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In this lecture we will study topological and co-homological perspectives on expansion.
This presentation follows a very nice lecture by Uli Wagner, [4].

1 Basic Definitions
We begin with the definition of the boundary and co-boundary operators.

1.1 The Boundary Operator
The boundary of an edge e = {u, v} is its two endpoints, u and v. The boundary of a
triangle {u, v, w} is its three edges, {u, v}, {u, w} and {v, w}. The boundary operator
is a linear algebraic version of this notion. We don’t only consider faces but also formal
linear combination of faces, namely chains. Let the set of i-chains be

Ci(X,Z2) = ZX(i)
2 = {f : X(i) → Z2}.

We view this set as a group, where addition is done element wise. Let 1s be the i-chain
that is 1 on s and zero elsewhere. The chains 1s for s ∈ X(i) span the set of all i-chains.
We define the boundary operator by setting

∂i1s =
∑
t<s

1t

where t < s refers to all (i−1)-faces that are contained in s. This definition is equivalent
to

∂i : Ci → Ci−1, ∀t ∈ X(i − 1), ∂f(t) =
∑
s>t

f(s) mod 2.

Note that in this definition we are summing over all i-faces above t. It looks very similar
to the down operator we defined in previous lectures, since it uses the same incidence
structure. However, we are now summing modulo 2 and not over the real numbers.
When clear from the context we omit the subscript and write ∂ for ∂i.

Example 1.1. Suppose f ∈ ZX(1)
2 is an indicator of a path from v to v′. The boundary

of f is the two end vertices, namely ∂f = 1v + 1v′ ∈ C0. If f is an indicator of a cycle,
then its boundary is zero.

Who are all of the 1-chains whose boundary is zero? This is Ker∂1 ={
f ∈ C1

∣∣ ∀v ∈ X(0),
∑

e>v f(e) = 0 mod 2
}

. Namely, all of the subgraphs with even
degrees.

Suppose f = 1{u,v,w} ∈ C2. Then g = ∂f = 1{u,v} + 1{v,w} + 1{u,w}. We can further
ask about the boundary of g, which is ∂g = 1u + 1v + 1v + 1w + 1u + 1w = 0. In fact,
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for every f ∈ C2, since it is a linear combination of functions 1{u,v,w}, we deduce that
∂∂f = 0. Namely, a boundary has no boundary! This holds in general for any i,

∂i−1 ◦ ∂i = 0

(check this!). We look at the chain of maps

Ci
∂i→ Ci−1

∂i−1→ Ci−2
∂i−2→ · · · ∂2→ C1

∂1→ C0

as a single “high order” linear-algebraic object, which is called a chain complex. This is
a sequence of linear maps that satisfies that every consecutive pair is zero, namely the
image of one arrow is in the Kernel of the next arrow.

We define the boundaries Bi and the cycles Zi by

Bi = Im(∂i+1), Zi = Ker(∂i).

By the fact that ∂i ◦ ∂i+1 = 0,
Bi ⊆ Zi ⊆ Ci,

so every boundary is a cycle, but not always vice versa. We define the i-th homology to
be the quotient space

Hi = Zi/Bi.

The dimension of this space measures how large the gap between cycles and bound-
aries. When the homology is zero it means that Bi = Zi, so this space is defined both
"explicitly" as the images of i + 1-chains, and implicitly as elements f satisfying linear
constraints specified by the requirement ∂if = 0.

1.2 The Co-boundary Operator
Next, we move to the “adjoint” operators, namely the co-boundary operators,

δi : Ci → Ci+1

which give us the chain of coboundary maps

C−1
δ−1→ C0

δ0→ C1
δ1→ · · · δi−1→ Ci

δi→ Ci+1 → · · ·

where δi is given by

∀f ∈ Ci, ∀s ∈ X(i + 1), δif(s) =
∑
t<s

f(t) mod 2.

The set of coboundaries is the set Bi = Im(δi−1) and the set of cocycles is Zi = Ker(δi).
Like before,

δi ◦ δi−1 = 0

and so
Bi ⊆ Zi ⊆ Ci

and we let the i-th cohomology be Hi = Zi/Bi.
We use superscript to denote the coboundaries, cocycles, and cohomology; and sub-

scripts to denote the boundaries, cycles, and homology.
Let us explore a few example calculating B1, B0, Z0 and H0.
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Example 1.2 (B1). Fix any f ∈ C0. By definition, f = 1S for some set of vertices
S ⊆ X(0). What is δf? this is an indicator of all edges crossing between S and X(0)\S.
So B1 =

{
1E(S,S̄)

∣∣∣ S ⊂ X(0)
}

.

Example 1.3 (B0). Fix any f ∈ C−1. Since X(−1) = {ϕ}, C−1 = ZX(−1)
2 = Z2. If

f = 0, then δf ∈ C0 is the all 0 function. If f = 1, then δf is the all-1 function. So
B0 = {0̄, 1̄}.

Example 1.4 (Z0 and H0). Fix any f ∈ Z0. Since δf = 0 we know that for every
{uv} ∈ X(1), δf(uv) = f(u) + f(v) = 0. In other words f(u) = f(v) whenever u, v have
an edge between them. By transitivity, f is constant on every connected component of
the graph (X(0), X(1)). We have Z0 = B0 (and H0 = 0) iff the graph is connected. If
the graph is disconnected, H0 is spanned by functions that are constant on the different
connected components.

In the figure we see an example of a 2-dimensional complex where the first cohomology
is non trivial. This complex has six vertices X(0) = {1, 2, 3, 4, 5, 6}, and 15 edges,
and 10 triangles. The highlighted 1-chain, consisting of the five edges 13, 35, 56, 64, 41,
is a cocycle, since every triangle touches an even number of edges. Why is it not a
coboundary? Suppose it were, then there is some f ∈ C0 such that δf is the highleted
edges. Assume wlog that f(1) = 0. Then necessarily f(3) = 1, so f(5) = 0, so f(6) = 1,
so f(4) = 0, so f(1) = 1, and we have reached a contradiction!

2 Coboundary Expansion
At this point we already have enough terminology to restate the combinatorial definition
of graph expansion in cohomological terms. Recall that the edge expansion of a graph
G is

h(G) = min
S⊂V,|S|⩽|V |/2

h(S).

In cohomological terms, it is

Claim 2.1. For any connected graph G,

h(G) = min
f∈C0\B0

wt(δf)
dist(f, B0) .
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Proof. Observe that f ∈ C0 \ B0 is an indicator of some set ϕ , S ⊊ V . The numerator
is equal to |E(S, S̄)|/|E|. The denominator is equal to the minimum between |S|/|V |
and |S̄|/|V |. □

This now begs to be generalized to i ⩾ 0,

Definition 2.2 (Coboundary expansion). The coboundary expansion of a d-dimensional
simplicial complex X, at level i < d, is defined to be

hi(X,Z2) = min
f∈Ci\Bi

wt(δif)
dist(f, Bi) .

Here is a possible interpretation for hi. Assume a d-dimensional complex X such
that for some i < d, Bi = Zi, namely Hi = 0. A chain in Bi is of the form δg for some
g ∈ Ci−1. Given a chain f ∈ Ci, we can easily check if it is in Zi = Bi by computing δf
and checking that it is zero. This can be done very efficiently, for every s ∈ X(i + 1), to
see if δf(s) = 0 we simply read f at the i + 2 faces t < s and check that

∑
t<s f(t) = 0

mod 2. One immediately sees that it is easy to randomly estimate wt(δf) by sampling
several s ∈ X(i + 1) and performing this calculation.

In contrast, given a chain f ∈ Ci, estimating its distance from Bi requires, in prin-
ciple, going over an exponentially large set (indeed, in some cases this is NP-hard).
However, when hi is a constant, these two measures are related. In particular, the
easy-to-calculate wt(δf) is an upper bound on dist(f, Bi) · hi.

The value of hi can be zero when Bi , Zi, or even when Zi = Bi it can be very
small, on the order of 1/|X(i)|. Nevertheless, it can be large, as we will see.

3 Connection to Topology
In combinatorial topology people are often interested in embedding a simplicial complex
intoRd, and studying some topological properties of this so-called “geometric realization”
of the complex. This is different from our point of view in most of this course, which is
looking at an abstract simplicial complex, and usually not embedding it into Rd.

Let T : X → Rd be a linear map. This means that we first map X(0) to points in
Rd, and then continue the map linearly. It turns out that Z2-cohomology is interesting
for such maps. In the figure below we see one such embedding of the fish complex in R2.

Fix some point p ∈ Im(T ) inside the image of one of the triangles of the complex (not
on any vertex or edge). Let fp ∈ C2 be the indicator of the set of triangles that contain
p: fp(s) = 1 iff T (s) ∋ p.

Claim 3.1. fp ∈ B2

Proof. Shoot a ray from p to infinity in an arbitrary direction. We can check that
fp = δgp where gp ∈ C1 indicates all edges crossed by this ray. Indeed to exit any
triangle that contains p, the ray must cross its boundary once. Every other traiangle is
crossed either zero times or twice. □
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3.1 Topological Overlap Property
In the 1980’s Boros and Furedi, who were high school students at the time, asked the
following question. Suppose we put n points in R2, and connect all pairs with edges. We
have

(
n
3
)

triangles. Is there a point p ∈ Rd that pierces a large fraction of triangles? They
proved there is always a point that pierces 2/9 of the triangles. This was generalized
by Barany to d dimensions, but the constant 2/9 is replaced with some value that is
exponentially small in d. This was viewed as a question in discrete geometry, and not
related at all to topology.

Gromov, in [2], gave a very strong and surprising generalization, where he showed
that the same 2/9 holds even when the straight lines are replaced with any continuous
curves. Moreover, he showed, that the theorem is really about the embedding of the
complete complex into R2 (or Rd more generally), and follows from the coboundary
expansion of the complex that is being embedded.

Let’s see what happens for d = 1. We are embedding the vertices of a graph into
the real line, and are asking whether there must be a point on the line that pierces a
constant fraction of the edges. This is implied if the graph is an expander. Indeed, take
a point that splits the vertices into two equal parts, it must pierce a linear number of
edges...

Gromov defined the topological overlap property (TOP): a complex X has TOP if
for any embedding T : X → Rd there is a point that pierces a constant fraction of X(d).
He proved that it is implied by coboundary expansion (which we define shortly next)
and then asked if there is a bounded-degree family of d-dimensional complexes with this
property. This question energized the area of HDX and in a sequence of works [3, 1] it
was shown that certain high dimensional expanders are cosystolic expanders, which is
also sufficient for TOP.

<need to complete refs here>
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