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In this lecture we will prove cosystolic expansion for bounded-degree complexes, via
a local to global connection. We will show that if a simplicial complex has links that
are coboundary expanders, together with spectral expansion, this implies global cosys-
tolic expansion. This theorem was proven by Kaufman Kazhdan and Lubotzky [3] for
dimension 1, and by Evra and Kaufman [1] for higher dimensions.

Cosystolic expansion, as we have mentioned before, is related to

– Property testing (we have seen, for example, that coboundary expansion of the
complete complex is the same as bi-clique testability)

– Locally testable codes and PCPs

– Topological overlap property (TOP)

– Stability of covers

1 Definitions
Recall from lecture 4 that the i-coboundaries are Bi = Im(δi−1) and the i-cocycles are
Zi = Ker(δi). We noted that Bi ⊆ Zi ⊆ Ci and defined the i-th cohomology to be
Hi = Zi/Bi

A simplicial complex X is a β-cosystolic expander in dimension i if for every i-chain
f ∈ Ci(X,Z2),

wt(δif) > β · dist(f,Bi).

If, furthermore, Hi = 0, we say that X is a β-coboundary expander in dimension i.
We also denoted by hi the largest β for which X is a β-cosystolic expander:

hi(X,Z2) = min
f∈Ci\Bi

wt(δif)
dist(f,Bi) .

Is there a “Cheeger’s inequality" for high dimensional expanders? One could hope
that every spectral HDX is a cosystolic expander, and possibly also vice versa. However,
this is not true. Gundert and Wagner [2] give a random construction of a complex which
is a very good spexctral excpander yet the cosystilic constant is o(1).

2 Local to Global: cosystolic expansion comes from expan-
sion in the links

Theorem 2.1. Let X be a 3 dimensional simplicial complex. Suppose that
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– X is a γ-two-sided link expander.

– For every v ∈ X(0), Xv is a β0-coboundary expander in dimension 1.

Then, X is a β cosystolic expander in dimension 1 for some constant β.

Observe that the statement makes sense only if the dimension of the link is at least 2
(otherwise we cannot speak of coboundary expansion of 1-chains), so the complex needs
to be 3 dimensional for such a statement to hold. Are there 2-dimensional HDX that
are not 2-skeletons of 3 dimensional HDX and yet are cosystolic expanders? This is not
known.

The theorem can be generalized to expansion in any dimension i, as long as the
complex is i+ 2 dimensional [1].

Proof. Let f ∈ C1(X,Z2), and let ε = wt(δf). We will show that there is some f̃ ∈ Z1

such that
β′ · dist(f, f̃) 6 wt(δf).

We use the following local correction algorithm:

Algorithm. If there is a vertex such that changing f on all edges touching v can reduce
wt(δf), change it. Repeat

Observe that the algorithm must halt because every iteration reduces the size of δf
by at least one. Let f be the initial chain, and let f̃ be the chain after the algorithm
halts.

Claim 2.2. There is some constant d0 such that dist(f, f̃) < ε · d0.

Proof. The number of iterations of the algorithm is at most the support of δf , which we
denote by |δf | = ε|X(2)|. So the number of edges that are modified during the course
of the algorithm is at most |δf | = ε|X(2)| = ε|X(1)| · d0, where d0 = |X(2)|

|X(1)| . �

Our main lemma is the following

Lemma 2.3. If δf̃ , 0 then wt(δf̃) > τ .

This implies the theorem with β = min(τ, 1
d0

) because if δf̃ = 0 then the above claim
gives the required inequality, and if δf̃ , 0 then wt(δf) > τ · 1 > τ dist(f, f̃). �

2.1 Proof of Lemma 2.3
In this section let f denote the chain after the algorithm ended. Let

T ∗ = {t ∈ X(2) | δf(t) , 0}

The heart of the matter is to look at redundancies between the triangle constraints, and
use them to propagate errors. Consider a 3-face p = {a, b, c, d}. It contains four triangles
and six edges. Moreover, no matter when the value of f on the edges is, the number of
triangles that belong to T ∗ must be even. So if it is non-zero, it must be larger than one.

Now consider an upper random walk

t1 → t2 → t3 → t4
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where every consecutive pair of triangles belong together to a 3-face. (This implies that
they intersect on an edge). If we know that t1 ∈ T ∗, there is a probability of at least
1/3 that t2 ∈ T ∗, because in the 3-face t1 ∪ t2 there are at least two triangles for which
δf , 0. For the same reason, there is probability 1

3 ·
1
3 = 1

9 that t3 ∈ T ∗ and probability
1
3 ·

1
3 ·

1
3 = 1

27 that t4 ∈ T ∗.
If this were the case even conditioned on t1∩t4 = φ, then we would get, via swap-walk

arguments, that the set T ∗ is large.

Claim 2.4. If Pt1,t2,t3,t4 [t4 ∈ T ∗|t4 ∩ t1 = φ] > P[t1 ∈ T ∗] · α then |T ∗| = Ω(X(2)).

The reason is that the graph whose nodes are the triangles, and where we connect
two triangles t1, t4 according to the rule above, is an expander graph. So by applying
the Alon-Chung lemma we get that a subset of nodes with average degree above α must
be linearly large as long as α > λ.

However, the proof is more complicated, because there is a constant fraction of ran-
dom walks t1 → t2 → t3 → t4 in which all of t1, t2, t3, t4 share an edge, or a vertex. If
t1 ∈ T ∗ it could a priori be that all of the walks in which also t4 ∈ T ∗ are such walks.
In that case the above reasoning would fail. However, when this happens it means that
either

– One of the edges touching t1 is heavy (touches many triangles in T ∗), or

– One of the vertices touching t1 is heavy (touches many triangles in T ∗)

So to complete the proof we show that the set of heavy vertices and edges is tiny, even
with respect to T ∗ and therefore, most of the time the walks don’t get stuck.

Why are there few heavy vetices, for example? For this we must look at the triangles
in its link

T ∗v = {t ∈ T ∗ | t ∪ v ∈ X(3)} .

Claim 2.5. If T ∗v is small, we can use coboundary expansion of Xv to find a better
assignment to the edges touching v.

In addition, we can show, using the fact that the bipartite graph connecting a
vertex v to a triangle t ∈ Tv is a very strong expander, that only very few vertices
v can have large T ∗v (since all in all the set T ∗ is by assumption not too large). So
only those vertices can be heavy vertices, and these make up a tiny fraction of all vertices.

A similar, but more subtle, argument can be made for edges. (We show that except
for a tiny minority, a heavy edge almost always touches a heavy vertex).
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3 Is the extra dimension really needed?
One might conjecture that link-expansion suffices for proving coboundary expansion.
This would give a "Cheeger inequality" in dimensions higher than 0. However, Gundert
and Wagner [2] give a counterexample. They describe a randomized construction of a
2-dimensional simplicial complex whose links are excellent spectral expanders; and yet
the complex has poor coboundary expansion.
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