
Lecture 6: PCPs, locally testable codes, and relation to
cosystolic expansion

Irit Dinur

In this lecture we will begin with an excursion to the world of PCPs, and then describe
locally testable codes (LTCs), and how this notion relates to cosystolic expansion. We
will describe two notions of local testability for tensor codes: robust testability and
agreement testability.

1 Probabilistically Checkable Proofs
Probabilistically Checkable Proofs are a robust form of NP proofs. Recall that the class
NP is the class of all computational problems whose solutions can be efficiently checked.
A solution is a "proof" that the problem is solvable, and the verifier specifies the exact
rules for deciding which proofs are valid.

The study of proof systems, together with resources of randomness and interaction,
has greatly developed over the past few decades, especially thanks to cryptography. One
of the success stories in this area is the theory of PCPs.

A PCP is an NP proof system where the verifier is ultra efficient. The verification
algorithm can be described as a random process that uses a logarithmic number of
random bits and based on them reads O(1) bits from the proof π. Since it doesn’t read
the entire proof, it cannot hope to reach the correct conclusion all of the time. Instead,
given a potential x

?
∈ L, and a proof π

– (Completeness:) If x ∈ L and π is a valid proof, the verifier always accepts.

– (Soundness:) If x < L then for all proofs π the verifier accepts with probability at
most s.

The parameter s is called the soundness error, because it is the probability of the verifier
outputting the wrong answer.

Example 1.1. The language 3SAT ∈ NP consists of all satisfiable 3-CNF formulae. A
3-CNF formula is specified by n variables and m clauses of the form x ∨ y ∨ ¬z (with
any negation pattern).

Given a candidate formula ϕ, a proof for the fact that ϕ is satisfiable is a truth
assignment π ∈ {0, 1}n. The verifier checks that the assignment is correct by plugging
in the values clause by clause.

The verifier can be made local and randomized: choose a random i ∈ [m] and check
only that the i-th clause is satisfied by the given assignment π ∈ {0, 1}n.

Completeness clearly holds: if ϕ is satisfiable the verifier will always except. What
is the soundness error? Clearly, the natural NP verifier has soundness error that can be
as large as 1− 1/m.
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The PCP theorem [2, 1] says that every NP problem, and 3SAT in particular, has
a verification procedure in which (a) the verifier reads O(1) bits from the proof and (b)
the verifier has constant soundness error.

Theorem 1.2 (PCP theorem [2, 1]). There exists a constant s > 0 such that every L ∈ NP
has a polynomial-time algorithm that on input x computes a 3-CNF ϕ, such that,

– If x ∈ L there is some π ∈ {0, 1}n such that ϕ(π) = T̄

– If x < L then for all π ∈ {0, 1}n, wt(ϕ(π)) > 1 − s; where we define wt(ϕ) =
Pr∈[m][ϕ(π)r = F].

The algorithm mentioned in the theorem is essentially a compiler. After compilation,
we get a simple verification procedure for L: the prover and verifier know the compiler
algorithm. Upon input x, they both compute ϕ. The prover sends π as the proof, and
the verifier selects a random r ∈ [m] and checks if the rth clause of ϕ is satisfied under
π.

There are several parameters of interest in a PCP,

– Proof length: we want the PCP proof to be efficient with respect to the original
witness; as close as possible to linear size

– Query complexity: we want the verifier to read as few bits as possible from the
proof

– Alphabet: the PCP proof need not be written in binary. We want small alphabet
size but are willing to tolerate larger alphabets in return for fewer queries

– Soundness error: We want this to be as small as possible.

Tradeoffs between these parameters has been studied and is largely understood. A
few outstanding open problems are the "sliding scale conjecture" and the "linear length
PCP"; and the "unique games conjecture" which we will discuss in a future lecture.

Open Question 1.3 (sliding scale conjecture). Is there a PCP verifier that has polyno-
mially small soundness-error, perfect completeness, while making a constant number of
queries to a Proof written with a polynomially Abounded alphabet size.

Open Question 1.4 (linear length PCP). Is there a PCP compiler algorithm that takes
as input a 3SAT formula ϕ, and computes a formula ϕ′, whose size is linear in the size
of ϕ, and such that:

– if ϕ ∈ 3SAT then ϕ′ ∈ 3SAT

– if ϕ < 3SAT then every assignment falsifies a constant fraction of the clauses of ϕ′.

PCPs are extensively studied in two main domains. Hardness of approximation,
which we discuss below; and more recently in practical cryptographic applications such
as blockchains, where one needs very efficient verification.

1.1 Constraint Satisfaction Problems (CSPs)
A map ϕ : {0, 1}n → {T, F}m is said to be q-local if for each i ∈ [m], the i-th output bit
depends on at most q input bits. A CSP is given by a q-local map ϕ. It is satisfiable if
ϕ−1(T̄) , φ. Namely, if there is an assignment that causes every constraint to evaluate
to T. Thus, every ϕ can be viewed as a decision problem.
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Complexity theory is concerned with understanding the complexity of various prob-
lems, with relation to their syntactic "computational" structure. Constraint satisfaction
problems (CSPs) provide a class of problems whose complexity is extensively studied.
One successful classification of CSPs is according to their predicate.

A CSP is said to be a P-CSP for a collection P = {P 1, . . . , PT } of predicates P t :
{0, 1}q → {0, 1} if every output bit is the result of applying some predicate P ∈ P to
some sequence of q input bits i1, . . . , iq ∈ [n].

Example 1.5. Here are a few favorite examples of CSPs in addition to 3SAT ,

– Max-CUT: given a graph G, find a partition of the vertices to two sets maximizing
the number of edges that cross between the parts. One can represent each vertex by
a 0/1 variable, and put a local constraint for each edge requiring the two variables
to take different values.

– 3LIN: here we are given a sequence of linear equations modulo 2 over n variables,
where each equation involves three variables.

– 3COL: given a graph G color the vertices using three colors, so that a maximum
number of edges are bi-chromatic. One can represent each vertex by a three-valued
variable, and put a local constraint for each edge requiring the two variables to take
different values.

We define, for any CSP, the set of satisfying assignments,

Definition 1.6 (satisfying assignments). Let ϕ : {0, 1}n → {0, 1}m be a CSP. We define

SAT (ϕ) =
{
a ∈ {0, 1}n

∣∣ ϕ(a) = 1̄
}
.

This definition is equivalent to Ker(ϕ) in cosystolic expansion. We only need to
switch between the syntactic meaning of ′1′ and ′0′.

Given any CSP ϕ, and given a potential assignment w ∈ {0, 1}n to its variables, we
can look at two different measures of satisfaction:

1. The first measure, wt(ϕ(w)), counts how many local constraints are satisfied by
the assignment.

2. The second measure, dist(w, SAT (ϕ)), is the distance of the given assignment to
the set SAT (ϕ) of all satisfying assignments.

When the first measure always dominates the second measure up to a multiplicative
factor h, we say that the CSP is robust:

Definition 1.7 (Robust CSPs). Let h > 0. We say that ϕ is h-robust if

∀w ∈ {0, 1}n, wt(ϕ(w))
dist(w, SAT (ϕ)) > h.

Observe how similar this is to cosystolic expansion: We need to switch between
SAT (ϕ) and Ker(ϕ).
Remark 1.8. If we have a compiler algorithm that generates, for every input x a CSP
ϕx that is robust, then this implies the PCP theorem (but it is stronger).
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2 Locally Testable Codes
Recall that an error correcting code is a linear subspace C ⊆ {0, 1}n. This subspace can
be described by a so-called parity-check matrixH : {0, 1}n → {0, 1}m so that C = KerH.
If H is sparse then the code is LDPC, and it is easy to compute the syndrom of a given
word w.

Definition 2.1 (Locally Testable Code). A code C is a locally testable code if there is an
LDPC parity check matrix X : {0, 1}n → {0, 1}m that is h-robust, namely such that

∀w ∈ {0, 1}n, wt(Hw)
dist(w,C) > h.

For a constant h, this allows us to estimate the distance of w from the code by looking
at a few bits from w.

Example 2.2 (Hadamard Code). The Hadamard code consists of all functions f : Fn2 →
F2 that are F2-linear, namely they satisfy

f(x) + f(y) = f(x+ y), ∀x, y ∈ Fn2 .

The above is also a good test for this code (as we have seen). Namely, if we know that
99% of these equations are satisfied, it means that f is close to a linear function.

Example 2.3 (Reed-Muller Code). The Reed Muller code over Fq has parameters m and
d and consists of all functions f : Fmq → Fq that are m-variate polynomials with total
degree at most d. They satisfy, for every a, b ∈ Fmq ,

f(at+ b) is a univariate polynomial (as a function of t) of degree at most d.

The above is also a good test for this code. This is the famous "low degree test". We
remark that there are several variants of the low degree test depending especially on the
relation between the field size q and the degree d.

Tensor codes, robust testability and agreement testability
Robust the stability is a notion of the stability that has been studied in the PCP lit-
erature. Here, we are interested not only in the fraction of local views that reject but
rather in how far is the local view to an accepting one. And rather than defining this
notion in full generality, let us focus on special case of tensor codes. Given two codes
C1, C2 ⊆ {0, 1}n, the tensor code C1 ⊗ C2 consists of all n× n matrices M such that

∀i ∈ [n], M(i, ·) ∈ C1

∀j ∈ [n], M(·, j) ∈ C2

In general, the codes need not have the same blocklength n but we focus on this case for
simplicity. Here is a potential test for the question M

?
∈ C1 ⊗ C2:

– Select with probability half a random row i, and with probability half, a random
column j.

– Accept if M(i, ·) ∈ C1 for a row, and if M(·, j) ∈ C2 for a column.

4



Robust testability is not about the probability of rejection of this test, but rather about
the average distance of a local view of the tester from a valid local view. Namely, it is
concerned with the average distance of a row (column)of M from C1 (C2). Let us define
this precisely,

Definition 2.4 (Robust testability of tensor codes). Fix C1, C2 ⊆ Fn2 linear error correct-
ing codes. For M : [n]× [n]→ F2, let

distcol(M) = dist(M,C1 ⊗ Fn2 ), distrow(M) = dist(M,Fn2 ⊗ C2).

and

d(M) = 1
2(distcol(M) + distrow(M)).

= 1
2 Ei∈[n]

dist(M(i, ·), C1) + 1
2 E
j∈[n]

dist(M(·, j), C2).

The robust testability of C1 ⊗ C2 is defined to be

ρ = min
M<C1⊗C2

d(M)
dist(M,C1 ⊗ C2) ,

and we say that C1 ⊗ C2 is ρ-robustly testable.

Robust testability is related to agreement testing, which we describe next. Suppose
we are given for every column, a codeword of C1 that is supposed to be the restriction of
M to that column. The space of these matrices is denoted C1⊗Fn2 . So let this collection
be called Mcol ∈ C1 ⊗ Fn2 . Similarly for every row, we are given a codeword that is
supposed to be the restriction of M to that row. Denote this collection Mrow ∈ Fn2 ⊗C2.

The probability that a random row agrees with a random column is called the agree-
ment of Mrow and Mcol. It is equal to dist(Mrow,Mcol). The code C1 ⊗ C2 is called
agreement-testable if this agreement probability upper bounds the distance ofMrow,Mcol

from the tensor code.

Definition 2.5 (agreement testability). Let β > 0. We say that C1 ⊗ C2 is β-agreement
testable if for every Mcol ∈ C1 ⊗ Fn2 , Mrow ∈ Fn2 ⊗ C2, there exists w ∈ C1 ⊗ C2 such
that

β · (P
i
[Mrow(i, ·) , w(i, ·)] + P

j
[Mcol(·, j) , w(·, j)]) 6 P

i,j
[Mcol(i, j) ,Mrow(i, j)].

Lemma 2.6. If C1 ⊗ C2 is β-agreement testable, then C1 ⊗ C2 is τ -robustly testable for
τ = β

2(β+1) .
Moreover, if C1 ⊗C2 is τ -robustly testable then C1 ⊗C2 is β-agreement testable, for

β = 2τδ1δ2
δ2+δ1(1+2τ) (where δi is the relative distance of Ci).

Proof. Given M , define Mrow,Mcol. By assumption they are close to M , so to each
other, so have high agreement. �

We will see at a later point in the course how this relates to coboundary expansion
of the chain

Fk
2

2
δ0−→ F2nk

2
δ1−→ Fn

2

2 (2.1)
where δ0 = G1 ⊗ I + I ⊗G2 and δ1 = I ⊗G2 +G1 ⊗ I for G1, G2 the generating matrix
of C1, C2.

The property of robustness of a tensor code depends on the component codes, as can
be seen in the following example.
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Example: tensor of two Reed-Solomon codes

Let C1 = C2 be the Reed-Solomon code with field size n = p and degree d. Polyschuk
and Spielman [3] showed that if d < p( 1

2 − ε) then the tensor of two RSd codes is ε2

robust. What happens when d gets closer to p/2 ? It turns out that the tensor code
is no longer robust, as can be seen in the following example due to S. Kopparty. Let
f(x, y) = 1− (x−y)p−1. Then over Fp this function equals 1 if x = y and zero otherwise
because ap−1 = 1 for all a , 0 in Fp. On the other hand, by setting j = p− 1− i, it can
be written as

f(x, y) =
∑
i<p/2

xiyp−1−i +
∑
j<p/2

yjxp−1−j = Mrow(x, y) +Mcol(x, y)

where Mrow(·, y) has degree below p/2 for each y ∈ Fp, and Mcol(x, ·) has degree below
p/2 for each x ∈ Fp. This gives a concrete counter example for the testability of the
tensor of two Reed-Solomon codes when d = p/2. Indeed, Mcol,Mrow have very high
agreement probability: 1− 1/n, and yet their distance to the tensor code is Ω(if1).
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