
Lecture 13: Hypercontractivity and Small-Set Expansion
January 31, 2023

Lecturer: Max Hopkins Scribe: Max Hopkins

In this lecture, we overview the theory of hypercontractivity and its applications to understand-
ing expansion of higher order random walks beyond Cheeger’s constant and the second eigenvalue.

1 Review: Basic Fourier Analysis on HDX
Last lecture, we discussed an elegant theory of Fourier analysis on high dimensional expanders,
and in particular the existence of a basis for functions f : Xpkq Ñ R on k-faces1 of an HDX

f “

k
ÿ

i“0

fi,

where fi is the ‘contribution’ to f coming from i-faces, or more explicitly fi “ Uk
i gi for some

gi P KerpDiq. We showed that this basis satisfies the following useful properties:

1. Approximate Eigenbasis: Mfi «γ λifi

2. Approximate Orthogonality: @i ‰ j : xfi, fjy «γ 0

3. Approximate Parseval: xf, fy «γ

k
ř

i“0

xfi, fiy

We discussed briefly how this matches the classical theory of Fourier analysis on the cube, even up
to the particular values of λi for the lower walk!

λi «
k ´ i

k
.

The fact that this exactly matches the (lazy) hypercube graph is not a coincidence, and we will see
a general connection later in this lecture.

Finally, recall we discussed briefly one of the reasons this theory is useful. If we can understand
how a function projects onto this decomposition, we understand its expansion. In particular, for a
set S Ď Xpkq, write f “ 1S and observe:

Φ̄pSq “
xf,Mfy

xf, fy
«

k
ÿ

i“0

λi
xf, fiy

xf, fy
.

1N.b. in this lecture, we use Xpkq to denote k-sets, not pk ` 1q-sets. We will see this is the correct formulation
when one wishes to generalize Fourier analysis from the cube.
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We already understand the values of λi, which are determined by the inherent laziness of the
underlying poset architecture. In this lecture, we will see how to understand the level-i Fourier
weight:

Wipfq “
xf, fiy

xf, fy
,

for the special case of simplicial complexes, completing this direction.

2 On The Structure of Non-Expanding Sets
With this in mind, let’s take a step back. We are interested in understanding the expansion of
functions on HDX (with respect to say the lower walk), but what does this really mean? One way
to formalize this into an interesting question is through its contrapositive:

If Φ̄pSq ě δ, what can we infer about the structure of S?

One reason this formulation is interesting is that it often reduces to natural property testing ques-
tions that can be useful e.g. for PCP reductions. To be concrete, let’s consider the case of the
standard hypercube graph:

Definition 2.1 (Hypercube Graph). The n-dimensional hypercube graph has vertex set V “ t0, 1un,
and edges between vertices of hamming distance 1. Equivalently, we can think of the random walk
on V “ t0, 1un that flips the value of a uniformly random coordinate.

The hypercube has a ‘canonical’ family of sparse cuts (non-expanding sets). Recall that a func-
tion f : t0, 1un Ñ R is called an i-junta if its value only depends on some subset of i coordinates.
The expansion of any i-junta on the hypercube graph is at most:

Φpi-juntaq ď
i

n
,

since this is the probability we flip a coordinate in the sensitive subset. The property testing ques-
tion is now the converse: is every sparse cut a junta? This type of result turns out to be very useful
when designing PCP reductions that use (for instance) the hypercube as an inner gadget.

In fact, before it was used for PCPs and hardness of approximation, this formulation of our
question was perhaps the foundational question in the modern theory of boolean function analysis.
Here, non-expanding functions on the cube were referred to as functions with ‘low total influence,’
and their structure was famously described in seminal works of Kahn, Kalai, and Linial [KKL88],
and Friedgut [Fri98].

Theorem 2.2 (Friedgut’s Junta Theorem [Fri98]). If ΦpSq ď i
n

, then S is ε-close to a 2Opi{εq-junta.

Today, we will focus on a simpler setting that also generalizes more directly to product spaces
and high dimensional expanders,2 small-set expansion and the noisy cube.3

2Friedgut’s Junta Theorem is false on products. There is a generalization called Hatami’s Theorem to objects called
‘pseudojuntas’, but even the definition is fairly involved. Extending this result to HDX is an open problem.

3We take slight liberty with the definition here so that it matches the noise operator. Often the noisy cube is defined
by flipping each bit with probability ρ.
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Definition 2.3 (Noisy Hypercube). The n-dimensional ρ-noisy hypercube is the graph on vertex
set V “ t0, 1un whose edge distribution around x P V is described by the following process:

1. Remove each bit from x with probability 1 ´ ρ.

2. Re-sample each removed bit uniformly at random.

We call the random-walk operator of this graph the Noise Operator, and denote it by Tρ.

We’ll use ΦρpSq to denote expansion with respect to the Tρ. Ahlswede and Gács [AG76], and
later Kahn, Kalai, and Linial [KKL88] observed that the noisy hypercube is a small-set expander,
giving essentially the strongest possible characterization of non-expanding sets in this regime.

Theorem 2.4 (Small-Set Expansion Theorem). The expansion of any set S of density α with re-
spect to the noisy hypercube Tρ is:4

ΦρpSq ě 1 ´ α
1´ρ
1`ρ .

In other words, every non-expanding set is large:

Φ̄ρpSq ě δ ùñ Er1Ss ě δOp1q

Small-set expansion is a very special type of behavior on graphs, with deep connections to
topics such as locally testable codes, hardness of approximation, and the unique games conjecture.
We know very few classes of objects satisfying (even variants of) this type of characterization, and
building a general theory is a major open problem.

2.1 Beyond the Cube
That said, we do have at least a few analogs of the small-set expansion theorem beyond the cube.
Related characterizations on the p-biased cube, shortcode, and Grassmannian, for instance, have
lead to numerous breakthroughs in hardness of approximation and the theory of sharp thresholds,
including the recent proof of the 2-2 Games Conjecture [KMS18]. Today, we’ll focus on the
simplest of these extensions, the p-biased cube and product spaces, along with their relation to
HDX.

Recall the p-biased cube is simply the distribution over t0, 1un given by drawing each bit
independently from Berppq.5 We can define natural analogs of the noise operator on the p-biased
cube (and indeed general product spaces), where the only change is that the re-sampling step is
performed with respect to the apporpriate distribution instead of uniformly at random (so in this
case, each bit will be re-sampled from Ber(p)).

It turns out that the spectrum of analogous graphs on p-biased cube (indeed on any n-dimensional
product) are identical to the standard cube. So naively, one might hope this object exhibits the same
properties beyond spectral analysis. Unfortunately, it only takes a moments thought to refute this
conjecture.

4Notice that the exponent here perfectly interpolates between the ρ “ 0 setting, where we re-sample the entire
string and therefore hit S with probability α, and the ρ “ 1 setting where we don’t re-sample at all and therefore
always stay in S.

5I.e. each bit is 1 independently with probability p.
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Example 2.5 (p-biased cube). Consider a dictator function on the p-biased cube:

1i “ tx P t0, 1un : xi “ 1u

The density of any dictator is p. On the other hand:

Φρp1iq ď 1 ´ ρ,

since we can only leave the dictator if we re-sample coordinate i.

In other words, the noisy p-biased cube is not a small-set expander, and once again local func-
tions such as dictators and juntas provide examples of (now small) non-expanding sets. Naively,
one might expect some variant of Friedgut’s Junta Theorem holds, but it turns out this is too much
to hope for.6 We can, however, prove a weaker result that’s still quite useful: every non-expanding
function is indeed local in the sense that it must have constant correlation with a low-dimensional
restriction.

More formally, we will actually state this result for general product spaces. Let X “ pΩbi, πbiq

be an n-dimensional product. We call a function f : X Ñ R ε-global if it is small under every
low-dimensional conditioning. That is if for all coordinate sets S Ď rns, |S| “ 1

2
logpε´1q and

labelings zS P ΩS:
}fSÑzS}22 :“ Erfpxq2 | xS “ zSs ď ε,

In the language of complexes (which we’ll discuss next section), this simply means that f is sparse
over all low-dimensional links.

Theorem 2.6 (Global sets expand [KLLM19]). Every ε-global function f : X Ñ t0, 1u expands
near perfectly:

Φρpfq ě 1 ´ εOp1q.

In other words, any non-expanding set is local:

Φρpfq ď δ ùñ DS, z : }fSÑz}22 ě δOp1q

where |S| “ Oplogp1{δqq.

This weaker type of characterization still turns out to be quite useful, and can be used to show
sharp thresholds,7 as well as various further results in boolean function analysis and extremal
combinatorics [LM19, KLLM21]. A final interesting observation is that while this result may
appear to be weaker than the small-set expansion theorem at first glance, it is actually a direct
generalization!8 This is because on the cube, every sparse function is global.

Observation 2.7. Every function f : t0, 1un Ñ t0, 1u of density α is αOp1q-global.

We leave the proof as a simple exercise.9

6Consider OR for small enough p.
7Here technically a stronger variant is required which holds for monotone functions on the p-biased cube, see

[KLLM19]
8At least if one is willing to be loose in the exact exponent.
9Here’s another interesting exercise: use this idea to recover hypercontractivity on HDX that scales with the worst

marginal probability of any vertex (across all restrictions). This type of result is called a generalized hypercontractivity
Theorem, and was also used on the p-biased cube to derive early results on sharp thresholds.
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2.2 High Dimensional Expanders
Product spaces have a very natural interpretation as partite simplicial complexes. In particular,
given an n-dimensional product space pΩ, πq “ pΩ1 ˆ . . . ˆ Ωn, π1 ˆ . . . ˆ πnq, we can think of
pΩ, πq as an n-dimensional partite simplicial complex on vertex set

Xp1q “

n
ď

i“1

tiu ˆ Ωi

where coordinates in the original space correspond to the parts or ‘colors’ of the partite complex,
and top-dimensional faces/weights simply correspond to their analogous string in the product. In-
deed, this is really a general translation between any joint distribution on n variables, and an
n-partite simplicial complex.

Viewed in this fashion, products have very natural connections to the theory we’ve developed
in this class. In fact, perhaps the first connection to observe is that products are ‘perfect’ HDX.

Observation 2.8 (Products are HDX). Products are (one-sided) 0-local-spectral expanders.

Proof. If each pΩi, πiq is uniform, all links are unweighted complete multi-partite graphs, which
are (one-sided) 0-spectral expanders. We leave the case of general πi as an exercise.

In fact, the connection runs much deeper. Many standard analysis tools on products are also
specific examples of the theory of higher order random walks. Consider, for simplicity, the setting
of the hypercube. The (non-lazy) down-up walks on its corresponding complex generate the Ham-
ming scheme (e.g. standard hypercube graph). In this vein, there is also a natural generalization of
the noise operator in this language:

Tρ “

n
ÿ

i“0

ˆ

n

i

˙

p1 ´ ρqiρn´iUn
n´iD

n
n´i.

This operator can be read as performing the following procedure, starting at an n-face x:

1. Remove each coordinate with probability 1 ´ ρ, denote set of removed coordinates S

2. Re-sample xS conditioned on xrnszS

It is not hard to check that this is exactly the noise operator when applied to a product. It can even
be checked that the spectrum of these operators remains (roughly) the same as on a product, and
depends only on the underlying dimension!

This raises a natural question. Since products and the noise operator are a special class of walks
on HDX,

Can we hope to generalize the theory of small-set expansion to HDX?

It certainly isn’t obvious HDX will exhibit the same type of structure (given say the differences
between the uniform and p-biased cube). Moreover bounded-degree complexes actually act quite
differently with respect to classically related properties such as fast mixing.10 Despite all this, it
turns out a direct generalization is indeed possible!

10Mixing, small-set expansion, and hypercontractivity are intimately related topics, see e.g. [Mon04]. Products mix
in time dependent only on dimension, while bounded-degree HDX suffer a log factor in the number of vertices due to
degree considerations.
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Theorem 2.9 ([GLL21, HKL23]). Let Xpnq be a partite γ-HDX,11 then any ε-global function
expands near perfectly:

Φρpfq ě 1 ´ εOp1q.

In other words, any non-expanding set is local:

Φρpfq ď δ ùñ DS, z : }fSÑz}2 ě δOp1q

where |S| “ Oplogp1{δqq.

This covers bounded-degree high dimensional expanders such as the Kaufman-Oppenheim
construction we saw earlier in this class. We note that a similar statement also holds in the general
(non-partite) setting for two-sided local spectral expanders [BHKL21]. However, it is possible to
recover this result from the above just by embedding an unordered complex into a partite one,12 so
we focus just on the partite setting.

It is an intriguing open question whether Theorem 2.9 has further applications in areas such
as hardness of approximation, sharp thresholds, and graph theory where traditional (and extended)
tools in boolean function analysis drove many years of breakthroughs. In the F2-regime, a similar
type of structure has recently seen use in derandomizing classical hardness results for Sum-of-
Squares [DFHT20, HL22], but no direct applications of Theorem 2.9 itself are known.

2.2.1 HDX are ‘Product-like’

Given the substantial differences between products and bounded degree complexes, how can we
hope to prove Theorem 2.9? Is there some sense in which HDX act like products up to an error
term? To answer this question, it will be convenient to think of a partite complex Xpnq as a joint
distribution over n variables (given by the values on each color/coordinate). The condition that
Xpnq is a product is exactly when these variables are independent. On the other hand, this is
extremely far from true on any bounded-degree complex. If we condition on a coordinate taking
some value, there are only a constant number of values the other coordinates can take!

The key lies in observing that while this is true on a point-wise level, the variables actually are
close to independent spectrally.13 More formally, given disjoint coordinate sets S, T Ď rns, con-
sider the induced marginal distributions over XS and XT (equivalently the complexes induced by
restricting to color sets S and T ). The correlation between XS and XT is captured by the following
averaging operator ES,T : CpXT ,Rq Ñ CpXS,Rq mapping functions on XT to functions on XS

by averaging over neighbors in the complex:

ES,TfpxSq “ E
z

rfpzT q|zS “ xSs.

Equivalently we can view ES,T as the random walk moving between XS and XT via shared faces
in XSYT . On a product, ES,T is a complete bipartite graph since there are no correlations between
XS and XT . On an HDX, Dikstein and Dinur [DD19] proved that ES,T is an excellent expander!

11Here and throughout, we will always mean one-sided local-spectral expanders by this notation.
12In particular, include every permutation of each top-dimensional face in the original complex.
13This is also very closely related to the popular notion of ‘spectral independence’ on spin-systems [ALO20,

CGSV21], the only difference is that the spin-system version looks at the aggregate operator across all colors.
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Theorem 2.10 (Theorem 7.1 [DD19]). If X is an n-dimensional partite γ-HDX, then:14

λpES,T q ď Op|S||T |γq.

Proof. We leave the proof as an exercise.15

In other words, while individual settings of S and T may be extremely dependent, on average it
is actually possible to decorrelate them. We will see later in this lecture how this simple observation
can be applied to generalize the theory of Fourier analysis on products to HDX, a result due to Tom
Gur, Noam Lifshitz, and Siqi Liu [GLL21].16

3 Hypercontractivity on the Cube
We are finally ready to discuss the powerful toolset used to prove these small-set expansion theo-
rems: hypercontractivity. The basic theory of Fourier analysis we’ve covered so far, e.g. orthog-
onality and Parseval, largely pertain to second moment or spectral properties of the underlying
complex. Hypercontractivity is a tool used to control the behavior of functions beyond the second
moment. We will use a simple, but central form of hypercontractivity called the Bonami Lemma:

Theorem 3.1 (The Bonami Lemma). For any f : t0, 1un Ñ R, and any i ď n:

}fďi}4 ď
?
3
i
}fďi}2,

where we recall fďi “
ř

|S|ďi

pfpSqχS is the degree at most i part of f .

It is worth taking a moment to interpret the above result. In the boolean setting, fďi can be an
arbitrary multilinear polynomial of degree i. Thus the Bonami lemma can be interpreted as saying:

“Low-degree polynomials are smooth,”

since ‘spiky’ functions get blown up by higher norms. Another useful interpretation is as a niceness
condition on random variables (that the 4th moment doesn’t exceed the 2nd too drastically). Indeed,
one can use the Bonami Lemma to derive very useful probabilistic results such as tail bounds
(extensions of Chernoff-Hoeffding), and even anti-concentration (see [O’D14, Chapter 9]).

Why is this useful in our case? It’s not too hard to observe that sparse functions are not smooth.
A boolean function of density α always satisfies

}f}4 “ α1{4 " α1{2 “ }f}2.

The Bonami lemma, intuitively, should then imply that a sparse function cannot have much projec-
tion onto its low degree Fourier coefficients! This can be made formal by a clever application of
Holder’s inequality.

14Here λpES,T q stands for the second largest singular value of ES,T , like in HW 1.
15Hint: prove a partite version of Trickling-Down, and use the fact that λpES,T q “ λpET,Sq.
16Formally GLL introduced this notion separately as an object called a ‘γ-product,’ and observed that embedded

two-sided HDX satisfy the definition.
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Lemma 3.2 (Level-i inequality). Let f : t0, 1un Ñ t0, 1u be a boolean function of density α, then:

xf, fiy

xf, fy
ď 3iα1{2

Proof.

xf, fiy ď }fi}4}f}4{3 (Holder’s Inequality)

ď
?
3
i
}fi}2}f}4{3 (Bonami Lemma)

“
?
3
ia

xf, fiy}f}4{3 (Orthogonality)

“
?
3
ia

xf, fiyα
3{4 (Booleanity)

Re-arranging then gives
xf, fiy ď 3iα3{2,

and observing that α “ xf, fy by Booleanity gives the desired result.

It’s worth noting that Holder’s Inequality is frequently an indispensible tool when working with
hypercontractivity and higher norms in general. We leave it as an exercise to deduce the small-set
expansion theorem given this lemma.17

Why ‘hypercontractivity’? As a brief aside before we prove the Bonami lemma, one might
wonder why this result is called hypercontractivity. In fact, this really refers to an equivalent
formulation of the lemma that concerns the contraction of the noise operator Tρ:

Theorem 3.3 (The p2, 4q-Hypercontractivity Theorem). For any ρ ď 1?
3

and f : t0, 1un Ñ R:

}Tρf}4 ď }f}2

This result can be interpreted as saying not only does Tρ contract ℓ2-norm (just by dint of
being an averaging operator), it contracts higher norms into ℓ2 (hence the term ’hyper’). It is not
particularly hard to deduce Theorem 3.3 from the Bonami Lemma (or prove directly by induction
as below). We refer the reader to [O’D14] and leave both as exercises.

3.1 Proving the Bonami Lemma
We now give a simple proof of the Bonami lemma, which also serves as an excellent example
of how many results in boolean function analysis can be proved via induction on the dimension
n. Since we are in the boolean setting it is equivalent to show that for any degree-d multilinear
polynomial g : t´1, 1un Ñ R:

Erg4s ď 9dErg2s2.

The key is to observe that by splitting g into terms by their dependence on the final variable xn, we
can write:

g “ xng
1 ` g2

where g1 is degree d ´ 1, g2 is degree d, and both are functions on only n ´ 1 variables. This
facilitates induction on n.

17Here we really mean a weak version giving ΦpSq ě 1 ´ αOp1q, reaching the tight exponent is more involved.
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Base Case: The base case is n “ 0, which are simply constant functions. Here the result holds
trivially since Erc4s “ Erc2s2 “ c4.

Inductive Step: Let’s first examine the 2-norm:

Erg2s “ Erx2
ng

12s ` Er2xng
1g2s ` Erg22s “ Erg12s ` Erg22s

since x2
n “ 1, Erxns “ 0, and g1 is independent of xn. We can expand the 4-norm similarly, setting

x2
n “ 1 and killing terms with odd dependence on xn:

Erg4s “ Erg14s ` 6Erg12g22s ` Erg24s

ď Erg14s ` 6
a

Erg14sErg24s ` Erg24s

We can now apply the inductive hypothesis to get

Erg4s ď Erg14s ` 6
a

Erg14sErg24s ` Erg24s

ď 9k´1Erg12s2 ` 6
a

9k´1Erg12s29kErg22s2 ` 9kErg22s2

ď 9kpErg12s2 ` 2Erg12spErg22s ` Erg22s2q

“ 9kErg2s2

4 Hypercontractivity Beyond the Cube
In this section we introduce Fourier analysis on products and discuss its extension to HDX.

4.1 Hypercontractivity and The Efron-Stein Decomposition
The Bonami Lemma only has meaning if we have a notion of a decomposition of f into components
by ‘degree.’ This role will be filled by a generalization of the typical Fourier basis on the cube to
products called the Efron-Stein Decompisition. For an extended exposition, see [O’D14, Chapter
8].

Like the classical Fourier decomposition, Efron-Stein breaks f into contributions coming from
each subset of coordinates:

f “
ÿ

SĎrns

f“S,

where on the cube f“S is pfpSqχS . In this setting, however, we will take a combinatorial approach
to defining each contribution f“S . Towards this end, it will be useful to define a set of colored
averaging operators, which will play a similar role to the up and down operator in the linear
algebraic decomposition we saw last lecture. Given any subset S Ď rns, define ES to be the
operator that averages a function f over its values on S:

ESrf spxq :“ Erfpzq | zS “ xSs.

Equivalently, ES can be thought of as re-randomizing f over all coordinates outside of S. ES

satisfies many useful properties. One can check for instance...
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Claim 4.1 (Some Properties of ES). On any partite complex X:

1. ES contracts p-norms

2. ES is self-adjoint

In a sense ES can be viewed as a restricted version of the down-up walk (where the down-
process is forced to walk to coordinate set S). In fact, this can be made formal by the following
observation:

Un
i D

n
i “

1
`

n
i

˘

ÿ

|S|“i

ES.

Back to the task at hand, what is the contribution to f coming from S? One natural idea is just
to use ESf . This is almost right, but the expression inherently counts contributions coming from
all subsets of S as well. Similar to the linear algebraic approach, we want to subtract out such
contributions. Using inclusion-exclusion, this suggests the following formula:

f“S “
ÿ

TĎS

p´1q|SzT |ETf

We leave it to the reader to verify that this definition does indeed lead to a decomposition of f .

Theorem 4.2 (Efron-Stein Decomposition). For any n-dimensional product space X and function
f : X Ñ R, the Efron-Stein decomposition satisfies:

1. Eigenbasis: Tρf
“S “ ρ|S|f“S

2. Orthogonality: @S ‰ S 1 : xf“S, f“S1

y “ 0

3. Parseval: xf, fy “
n
ř

i“0

xf“S, f“Sy

The proof of these results relies on the following simple but key observation:

Claim 4.3. For any n-dimensional product space X and any subsets S, T Ď rns:

ESET “ ESXT

Proof. Recall ET re-randomizes a function over rnszT . Applying ES and ET , we are re-randomizing
over all coordinates except S X T . Since X is a product these operations are independent, so this
is exactly ESXT .

In fact, this is the only assumption we will make on X (besides being a partite complex), which
hints at what’s to come!

Proof of Theorem 4.2. Parseval is immediate from orthogonality.

Eiegenbasis: We can write Tρ in terms of the averaging operators as:

Tρ “
ÿ

TĎrns

p1 ´ ρqn´|T |ρ|T |ET
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Then we can write:

Tρf
“S “

ÿ

TĎrns

p1 ´ ρqn´|T |ρ|T |ETf
“S

Let’s examine ETf
“S separately, expanding out f“S we get

ETf
“S “ ET

˜

ÿ

T 1ĎS

p´1q|SzT 1|ET 1rf s

¸

“

˜

ÿ

T 1ĎS

p´1q|SzT 1|ETET 1rf s

¸

(Linearity of ET )

“

˜

ÿ

T 1ĎS

p´1q|SzT 1|ETXT 1rf s

¸

(Claim 4.3)

Note that when T Ğ S, this sum is clearly 0.18 Putting both together, we have:

Tρf
“S “

ÿ

TĚS

p1 ´ ρqn´|T |ρ|T |

˜

ÿ

T 1ĎS

p´1q|SzT 1|ETXT 1rf s

¸

Since T Ě S and T 1 Ď S, we always have T XT 1 “ T 1 so the righthand sum is just f“S . Therefore

Tρf
“S “

˜

ÿ

TĚS

p1 ´ ρqn´|T |ρ|T |

¸

¨ f“S,

The lefthand sum is just the probability that a ρ-biased string contains S, which is exactly ρ|S|.

Orthogonality: We now wish to show that for any S ‰ S 1:

xf“S, f“S1

y “ 0

This follows from the self-adjointness of the operator ET . Assume without loss of generality that
there exists some x P SzS 1, then we can write:

xf“S, f“S1

y “
ÿ

TĎSztxu

p´1q|SzT |xpET ´ ETYtxuqf, f“S1

y

“
ÿ

TĎSztxu

p´1q|SzT |xf, pET ´ ETYtxuqf“S1

y.

But since x R S 1 by definition

pET ´ ETYtxuqf“S1

“
ÿ

T 1ĎS1

p´1q|SzT 1|pET ´ ETYtxuqE 1
Tf

“
ÿ

T 1ĎS1

p´1q|SzT 1|pETXT 1 ´ EpTYtxuqXT 1qf (Claim 4.3)

“ 0 (x R T 1)

18Why? To see this, try fixing an element in x P SzT and splitting the sum into terms T 1 Ď Sztxu and T 1 Y txu.
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The Efron-Stein Decomposition has many nice properties beyond those stated here, such as its
behavior under restriction. As above, these typically depend only on the partite structure of X , and
(perhaps repeated applications of) Claim 4.3. Later in the lecture, we will see how to use these
facts to prove hypercontractivity for global functions.

Theorem 4.4 (Bonami Lemma for Products [KLLM19, Zha21]). Any f P L2pΩn, πbnq satisfies:

}fďi}44 ď 2Opiq}f}22 max
|S|“i,zS

t}fSÑz}22u.

Expansion of global functions follows similarly as on the noisy cube. We note that Theorem 4.4
is also sometimes called conditional hypercontractivity, due to its dependence on the sparsity of f
over X’s conditional distributions.

As a brief historical aside, we note Theorem 4.4 was actually proved independently by Keevash,
Lifshitz, Long, and Minzer [KLLM19], and O’Donnell and Zhao [Zha21]. The latter only appeared
in Zhao’s thesis,19 so is lesser known, but their approach generalizes very nicely to HDX.

4.1.1 From Products to HDX

The Efron-Stein decomposition generalizes very naturally to arbitrary partite simplicial complexes.
In this section, we will show how to use the ‘spectral’ independence of HDX to derive approximate
variants of the same properties. At a high level, the following is a good guiding principle:

Any classical property of Efron-Stein holds approximately on HDX.

More concretely, following [GLL21], we extend the central claim in the prior section to HDX:

Claim 4.5 (Lemma 3.3 [GLL21]). For any n-dimensional partite γ-HDX X and any subsets
S, T Ď rns:

}ESET ´ ESXT }2 ď Op|S||T |γq

Proof. We first argue we can reduce to the case where S X T “ ∅, simply by moving to the link
of T X T 1. To see this, first write:

ExrpESETf ´ ESXTfq2s “ ExSXT
ExrnszpSXT q

rpESETfpxSXT , ¨q ´ ESXTfpxSXT , ¨qq2s. (1)

We now compare these restrictions to the averaging operators on the link of xSXT itself, which we
denote by ExXXT

Y for Y Ă rnszS X T . The latter restriction is simple, it is just the expectation of f
over the link of xSXT by definition, so

ESXTfpxSXT , ¨q “ ExTXS
∅ pfxSXT

q.

The former restriction is slightly more complicated, we wish to argue

ESETfpxSXT , ¨q “ ExSXT

SzT ExSXT

T zS pfxSXT
q

19While this was a few years later, the result and proof technique were actually mentioned in Zhao’s thesis proposal
contemporaneously with [KLLM19].
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Intuitively, this is just because in both ES and ET , I am averaging within the link of xSXT . Since
the conditional distributions are defined appropriately, I can just perform this averaging inside the
link of xSXT instead. Formally, this is a pain to write out, but it is a good exercise in playing with
conditional/link probabilities.

Returning to (1), we now have:

ExrpESETf ´ ESXTfq2s “ Ev“xSXT
ExrnszpSXT q

rpEv
SzTE

v
T zSfv ´ Ev

∅fvq2s

ď |S|2|T |2γ2Evr}fv}22s

“ |S|2|T |2γ2}f}22,

assuming the result holds for the non-intersecting setting in all links. As such, it is enough to prove
for any non-intersecting sets S,T :

}ESET ´ E∅}2 ď |T ||T 1|γ.

The trick is now to notice that ETET 1 “ ET 1,TET 1 and ErET 1f s “ Erf s, so

}ETET 1f ´ E∅f}2 “ }ET 1,T pET 1fq ´ E∅pET 1fq}2

ď |T 1||T |γ}ET 1f}2

ď |T 1||T |γ}f}2

since averaging contracts 2-norms.

As an immediate corollary, we get a version of Theorem 4.2 for HDX.

Corollary 4.6 (Efron-Stein on HDX [GLL21]). For any n-dimensional partite γ-HDX X and
function f : X Ñ R, the Efron-Stein decomposition satisfies:

1. Approximate Eigenbasis: Tρf
“S «γ ρ|S|f“S

2. Approximate Orthogonality: @S ‰ S 1 : xf“S, f“S1

y «γ 0

3. Approximate Parseval: xf, fy «γ

n
ř

i“0

xf“S, f“Sy

Proof. Repeat exactly the same arguments as in Theorem 4.2, but replace every use of Theorem 4.3
with Theorem 4.5 at the cost of Opγq error.

With this in mind, we can now state a natural variant of the Bonami Lemma for HDX

Theorem 4.7 (Bonami Lemma for HDX (Informal [HKL23])). Let f be any function on an n-
dimensional partite γ-HDX. Then as long as γ ! 2´polypnq:

}fďi}44 Àγ 2Opiq}fďi}22 max
|S|“i,zS

t}fSÑz}22u

While this exact variant of the result does not appear in the literature, one can see [BHKL21,
GLL21] for formal proofs of very similar results.
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5 Hypercontractivity (The Proof!)
We are finally ready to sketch the proof of the hypercontractivity theorem. We will focus mostly
on the basic setting of product spaces, but discuss throughout how to generalize the proof to HDX.

5.1 Symmetrization (Reduction to the Cube)
While the Efron-Stein basis is very useful in its own right, and can be analyzed directly, it still tends
to be much harder to deal with than the typical Fourier expansion over t0, 1un. Largely for this
reason, the main technique used in the study of products are methods to reduce analysis back to the
cube. In this section, we overview an elegant framework for this technique called symmetrization
due to Kahane [Kah68] and Bourgain [Bou79]. Our exposition largely follows [O’D14, Chapter
10].

Definition 5.1. Let f P L2pΩn, πbnq be any function over a product space. The symmetrization of
f , f̃ P L2pt´1, 1un ˆ Ωn, πbn

1{2 ˆ πbnq is:

f̃pr, xq “
ÿ

SĎrns

rSf
“Spxq

where tf“SuSĂrns is the standard orthogonal decomposition and rS “
ś

jPS rj

Broadly speaking, the idea behind this definition lies in the hope that hitting each component
with a random binary string won’t significantly change the distribution of f . Indeed, when f is the
cube this intuition can be made formal, and it’s not hard to see that f and f̃ are equi-distributed.
While this is no longer true on products, it is true that the moments of f and f̃ remain closely
related. Let’s start with the second moment, where we can actually show that f and f̃ are exactly
equivalent.

Proposition 5.2. Let f P L2pΩn, πbnq be any function over a product space. Then f and f̃ have
the same second moment:

}f}2 “ ||f̃ ||2

Proof. The trick is to notice that the restriction of f̃ to any x P Ωn is a boolean function with
Fourier coefficients:

pf̃ |xpSq “ f“Spxq.

By Parseval’s Theorem we therefore have for all x P Ωn:

}f̃ |x}22 “
ÿ

SĂrns

f“Spxq2

Taking the expectation on both sides over x „ πbn then gives the desired result by orthogonality
of f“S . On an HDX we can use approximate Parseval instead.

This is a useful result in and of itself, but we are mostly interested in analyzing higher mo-
ments. Bourgain’s key observation in this regime is that while higher moments are not necessarily
equivalent, they are bounded on both sides by an application of the noise operator
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Theorem 5.3 (The Symmetrization Theorem [Bou79]). Let f P L2pΩn, πbnq be any function over
a product space and q ą 1. Then the qth moment of f is sandwiched by symmetrized applications
of the noise operator:

} ĄTcqf}q ď }f}q ď }ĄT2f}q

for some constant 0 ď cq ď 1 dependent only on q.

For our purposes, it will actually be sufficient to show just the upper bound, which is still
somewhat non-trivial. We will assume the result in the univariate case (which can be used as is for
the HDX setting as well), and prove the result by induction.

Lemma 5.4 (Univariate Symmetrization). For any single-variate h P L2pΩ, πq:

}T1{2hpxq}q ď }h̃pxq}q, (2)

Before moving to the full proof, it will be useful to introduce some notation, namely a coordi-
nate wise variant of the noise operator T i

ρ, which re-samples the ith coordinate of f with probability
1 ´ ρ. On a product, this can be equivalently be written as:

T i
ρf “

ÿ

SSi

f“S `
ÿ

SQi

ρf“S.

A similar result can be proved on HDX by using spectral independence of coordinates.
It will further be useful to extend this definition beyond the domain ρ P r0, 1s, which can

be done in the latter formulation. Then the coordinate-wise ‘noise’ operator also carries a close
connection with symmetrization, namely for r “ pr1, . . . , rnq P t´1, 1un:

Trfpxq “ T 1
r1
. . . T n

rnfpxq “
ÿ

SĂrns

rSf
“Spxq “ f̃pr, xq.

Proof of Theorem 5.3 (Upper Bound). First we argue the univariate result can be extended to show
the result holds for the single coordinate operator:

}T i
1{2fpxq}q ď }T i

ri
f}q.

Assume for simplicity i “ 1, and write x “ px1, x
1q. The idea is to fix x1 and analyze f |x1 which is

a function on a single variable:

}T i
1{2fpxq}q “ }}pT i

1{2fq|x1px1q}q,x1}q,x1 “ }}T1{2f |x1px1q}q,x1}q,x1 .

Here the final equality relies on the fact that the coordinate-wise noise operator respects restriction
to that coordinate. This is a good exercise to show for products, and is again possible to extend
approximately to HDX. We can now apply Equation (2):

}}T1{2f |x1px1q}q,x1}q,x1 ď }}Trif |x1px1q}q,x1}q,x1

“ }T i
ri
fpxq}q

where we have again used that T i
ri

respects restriction. Since we have proved this coordinate-wise
result for general functions, the full result follows from a basic induction. The idea is simply to
apply the coordinate-wise version iteratively to the outmost coordinate (e.g. to analyze T 1

1{2T
2
1{2f ,

you’d apply the coordinate version to T 1
1{2 on function T 2

1{2f ), noting that we can apply this to all
coordinates since the coordinate-wise operators commute and may therefore be re-ordered at will.
On an HDX, the operators only approximately commute, but this is still enough for an approximate
version of the result to go through.
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5.2 Hypercontractivity
We are now ready to prove hypercontractivity for products/HDX. We follow the proof of O’Donnell
and Zhao [O’D14].

Theorem 5.5 (Bonami Lemma for Products). Let f P L2pΩn, πbnq be an pε, iq-pseudorandom
function. Then the fourth moment of fďi is upper bounded by:

}fďi}44 ď 2Opiq}f}22 max
|S|“i,zS

t}fSÑz}22u.

Proof. The main idea is to use Bourgain’s symmetrization trick combined with the standard Bonami
lemma for the discrete hypercube. In particular, writing g “ T2f

ďi for notational simplicity, notice
that we can write:

Exrpfďiq4s ď Ex

“

Errg̃|xprq4s
‰

ď 2OpiqEx

“

Errg̃px, rq2s2
‰

(Bonami Lemma)

“ 2OpiqEx

»

–

¨

˝

ÿ

|S|ďi

g“Spxq2

˛

‚

2fi

fl (Parseval)

where the final step follows from recalling that g“Spxq are the Fourier coefficients of g̃px, ¨q. Re-
calling g “ T2f

ďi, we therefore have:

Exrpfďiq4s ď 2OpiqEx

»

–

¨

˝

ÿ

|S|ďi

22|S|f“Spxq2

˛

‚

2fi

fl ď 2OpiqEx

»

–

¨

˝

ÿ

|S|ďi

f“Spxq2

˛

‚

2fi

fl

The analysis from this point is essentially a much simpler version of [KMMS18]: we’ll expand out
the above sum over the intersection of index sets I “ S X T , pull out one of the resulting terms
by its maximum (which is then bounded by pseudorandomness), and note that the remaining term
is simply the 2-norm. Let’s start by re-indexing our sum over the intersection I and pulling these
variables outside the summation:

Ex

»

–

¨

˝

ÿ

|S|ďi

f“Spxq2

˛

‚

2fi

fl “ Ex

»

–

ÿ

|I|ďi

ÿ

SĄI:|S|ďi

f“Spxq2

¨

˝

ÿ

T :|T |ďi,SXT“I

f“T pxq2

˛

‚

fi

fl

ď
ÿ

|I|ďi

ExI

»

–

¨

˝

ÿ

SĄI:|S|ďi

ExSzI

“

f“SpxSq2
‰

˛

‚

¨

˝

ÿ

TĄI:|T |ďi

ExT zI

“

f“T pxT q2
‰

˛

‚

fi

fl

where we have additionally used product structure to push the relevant variables inside each sum.
We use xS and xT since f“S and f“T depend only on these variables. The idea is now to pull out
the second term by bounding its maximum over I:
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E

»

–

¨

˝

ÿ

|S|ďi

f“Spxq2

˛

‚

2fi

fl ď
ÿ

|I|ďi

ExI

»

–

¨

˝

ÿ

SĄI:|S|ďi

ExSzI

“

f“SpxSq2
‰

˛

‚

fi

fl max
|I|ďi,yIPΩI

¨

˝

ÿ

TĄI:|T |ďi

ExT zI

“

f“T pyI , xT zIq2
‰

˛

‚

“

¨

˝

ÿ

|I|ďi

ÿ

SĄI:|S|ďi

ExS

“

f“SpxSq2
‰

˛

‚ max
|I|ďi,yIPΩI

¨

˝

ÿ

TĄI:|T |ďi

ExT zI

“

f“T pyI , xT zIq2
‰

˛

‚

ď 2i}fďi}22 max
|I|ďi,yIPΩI

¨

˝

ÿ

TĄI:|T |ďi

ExT zI

“

f“T pyI , xT zIq2
‰

˛

‚

where we have observed that each f“S term in the first summation appears exactly 2|S| ď 2i times
(once for each subset of S). It is left to bound the maximum term, which follows from the following
relation on restrictions of the orthogonal decomposition:

f“IYBpyI , xBq “
ÿ

JĂI

p´1q|I|´|J |pfJ |yJ
q“BpxBq,

where fJ |yJ
: ΩrnszJ Ñ R is the restriction of f obtained by setting coordinates J to corresponding

values yJ . Cauchy-Schwarz then gives:
ÿ

TĄI:|T |ďi

ExT zI

“

f“T pyI , xT zIq2
‰

ď
ÿ

TĄI

ExT zI

“

f“T pyI , xT zIq2
‰

“
ÿ

TĄI

ExT zI

»

–

˜

ÿ

JĂI

p´1q|I|´|J |pfJ |yJ
q“T zIpxT zIq

¸2
fi

fl

ď 2i
ÿ

JĂI

ÿ

SĂĪ

ExS
rpfJ |yJ

q“SpxSq2s

ď 4iε}f}28

where the last step follows from noting that each of the at most 2i restricted sums is upper bounded
by the restricted two-norm }fJ |yJ

}22 ď ε}f}28 by the pseudorandomness of f . Plugging this back
into our previous computations gives

Erpfďiq4s ď 2Opiqε}f}22}f}28

as desired.
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A Claim 4.5 Details
Since our notation departs somewhat from the rest of the course, we include the proof in Claim 4.5
that:

ESETfpxSXT , ¨q “ ExSXT

SzT ExSXT

T zS pfxSXT
q

To prove this formally, it is perhaps easier to start with the restriction and unroll the definitions:

Ev
SzTE

v
T zSpfxSXT

qpyq “ E
z|v

“

Ev
T zSfvpzq | zSzT “ ySzT

‰

Now examining the inner term, we can unroll the restriction:

Ev
T zSfvpzq “ E

z1|v
rfvpz1q | z1

T zS “ zT zSs

“ E
z1|v

rfpv, z1q | z1
T zS “ zT zSs

“ E
z2

rfpz2q | z2
T “ pv, zT zSqs

Plugging this back into the above gives

E
z|v

”

E
z2

rfpz2q | z2
T “ pv, zT zSqs | zSzT “ ySzT

ı

“ E
z

”

E
z2

rfpz2q | z2
T “ zT s | zS “ pv, ySzT q

ı

“ E
z

“

ETf | zS “ pv, ySzT q
‰

“ ESETfpv, ¨q
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