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In the first part of the lecture we will describe a local-to-global phenomenon in which
expansion of “local” links implies expansion in the entire “global” complex. This is called
the trickle down theorem because the expansion trickles down from the top links to the
bottom links. (The lowest link, of the −1-dimensional face which is the empty set, is the
entire complex).

In the second part of the talk we will study random walks on i-dimensional faces of a
complex. We will show how expansion in the links allows us to upper bound the second
largest eigenvalue of these random walks.

1 Notation
First, let us recall some definitions from the previous lecture. A d-dimensional simplicial
complex consists of vertices X(0), edges X(1), and so on X(i) ⊆

(
X(0)
i+1

)
. It satisfies

a downwards closure property: if s ∈ X(i) and t ⊂ s then t ∈ X. An element in
X(0) ∪ · · · ∪ X(d) is called a face. The link of a face s ∈ X is

Xs = {t ∈ X | s ∪ t ∈ X, s ∩ t = ϕ} .

We also add the empty face to X for convenience, namely X(−1) = {ϕ}. The link of the
empty face is the entire complex.

We said that a graph is a λ one-sided (two-sided) expander if its non-trivial eigenval-
ues are bounded from above by λ (and from below by −λ). An equivalent definition is
to say that

∥A − J∥2 ⩽ λ (two-sided) (1.1)

or
A − J ≼ λId (one-sided)

where A ≼ B means that B − A is positive semi-definite; and J is the matrix whose
entries are all 1/n, corresponding to the transition matrix of the random walk on the
complete graph with self loops.

One interpretation of (1.1) is that A approximates J in operator norm. A random
walk on the complete graph is uniformly random, and this allows us to say a random
walk on an expander is pseudo-random.

Finally, we defined X to be a high-dimensional λ-link expander if for any s ∈ X,
where dim(s) ⩽ d − 2, Xs is a λ-spectral expander.
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1.1 Regularity Assumption
In this lecture we will assume, for simplicity, that the complexes under discussion are
regular. Namely, there are natural numbers r0 > r1 > · · · > rd−1 such that every i
face is contained in ri (i + 1)-faces. This is the HD analog of an r-regular graph. This
assumption is not necessary, but will help us avoid unimportant technicalities. In the
last part of the lecture we will discuss how to remove this condition. (Many important
constructions of high dimensional expanders are not regular, so this is needed.)

2 Examples of d-dimensional simplicial complexes
Example 2.1 (d-dimensional complete complex). The n-simplex, denoted ∆n, is the n-
dimensional simplicial complex that contains all possible subsets of n + 1 elements.

The d-dimensional complete complex on n vertices is the d-skeleton of ∆n−1. Namely,
its d-faces are all subsets of {1, ..., n} of size at most d+1. It is an example for a two-sided
high dimensional expander. The 1- skeleton of every link is a complete graph, which is
a

(
1

n−d

)
-two-sided spectral expander (check!).

Example 2.2 ((d + 1)-partite d-dimensional complete complex). Let X(0) = A0 ∪ A1 ∪
· · · Ad, define X(d) = {{v0, . . . , vd} | vi ∈ Ai}, and let X be the downward closure of
X(d).

This is a multi-partite complex in that there is a (d + 1)-coloring of the vertices such
that there are no colors inside a color class.

It is a 0-one-sided spectral expander.

Example 2.3 (Spanning trees complex). Let G = (V, E) be a graph, and let m = |E|.
Define an (n − 2)-dimensional complex X as follows

– X(0) = E

– X(n − 2) = {s ⊂ E | s is a spanning tree in G}.

– X(i) is defined by closing downwards

This complex was studied in [1]. They studied a more general complex whose faces
are bases of a general matroid. They proved that the links of this complex expand, and
used this for showing that random walks mix rapidly.

Example 2.4 (Subspaces complex, aka the spherical building). Let Fq be a finite field,
d > 1, and let X(0) have a vertex for each non-trivial linear subspace of Fd

q . For every
maximal chain of subspaces of the form v1 ⊂ v2 ⊂ · · · ⊂ vd−1 ⊂ Fd

q , we add the set
{v1, . . . vd−1} to X(d − 2). The remaining faces are defined by downward closure.

Chains of subspaces v1 ⊂ v2 ⊂ · · · ⊂ vd−1 are called flags, and this is sometimes
called a flag complex.

For d = 3 this is the lines vs. planes graph. For d = 4 this is a two-dimensional
complex. Some links are the d = 3 complex and some links are complete bipartite
graphs.

Note that this complex is only regular when d = 3. However, it is an HDX for all
d > 2 (when appropriately defined).

The examples above are not bounded-degree. Are there bounded-degree high di-
mensional expanders? For dimension 1, almost all d-regular graphs are expanders. For
dimensions two and above random complexes were studied by Linial, Meshulam and
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Wallach [2, 3]. One requires super constant density before the resulting complex is a
high dimensinoal expander.

For simplicial complexes, even 2-dimensional, there are some combinatorial construc-
tions that achieve weak expansion in the links. However, the only known constructions
with arbitrarily good link expansion are algebraic. We will see some of these in future
lectures.

3 Trickle-Down theorem
A priori, the definition of HDX requires information on all links of the complex. However,
the following theorem by Izhar Oppenheim [4], tells us that if the links of the (d−2)-faces
are good expanders, then the links of the lower dimension faces are also expanders, as
long as they are connected. More precisely:

Theorem 3.1 (Trickling-Down Theorem, two-dimensional). Let X be a 2-dimensional
simplicial complex such that the graph (X(0), X(1)) is connected and ∀v ∈ X(0) Xv is a
one-sided λ-expander. Then (X(0), X(1)) is a µ-expander where µ = λ

1−λ .

Note that the theorem is useless for λ ⩾ 1
2 . By applying the theorem iteratively, we

get the following useful corollary:

Corollary 3.2 (Trickling-Down Theorem, d-dimensional). Let X be a d-dimensional sim-
plicial complex such that the 1-skeleton of every link (including the entire simplicial
complex) is connected and ∀v ∈ X(d − 2) Xv is a one-sided λ-expander. Then X is a
µ-expander where µ = λ

1−(d−1)λ .

Proof of Theorem 3.1. Let A be the adjacency operator associated with the 1-skeleton
(X(0), X(1)).

Suppose f : X(0) → R is an eigenfunction with eigenvalue γ, and assume f ⊥ 1.
Also assume ∥f∥ = 1, namely E[f2] = 1. We have:

γ = ⟨f, Af⟩ = E
{u,w}∈X(1)

[f(u)f(w)] = E
v∈X(0)

E
{u,w}∈Xv(1)

[f(u)f(w)] (3.1)

Next, let Av be the adjacency operator associated with Xv. By assumption Xv is a
one-sided λ-spectral expander and so the second largest eigenvalue of Av satisfies λ2 ⩽ λ.

For any function g : Xv(0) → R satisfying g ⊥ 1 we have by the spectral decomposi-
tion of A that

⟨Ag, g⟩ ⩽ λ∥g∥2.

Denote the restriction of f to a link Xv by fv, namely:

fv : Xv → R
fv(u) = f(u).

Define gv = fv − γf(v)1. Recall that Af(v) = γf(v) and so we have gv ⊥ 1 since

E
u∈Xv(0)

[fv(u)] = Af(v) = γf(v).

Now we evaluate

E
uw∈Xv

[fv(u)fv(w)] = E
v

[⟨fv, Avfv⟩] = E
v

[⟨gv, Avgv⟩] + E
v

(f(v)γ)2 =
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= E
v

[⟨gv, Avgv⟩] + γ2

On the other hand, in (3.1) we can switch f to fv since we only evaluate f on Xv

and so we also have

E
v∈X(0)

E
uw∈Xv

[fv(u)fv(w)] = E
v∈X(0)

E
uw∈Xv

[f(u)f(w)] = γ

Therefore,
γ − γ2 = E

v
[⟨gv, Avgv⟩] ⩽ λE

v
[∥gv∥2] = λ(1 − γ2)

We assumed that G is connected thus λ1 = 1 has multiplicity 1, and we have γ < 1. and
so we divide by 1 − γ:

γ ⩽
λ

1 − λ
.

□

Note that when λ < 1
2 we have γ ⩽ 2λ. This theorem shows us that we can infer global

properties of the graph based on local properties given by the links of the (d − 2)-faces.

4 Walking in i dimensions
In graphs, the simple random walk walks from vertex to edge to the opposite vertex.
The graph is connected if this walk can reach every vertex from every start vertex.

In higher dimensions, we can “walk” on i-dimensional faces.
There are several natural walks. In two dimensions, a walk on the edges can go edge-

vertex-edge, or edge-triangle-edge. The connectivity of the first walk is the same as the
connectivity of the underlying graph (why?). The second walk can be disconnected.

– Upper random walk: start from an i-face, walk up to an i + 1 face and then down
to an i face.

– Lower random walk: start from an i-face, walk down to an i − 1 face and then up
to an i face.

To analyze these walks, let us consider their transition matrices. These are naturally
described in terms of the Up and Down operators, which we define next.

Let the space of i-chains on X be

Ci(X) = {f : X(i) → R}.

The Down operator takes an i-chain to an (i − 1)-chain, by averaging over the faces
immediately above it:

∀s ∈ X(i − 1), Dif(s) = E
t>s

f(t),

where we use the notation t > s to denote that t ⊃ s and dim(t) = dim(s) + 1.
The Up operator takes an i-chain to an (i + 1)-chain.

∀t ∈ X(i + 1), Uif(t) = E
s<t

f(s).

Claim 4.1. The up and down operators are duals in the sense that for every f ∈ Ci(X)
and g ∈ Ci+1(X),

⟨Di+1g, f⟩ = ⟨g, Uif⟩.
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Proof. We drop subscripts and maintain that s ∈ X(i) and t ∈ X(i + 1),

⟨Dg, f⟩ = E
s
[f(s)Dg(s)] = E

s
[f(s) E

t>s
g(t)]

= E
s<t

[f(s)g(t)] =

= E
t

g(t) E
s<t

[f(s)] = ⟨g, Uf⟩.

□

The upper walk operator is Di+1Ui : Ci(X) → Ci(X). It averages the values of an i
chain at a face s over all faces s′ obtained by first going up to an i + 1 face t and then
down to an i face s′.

The lower walk operator is Ui−1Di. The corresponding lower random walk goes from
i-face to i − 1-face to another i-face.

4.1 Connectivity of X(i)
Let us say that X is i-connected if the upper walk on X(i) is connected.

The lower walk on X(i) is connected iff the upper walk on X(i − 1) is connected.
However, even when the lower walk on X(i) is connected, the upper walk on X(i) could
be disconnected. Still, if we know that the links of vertices are all (i−1)-connected, then
the upper walk in dimension i will be connected. (Why?)

Lemma 4.2 (Connectivity from local to global). If X is (i − 1)-connected, and the link
of every vertex v ∈ X(0) is (i − 1)-connected, then X is i-connected.

In expanders, statements about connectivity are replaced by more robust statements.

4.2 Random-walk expansion
When would we say that a simplicial complex is an expander from the point of view of
random walks?

For expander graphs, we used (1.1), which, by observing that U−1D0 = J , amounts
to

∥A − U−1D0∥2 ⩽ λ.

or
A − U−1D0 ≼ λId.

Interestingly, we can express A itself in terms of the up and down operators:

A = 2D1U0 − Id.

Indeed when we walk up from a vertex to an edge and then back down to a vertex we
stay in place with probability 1/2 and move to a neighbor with probability 1/2. The
same is true for walk in higher dimensions. We call a walk non-lazy if the probability
to stay in place is zero. The up-down walk on i faces has 1

i+2 laziness probability. We
denote M+

i the non-lazy upper walk. Note that

DU = i + 1
i + 2M+

i + 1
i + 2Id.

This suggests the following definition,
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Definition 4.3. A complex is a λ-random-walk expander if for every i < d,

∥M+
i − Ui−1Di∥2 ⩽ λ,

or
M+

i − Ui−1Di ≼ λ · Id,

where
M+

i = i + 2
i + 1Di+1Ui − 1

i + 1Id

is the non-lazy upper random walk.
We will prove

Theorem 4.4 (link-expansion and random walk expansion). Every one-sided (two-sided)
γ-link HDX is a one-sided (two-sided) γ-random-walk HDX.

Moreover, if X is a two-sided γ-random-walk HDX, then it is a 3dγ-two-sided link
HDX.

Proof. We prove the first implication. Assume that X is a γ-link expander, one-sided.
We need to show that

∥M+
i − UD∥ ⩽ γ,

for all i < d, where M+
i is the non-lazy upper walk. Let f ∈ Ci(X), i < d. We have

⟨M+
i f, f⟩ = E

t∈X(i+1)
E

x,y∈Xt(0)
[f(t \ {x})f(t \ {y}].

Let s = t \ {x, y}. Since t ∼ X(i + 1) and x , y ∈ t are chosen at random, we have
s ∼ X(i − 1). Given such an s, the probability to get specific (t, x, y) is exactly like
choosing a random edge in Xs so

⟨M+
i f, f⟩ = E

s∼X(i−1)
E

(x,y)∈Xs(1)
[f(s ∪ {x})f(s ∪ {y})]. (4.1)

In other words, we have shown that

⟨M+
i f, f⟩ = E

s∼X(i−1)
[⟨Asfs, fs⟩], (4.2)

where fs : Xs(0) → is defined by

fs(x) = f(s ∪ {x}).

We now note that
E

x∼ws

[f(s ∪ {x})] = (Df)(s).

Therefore we have, by the γ-expansion in the links that

|⟨M+
i f, f⟩ − ⟨UDf, f⟩| =

∣∣ E
s∼X(i−1)

E
(x,y)∼ws

[f(s ∪ {x})f(s ∪ {y})] − (Df)(s)2∣∣ ⩽
E

s∼X(i−1)

[
λ(As) E

x∼ws

[f(s ∪ {x})2]
]
.

If X is a γ-two-sided link expander then λ(As) ⩽ γ for all s, and so

|⟨(M+
i − UD)f, f⟩| ⩽ γ∥f∥2.

□
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5 The non-regular case
Let X be a general d-dimensional complex that is not regular, and let πd be any proba-
bility distribution on X(d). A popular choice will be the uniform distribution on X(d).
We can inductively define distributions πi on X(i) by

πi(s) =
∑
t>s

πi+1(t) · 1
i + 2 .

To check that this is a valid distribution think of the random process of first choosing
an i + 1 face according to πi+1 and then removing one its i + 2 vertices at random, thus
obtaining an i face. Even if πd is uniform, when X is not regular πi will not in general
be uniform.

For example, when X is a one-dimensional complex, namely a graph, and π1 is the
uniform distribution over edges, then π0 gives each vertex probability proportional to
its degree. The transition matrix of a weighted graph is defined to be

A(u, v) = P[v|u] = π1(uv)∑
v∼u π1(v) .

This matrix satisfies A1 = 1 and the remaining eigenvalues are between −1 and 1. A
weighted graph is a λ-expander if λ2 ⩽ λ just like before.

We define up and down operators to average according to πi:

Dif(s) = E
t>s

f(t)

where the expectation is over choosing a random face t ∼ πi conditioned on t > s.
Similarly,

Uif(s) = E
t<s

f(t)

where the expectation is over choosing a random face t ∼ πi conditioned on t < s. Notice
that this coincides with the previous definition, because going down the conditional
distribution is always uniform.

The link complexes Xs naturally inherit distributions from X by conditioning:

πs,i(t) = πi(t ∪ s)∑
t∈Xs(i−|s|−1) πi(t ∪ s) .

The proof above goes through when we define inner products on the spaces Ci(X)
by

⟨f, g⟩πi
= E

s∼πi

[f(s)g(s)], ∥f∥2
πi

= ⟨f, f⟩πi
.

We will write ⟨f, g⟩ instead of ⟨f, g⟩πi when the distribution is clear from the context.
Going back to the previous sections with these definitions, the proofs go through almost
identically. For example (3.1) should be rewritten as

γ = ⟨f, Af⟩ = E
{u,w}∼π1

[f(u)f(w)] = E
v∼π0

E
{u,w}∼πv,1

[f(u)f(w)] (5.1)
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