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In this lecture we will show a construction of LTCs with constant rate, distance, and
locality.

1 LTCs
We have seen the Hadamard code, which is locally testable, but its rate is logn

n . We
have mentioned Reed-Muller codes, which are generalizations, and that they are locally
testable. This is the famous low degree test and there are many works on various aspects.
These codes do not combine both constant rate and constant locality.

Are there LTCs with constant rate, constant distance and constant locality?

Definition 1.1. A code C ⊆ Fn2 is a (q, β)-LTC if there is an R × n parity check matrix
H such that

1. C = KerH = {w ∈ Fn2 | Hw = 0}

2. Every row in H has at most q non-zeros

3. wt(Hw) > β · dist(w,KerH)

Remark 1.2. H describes, in effect, a randomized tester, as follows

– Choose a random row r ∈ {1, . . . , R}

– Accept iff
〈H(r, ·), w〉 =

∑
i:H(r,i),0

w(i) = 0

It is immediate that
P[Tester rejects] = wt(Hw)

Remark 1.3. There is a cohomological viewpoint to this. Let dim(C) = k and let G be
an n× k generating matrix. The following is a chain complex

Fk2
G−→ Fn2

H−→ FR2

because ImG = KerH. Recall that cosystolic-expansion of this chain is

β = min
w∈Fn

2 \C

wt(Hw)
dist(w,C) .

The chain complex is a β-coboundary expander iff the code is a β-LTC.
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2 Expander Codes
Lewt G = (V,E) be a d-regular expander graph, with normalized second largest eigen-
value at most λ. Let C0 ⊂ Fd2 be an error-correcting-code defined by a parity check
matrix H0. Suppose C0 has distance δ0 and rate r0 = dim(C)/d. We define the ex-
pander code C(G,C0) as the kernel of an |V | · d × |E| parity check matrix defined by
placing copies of H0, for each vertex v on the columns corresponding to the neighbors of
v. Alternatively,

C(G,C0) =
{
f ∈ FE2

∣∣ f |Ev ∈ C0
}
.

We can also have a different code Cv ⊆ Fd2 for each vertex v ∈ V .

Rate
If r0 > 1/2 then dim(C) = Ω(|E|).

The number of degrees of freedom is |E| = nd/2.
The number of constraints is n ·m0 where m0 = codim(C0) = (1− r0) · d.
Thus, dim(C) > nd

2 · (1− 2(1− r0)) = |E|(2r0 − 1).

Distance
Since this is a linear code, the distance is the weight of the minimal nonzero codeword.
Let 0 , f ∈ C. Let V ′ = {v ∈ V | f |Ev

, 0}. Clearly V ′ , φ and every vertex in V ′ has
at least δd neighbors also in V ′. Recall the Alon-Chung lemma, |V ′| > (δ−λ)|V |. Every
such vertex touches at least δd non-zero edges, so the support of f has relative size at
least δ(δ − λ).

Lemma 2.1 (Alon-Chung). Let G = (V,E) be a d-regular λ-one-sided expander. Let
T ⊆ V be such that the graph induced on T , denoted G(T ), has average degree at least
δd. Then |T | > (δ − λ) · |V |, and the number of edges in G(T ) is at least (δ − λ)δ · |E|.

Decoding
Here is an algorithm for decoding a given word f ∈ FE2 ,

1. Each v ∈ V finds a locally best codeword wv ∈ Cv

2. Go through all vertice s in arbitrary order and each v switches to another codeword
if it will lessen the disagreement with its neighbors. Repeat until stuck.

3. If no disagreement output w̃ given by w̃(e) = wv(e) where v ∈ e is arbitrary.

Does this terminate? yes, because the number of edges in disagreement decreases.
Does this terminate with perfect agreement?
If so, then we decoded in linear time!

Let

– E0 = {uv ∈ E | wu(v) , wv(u) after step 1}

– V0 - vertices with incorrect local view after step 1

– V1 - vertices with incorrect local view at the end

Claim 2.2. ε|E| > δd/2 · |V0| > δ/2 · |E0|.
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Proof. First, every incorrect vertex sees at least δd errors, and each error is counted
twice. Next, if uv ∈ E0 then either u ∈ V0 or v ∈ V0 so each edge can blame one vertex.
Each vertex receives at most d blames, so |V0|d > E0. �

Claim 2.3. Every v ∈ V1 has at least δd/2 nbrs in V1

Proof. Otherwise v would have flipped during the algorithm. �

By the Lemma 2.1 again we get that |V1| > |V |(δ/2 − λ), and this contradicts our
assumption, because |V1| 6 |V0|+ |E0| 6 ε

δ |V |+ ε|E| = O(ε)|V |.

Are expander codes locally testable?
They certainly are LDPC.. but the answer is: typically no.

Fix a family of local codes Cv ⊆ Fd2 and for one vertex v0 let C ′v0
) Cv0 have

dim(C ′v0
) = dim(Cv0) + 1. We can arrange so that both have distance at least δ and rate

of all local codes is above 1/2.
Let C be the expander code with local codes Cv for all v.
Let C ′ ⊃ C be the expander code with local codes Cv for all v, except that we let

the local code at v0 be C ′v0
. If all constraints are linearly independent, then dim(C ′) =

dim(C) + 1, and let w ∈ C ′ \ C. By our assumption, both codes have large distance
which means that dist(w,C) > δ. But, on the other hand, for H the parity check of C,
we get wt(Hw) = 1/R, as small as could possibly be!

3 Adding one more dimension
Recall from lecture 5, that the Hadamard code had short constraint loops. Indeed, there
were many short linear dependencies between the constraints. In every loop, an even
number of constraints can be unhappy. So, if one constraint is unhappy, it implies
that each loop touching it has another unhappy constraint, and we can hope for some
propagation.

This was also the case in the proof of cosystolic expansion: Given a 1-chain, the
constraints were the triangles, and four triangles in a pyramid made a constraint-loop.

So to get an LTC we need an expander code that also has these loops. Something
like:

F
X(2)
2

H−→ FX(1)·m1
2 −→ FX(0)·m0

2

For this we need to combine a 2-dimensional expander with a local locally testable
code that has a local 2-chain.

So far, we don’t know how to find a good local code to match the HDX constructions,
but we have another HDX for which this is possible: it is not a simplicial complex, but
rather a squares complex.

4 Left Right Cayley Complex
4.1 squares complex
Let G be a group, and let A,B ⊂ G be generator sets. We assume that they are
symmetric, namely, a ∈ A implies a−1 ∈ A. We define a squares complex X[A,G,B]:

– The vertices are X(0) = G.
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– The edges are X(1) = XA(1) tXB(1) where XA(1) = {g, ag | g ∈ G, a ∈ A} and
XB(1) = {g, gb | g ∈ G, b ∈ B}.

– The squares are X(2) = A × G × B/ ∼ where we define (a, g, b) ∼ (a−1, ag, b) ∼
(a−1, agb, b−1) ∼ (a, gb, b−1).

We denote a square by [a, g, b] = {(a, g, b), (a−1, ag, b), (a−1, agb, b−1), (a, gb, b−1)}. We
also denote an edge by [a, g] for {g, ag} and [g, b] for {g, gb}. We assume that ag , gb
and g , agb for all g, a, b. This assumption is not necessary but makes it simpler to
think about squares as never collapsing. This property depends on the group and choice
of sets A,B.

Links. The squares touching an edge [a, g] are [a, g, b] and can be identified with the
set B. The squares touching an edge [g, b] are [a, g, b] and can be identified with the set
A. The squares touching a vertex g are [a, g, b] and can be identified with the set A×B.

Instanciation. which group should we choose? We will need the Cayley graph to be a
good expander (for distance and for local testability). So a good choice is any group that
has a small set of generators such that Cay(G,A) and Cay(G,B) is a good expander.
For example, we can take the LPS Ramanujan expanders [2].

4.2 squares code
Fix two local codes CA ⊆ FA2 and CB ⊆ FB2 . We define the squares code

C(X,CA, CB) =
{
f ∈ FX(2)

2

∣∣∣ ∀a, g, b f([a, g, ·]) ∈ CB and f([·, g, b]) ∈ CA
}

Local tensor code. First thing to observe is that the restriction of the code to squares
touching a vertex g is a tensor code. Indeed, fixing g and letting M(a, b) = f([a, g, b])
we get an A×B matrix whose rows are in CB : M(a, ·) ∈ CB and whose columns are in
CA: M(·, b) ∈ CA. In other words, M ∈ CA ⊗ CB .

Rate
Suppose now that |A| = |B| = d and CA = CB = C0 ⊆ Fd2. Let r0 = dim(C0)/d, and
assume r0 > 3/4.

– The number of degrees of freedom is |X(2)| = |G||A||B|/4 = |G|d2/4.

– The number of constraints is |X(1)|(1− r0)d = |G|d2(1− r0) = |X(2)| · 4(1− r0).
We have used that the number of edges is |X(1)| = |G|(|A|+ |B|)/2 = |G|d.

We get dim(C) > |X(2)|(1 − 4(1 − r0)) = |X(2)|(4r0 − 3), which is positive whenever
r0 > 3/4.

Distance
Assume now that the 1-skeleton of X, namely, the graph (X(0), X(1)) is a λ-expander.

Since this is a linear code, the distance is the weight of the minimal nonzero codeword.
Let 0 , f ∈ C. Let V ′ = {v ∈ V | f |Sv

, 0}, where Sv are the squares touching v. Recall
that f |Sv is a tensor codeword. Observe that every non-zero tensor codeword must have
at least δ fraction of nonzero rows and δ fraction of nonzero columns. Therefore, every
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v ∈ V ′ has at least δ fraction of its neighbors in V ′. Again by the Alon-Chung lemma,
Lemma 2.1, |V ′| > (δ − λ)|V |. Every such vertex touches at least δ2d2 non-zero squares
(this is the minimum distance of the code C0⊗C0), so the support of f has relative size
at least δ2(δ − λ).

4.3 Tensor Codes
Before we move to discuss local testability, we observe that tensor codes also have con-
straint loops.

Given a code C ⊂ Fn2 , dim(C) = k, such that dist(C) > δ, the tensor code C ⊗ C
has dimension k2 and distance at least δ2. Depicting codewords as matrices, the natu-
ral parity check matrix has row constraints and column constraints, with total number
2n(n− k). This is larger than the codimension n2 − k2, so there must be linear depen-
dencies. Indeed, for every α, β a pair of constraints for C, there is a loop consisting of
the constraints (i, β) : i ∈ α and (α, j) : j ∈ β.

Local testability of squares code
Let H be the parity check matrix of the code C given by collecting all the parity checks
from all of the edges of the complex.

Lemma 4.1. There exists some β > 0 that depends on d = |A| = |B| but not on |G|, such
that given f ∈ FX(2)

2 , if wt(Hf) < ε, then there is some f̃ ∈ C such that dist(f̃ , f) 6 ε/β.

We consider the following local-correction algorithm that receives a word f ∈ FX(2)
2 .

Algorithm:

1. Every g ∈ G chooses wg ∈ C0 ⊗ C0 that is closest to f(·, g, ·).

2. Let E′ = {{g, g′} ∈ X(1) | wg / wg′}, where wg / w′g means that the local views
disagree on some common square.
For each g, if there is another choice of wg that minimizes the number of sets in
E′ touching g, then switch to that local view.
Repeat until no more available switches.

3. If E′ = φ output f̃ the codeword obtained from the combined local views. Else
output fail.

Observe that indeed if E′ = φ then setting f̃([a, g, b]) = wg([a, g, b]) gives a valid
codeword. We will show that if wt(Hf) is small then f̃ ≈ f . Observe also that the
algorithm must halt because the size of E′ decreases at every step.

Let w0
g denote the local view of vertex g at the beginning of the algorithm.

Claim 4.2. Let

V0 =
{
g ∈ X(0)

∣∣ w0
g , f([·, g, ·])

}
V1 = {g ∈ X(0) | wg changed value during the algorithm}
E′0 = E′ at the start of the algorithm.

Then

– |X(2)| · dist(f̃ , f) 6 (|V0|+ |V1|) · d2.
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– |V0| 6 2|Hf |

– |V1| 6 |E′0| 6 |V0|d 6 2d|Hf |

Therefore, dist(f, f̃) 6 (2d+ 2) wt(Hf) · d2 · 1−r0
4 = O(wt(Hf)).

Proof. For the first item, if v < V0 then initially wv agrees with f on every square s
touching v. This can only change if at some point in the algorithm wv changes value.
So dist(f̃ , f) 6 (|V0|+ |V1|) · d2.

For the second item, observe that every vertex in V0 sees some violated constraint.
Each constraint can be counted at most twice.

For the third item clearly the first and last inequality hold. The middle inequality
is because every disagreement between a pair of local views means that at least one of
them is in V0. �

In conclusion, if wt(Hf) = 0(1) then f ≈ f̃ . It remains to show that

Lemma 4.3. If E′ , 0 at the end of the algorithm, then |E′| = Ω(|E|).

The meaning of this is that there is some threshold τ such that if wt(Hf) < τ the
algorithm must output a closeby f̃ ∈ C. (This is beacause |E′0| > |E′| > Ω(|E|) =
Ω(|Hf |) by the claim above)
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