zémor. Quantum tanner codes. In 63rd IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA,
October 31 - November 3, 2022, pages 872–883. IEEE, 2022. 5

[2] Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally
testable classical LDPC codes. In Stefano Leonardi and Anupam Gupta, editors,
STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome,
Italy, June 20 - 24, 2022, pages 375–388. ACM, 2022. 5

7

	LTCs
	Tensor codes: agreement testability and coboundary expansion
	A chain complex
	Quantum CSS codes

