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In this lecture we will talk about tight inapproximability of constraint satisfaction
problems. We will define the label cover problem and outline the general approach for
proving tight inapproximability results.

We will then show how the basic PCP theorem, together with a direct product the-
orem called “parallel repetition”, shows hardness of label cover. The proof of this will
turn out to involve so-called agreement tests, which we have seen in earlier lectures.

1 Hardness of Approximation
Constraint satisfaction problems are given by a collection of tuples and predicates. Exam-
ples include 3-SAT, 3-LIN, max-cut, 3-coloring, and many more. Given a CSP instance,
for example a 3SAT formula ϕ, we define val(ϕ) to be the maximal fraction of satisfied
clauses, ranging over all possible assignments. The problem gap-3SATc,s is the problem
of deciding for a given instance ϕ, whether

– val(ϕ) > c, or

– val(ϕ) 6 s.

The basic PCP theorem [2, 1, 4] is equivalent to

Theorem 1.1 (Basic inapproximability). There exists some ε0 > 0 such that gap-
3SAT1,1−ε0 is NP-hard.

In fact, a much stronger statement is true:

Theorem 1.2 (Tight inapproximability, [5]). For every ε > 0, gap-3SAT1, 7
8 +ε is NP-hard.

This is optimal since one can always satisfy a 7/8 fraction of clauses for 3SAT. Similar
theorems are known for many CSPs, and for many more this would follow from the unique
games conjecture.

2 Label Cover
We define the label cover problem. An instance is given by a bipartite graph G =
(L,R,E). Each vertex v is associated with a finite label set Av. Each edge uv ∈ E
is associated with a relation πuv ⊂ Au × Av. We will consider only relations that are
functional, and sometimes called projection constraints, in which for every au ∈ Au there
is exactly one av ∈ Av such that (au, av) ∈ πuv. We write πuv(au) = av.
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A labeling f = {fv ∈ Av : v ∈ L∪R} is an assignment of one label per each vertex.
The value of the assignment is

val(f) = P
uv∼E

[(fu, fv) ∈ πuv]

If edges in E have weights then the probability of choosing an edge is proportional to
the edge weights. In this lecture we will sketch a proof for the following theorem

Theorem 2.1 (Label Cover theorem). For every ε > 0, gap-Label-Cover1,ε is NP-hard,
with projection constraints and labels of size at most εO(1).

The proof proceeds by reduction from the basic PCP theorem. As a first step, the
basic PCP theorem gives a weaker result:

Lemma 2.2. gap-Label-Cover1,1− ε0
3

is NP-hard.

The proof is by reduction from gap-3SAT1,1−ε0 .

Two Player Games and Parallel Repetition. A label cover instance G can be viewed
as describing a two player game between L and R. The referee selects a question pair
uv and sends u to L and v to R. The players (do not speak to each other) reply with
au, av and the referee accepts if πuv(au) = av. The success probability is the fraction of
Accepts.

What if the players have success probability 1−ε and the referee wants to catch them
in an unsuccessful edge? He can repeat the game k times. If he does this in parallel, we
call this parallel repetition:

The referee chooses k question pairs, and sends u1, . . . , uk to L and v1, . . . , vk to R.
What is their maximal success probability now?
This simply takes a direct product of the label cover instance.

Construction of Label Cover. Given a label cover instance G as above, construct a new
instance:

– The vertices are Lk and Rk

– An edge connects (u1, . . . , uk) to (v1, . . . , vk) if every {ui, vi} ∈ E.

– The label sets are Ak and Bk.

– For an edge (ū, v̄) we let πū,v̄(a1, . . . , ak) = (πui,vi(ai))i.

The parallel repetition theorem [6, ?, 3] shows that the value of this label cover
instance goes down exponentially.

Theorem 2.3 (Parallel Repetition). If val(G) < 1− ε then val(Gk) 6 (1− ε2/16)k.

We will look at a different variant which is slightly more specialized and easier to
analyze. Start with a 3SAT formula ϕ that has n variables V and m clauses C.

– The vertices are L′ = Ck and R′ = V 0.9k

– An edge connects s ∈ L′ to t ∈ R′ if there is an ordered choice of 0.9k clauses from
s, and a variable from each clause, that gives t.

– The label set for s is Ak (A = [7]), and for t it is F0.9k
2 .

– For an edge (s, t) we let πs,t(f) be the restriction of f to t.

Fom now on let us denote by Gϕ,k the (later) label cover instance.
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Simplicial Complex Perspective. Let X be a simplicial complex constructed over k
copies of the ground set X(0) = V1 t ...Vk, Vi = V . For every choice of s′ = (c1, . . . , ck)
we will have a 3k-dimensional face. Downwards close.

Claim 2.4 (Completeness). If val(ϕ) = 1 then for all k val(Gϕ,k) = 1.

Proof. Let g : V → {0, 1} be an assignment that satisfies all of the clauses of ϕ. Label
each s ∈ S by g|s ∈ As and each t ∈ T by g|t. Clearly this satisfies all of the edge
constraints and has value 1. �

Lemma 2.5 (Soundness). If val(ϕ) < 1− ε0 then val(Gk) 6 exp(−k).

Together Lemma 2.5 and Claim 2.4 prove Theorem 2.1.
Is the Soundness Lemma (or the parallel repetition theorem) obvious? it would be

if we consider only labelings that themselves are direct product, namely consistent with
some underlying assignment to the variables. Indeed, fix h : V → F2, and suppose that
we label every t ∈ T with h|t ∈ Ft2. No matter what the labeling for L′ is, we can prove

Lemma 2.6. Let (bt) be direct product labeling. For every labeling a = (as), val(a, b) 6
exp(−k).

Proof. Assuming val(ϕ) < 1 − ε0, h must falsify an ε0 fraction of clauses. A Chernoff
bound shows that nearly all s ∈ S have at least ε0

2 of variables that are assigned a value
different from h|s (indeed h|s < As is not even a valid label). A random edge (s, t) will
be inconsistent except with probability exponential in k. �

We call labelings that are consistent with a global h direct product labelings.
The main question is whether labelings can benefit significantly if they deviate from

a direct product labeling. Naively, we would like to show that whenever a labeling has
value above ε, it must be close to a direct product on some ε′ fraction of the label cover
nodes.

Unfortunately, this is false. Instead, we will be able to prove a weaker statement that
will suffice. We will show that if a labeling has large value, it must look like a global
labelling on “link”.

A restriction is a set r of vertices, each from a distinct color class. We let Sr be the
top faces containing r,

Sr = {s ∈ S | s ⊃ r} .

Lemma 2.7 (Global structure on restrictions). For all α there is large enough k and some
γ > 0 such that if {fs}, {gt} is a labeling for Gϕ,k with value above ε > (1 − γ)k then
there is a restriction r ⊂ V , |r| = 0.1k, and a global assignment h : V → {0, 1} such that

Probs∼Sr [h|s
αk= fs] > poly(ε)

where the notation x
αk= x′ means that x, x′ differ on at most αk points, and we set

α = 10−5.

We will discuss this lemma and its proof further below, and in the next lecture. First,
let us see that it is useful. We show how to derive the soundness lemma from it.

Proof of Lemma 2.5. Let α = ε0/2. Suppose we are given a labelling {fs, gt} with value
above ε. By the structure lemma there is some restriction r ⊂ V , |r| = 0.1k, and a global
assignment h : V → {0, 1} such that

Probs∼Sr [h|s
αk= fs] > poly(ε).
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h must violate at least ε0 fraction of the clauses of ϕ. Except for an exponentially small
fraction of s ∈ Sr, s must contain at least ε0/2 violated clauses. This means that the
label fs must differ from h|s on at least that many elements, which is more than αk, a
contradiction. �

3 Agreement tests
The structure lemma is really a kind of so-called agreement test. The setup for an
agreement test is a simplicial complex X, and a distribution over pairs of sets in X. We
also have, for every s ∈ S a space of available local functions Ls ⊂ {0, 1}s

A collection of local functions {fs ∈ Ls} is a perfect collection if there is some
h : V → {0, 1} such that fs = h|s for every s ∈ S. An agreement test tests, in the
property testing sense, if a given collection is perfect. Here is the test relevant to us

Agreement test with parameter ρ > 0:.

– Choose t ∈ X(ρk).

– Choose independently s, s′ ∈ X(k) such that s, s′ ⊃ t.

– Accept iff fs(v) = fs′(v) for all v ∈ t ⊂ s ∩ s′.

Typically, one wants to prove that if the test succeeds with significant probability, then
{fs} is close to perfect. We will prove

Theorem 3.1. Let ρ = 0.5 there exists 0 < γ < 1 such that if {fS} passes the agreement
test with probability at least ε := (1 − γ)k, then there exists some restriction r of size
0.1k and a function hr : V → F2 such that

PrS⊇r[fS
>(1−α)k= h|S ] > εO(1),

where the notation >(1−α)k= means that the two strings disagree on at most αk locations
and one can take α = 10−5.

Note that {S ⊃ r} is a very small fraction of {S}, roughly n−k/10.
A few remarks about the theorem.

– We cannot expect a global function agreeing on many fS when the acceptance
probability is exp(−k). One can easily find an example where this is not achievable.
However, if the acceptance probability is k−O(1) then one can in fact conclude that
there is a global function agreeing on k−O(1) fraction of the fS [?].

– As we saw in the previous lecture, even this conclusion is enough to prove the
parallel repetition theorem with exponential decay.

How can one find the global function hr? Clearly, the natural strategy of defining
hr(x) by the plurality value at all {fS(x) | x ∈ S} is not going to work. A simple counter
example to this strategy is to assign a random string from {0k, 1k} to fS . Clearly, the
agreement test passes with probability at least 1/2, but the plurality strategy gives a
random function.

To counter such examples, the overall idea is to zoom-in to a small subset of {S} such
that we enjoy much stronger agreement among the sets form the subset.
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3.1 Expansion of small sets in DPρ

It is very instructive to think of the cases when the direct product test passes with
non-negligible probability but there is no global function agreeing with {fS}. To this
end, consider the folded graph DPρ. In this graph, there are many small sets which
do not expand. For eg. for a fixed subset r of size � k and consider the family of
sets {S | S ⊃ r}. Since roughly with probability ρ, we are keeping an element while
moving to a neighbor in the graph, with probability roughly ρ|r| we stay in the same set
{S | S ⊃ r}. This gives a way to create a collection {fS} which will pass the agreement
test with non-negligible probability. For every r of size ρk, take a random function gr
and set {fS | S ⊃ r} with respect to gr (if not assigned previously). In this case, there is
no global function correlated with {fS} but the agreement test passes with probability
at least ρ|r|. This is precisely because in the agreement test we end up selecting (S, S′)
from {S | S ⊃ r} for some r with probability ρ|r|. Thus, in this respect Theorem ?? is
tight!

Thus, study small set expansion property in these graphs is instrumental in analyzing
such tests. This is different from the global expansion property of the graph. In this case,
we can argue about the global expansion by studying the eigenvalues of the associated
adjacency matrix.

We have the following lemma which says something about the small set expansion in
the graph DPρ.

Lemma 3.2. Suppose A,B ⊆ [n]k of size at least ε then

Pr(x,y)∈DPρ [x ∈ A & y ∈ B] > ε
2−√ρ
1−√ρ

Here are a few simple observations regarding the above lemma.

– if ρ = 0 then x and y are totally uncorrelated and hence we get that the probability
of the event x ∈ A and y ∈ B is ε2, as expected.

– If ρ = 1 then x and y are perfectly correlated and if A and B are disjoint then we
do get the probability to be 0.

– when ρ is somewhere in between, say 1/2, then the lemma non-trivially says that
no matter which sets A and B we take, we have a considerable chance that x ∈ A
and y ∈B.

3.2 Proof of Theorem 3.1
Definition 3.3. A restriction r is “good” if there exists g : r → {0, 1} such that the set

Zgr = {S ⊃ r | fS |r = g}

is of size at least Ω(ε).

Claim 3.4. There are at least Ω(ε) fraction of good r, where r is distributed according
to the test distribution.

Proof. This follows from a simple averaging argument. �

Consider the following distribution D1: (r, t, S, S′) - Select r ∼ B(k, 1/10), |t− r| ∼
B(k, 4/10), v1, . . . , vt. Then choose S \ t and S′ \ t.
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Definition 3.5. r0 is β-excellent if

Pr(r,t,S,S′)∼D1 [fS |r = fS′ |r but fS |t
>βk
, fS′ |t | r = r0] < exp(−k).

The notation
>βk
, means that the two string disagree on at least βk locations.

In other words, r0 is excellent if for a typical pair of sets S, S′ ∈ Zgr0
agreeing on r0

and whose intersection is more than r0 also agree on (most of) the remaining intersection.
This property is crucial in arguing that the plurality vote from the set {fS | S ∈ Zgr0

} is
going to be consistent with many {fS | S ∈ Zgr0

}.

Claim 3.6. There are at least (1− exp(−k)) fraction of r which are β-excellent.

Proof. Consider r0 and consider the family of sets {S ⊃ r0}. Now, based on fS |r0 , we
can partition the sets {S ⊃ r0} into at most exp(k) parts. Consider a subgraph of the
graph DPρ′ on {S ⊃ r0} where we only consider edges whose both the end points are
inside one of the partitions. For an edge (S, S′) let t = (S ∩S′) \ r0. We will call an edge
(S, S′) good if fS and f ′S agree t on at least (1−β) fraction of points. Otherwise we call
the edge bad. In this picture, the excellence property precisely means that the fraction
of bad edges is exp(−k).

Alternate way of choosing D1 is first select t form the appropriate binomial distribu-
tion B(k, 5/10) and then select r as a subset of t. According to this distribution given

that the event fS |t
>βk
, fS′ |t occurs, the probability that fS |r = fS′ |r is 2Ω(−βk). This

is because while choosing r we will have to miss every βk elements from t where fS , fS′
disagree. Thus,

Pr(r,t,S,S′)∼D1

[
fS |r = fS′ |r but fS |t

>βk
, fS′ |t

]
6 2Ω(−βk).

Therefore, there are at most η fraction for r0 such that

Pr(r,t,S,S′)∼D1

[
fS |r = fS′ |r but fS |t

>βk
, fS′ |t | r = r0

]
>

2Ω(−βk))
η

.

Rest of the r0 are excellent, setting η = exp(−k) proves the claim. �

We have a following simple corollary.

Corollary 3.7. There are at least poly(ε) fraction of r which are good and excellent.

The following claim finishes the proof of the direct product theorem.

Claim 3.8. If r is good (large Zgr ) and excellent then there exists hr : V → {0, 1} such
that

PrS∼Zgr [fS
>αk
, hr|S ] 6 εO(1)

We define the function hr on x ∈ [n] \ r by taking plurality of {fS(x) | S ∈ Zgr , x ∈
S \ r}.

We will give a proof sketch here. For more rigorous proof see [?]. Before proceeding,
let us see why it should work. The reason why plurality works is because we are in the
high acceptance regime inside Zgr . In other words, inside the set Zgr , if we look at a pair
of sets whose intersection is more then r then with high probability (w.p close to 1)
they agree on most of the intersection. This is precisely the excellence property! Thus,
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once we zoom-in to Zgr , we have a direct product test (a slight variation as we are only
considering whether they mostly agree or not inside the intersection instead of a total
agreement) which accepts with probability close to 1.

In order to use the excellence property, it is desirable to consider the graphDPρ′ where

ρ′ = 5 ·ρ. In this graph, we can label edges (S, S′) as ‘good’ if fS |S∩S′
>(1−β)ρ′k= fS′ |S∩S′ ,

and ‘bad’ otherwise. Since r is excellent, there are many ‘good’ edges. These good edges
will contribute towards showing fS

>(1−α)k= hr|S , provided there are many ‘good’ edges
inside Zgr . This is because f ’s opinion on only Zgr is considered while defining hr. A
priori, it is not clear why it should be the case that many ‘good’ edges are inside Zgr .
This is where we use Lemma 3.2. Thus, using this lemma, there are many good edges
inside Zgr and the plurality decoding works.

Proof. (Sketch) Suppose the claim in not true, this means for a random S ∈ Zgr , fS
and hr(S) disagree on at least αk locations with probability εO(1). Select a random
set e ⊆ S \ r of size 0.4k. Then, by simple application of Chernoff bound, we get that
hr(e) and fS(e) disagree on at least α/2 fraction of the locations with high probability.
However, since we define hr by taking the plurality vote, for a random e, hr(e) should
agree with at least Ω(ε) fraction of fS |e on at least Ω(1) fraction of locations. These two
contradict the excellence property. The starting assumption claims that for a random
e and S containing e, hr(e) and fS |e disagree on many locations, whereas the plurality
condition would imply that hr(e) and fS |e should agree on Ω(1) fraction of points. Both
these properties imply that for a random e and S, S′ containing e in Zgr , fS |e and fS′ |e
disagree on many locations, contradicting the excellence property of r. �
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