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Based on joint work with Irit Dinur [DD23]. Today we will show that the SLn(Fq)-spherical building is a
coboundary expander.

1 Introduction
Let X be a simplicial complex. Recall that Ci = {f : X(i) → F2}. We defined the coboundary maps
d = di : Ci → Ci+1 to be

df(t) =
∑

s⊆t,|s|=|t|−1
f(s). (1.1)

We also defined coboundary expansion.

Definition 1.1 (Coboundary expansion). Let X be a d-dimensional simplicial complex, let β > 0. We say
that X is a β-coboundary expander for on level i (or just write hi(X) ⩾ β), if the following holds. For every
f : X(i) → F2 there exists g : X(i − 1) → F2 such that

β dist(f , di−1g) ⩽ wt(df) = P
t∈X(i+1)

[dif(t) , 0] .1

This is a property testing notion. In property testing we have a subset P ⊆ Ci. We are given some f ∈ Ci,
and we want to determine whether f ∈ P or f is far away from P . We typically want to do so while reading
as few entries of f as possible.

– The property P we are testing is Bi = Imdi−1.

– The tester gets f : X(i) → F2 as input, samples t ∈ X(i + 1) and reads f on all faces {s ⊆ t}.

– The test accepts if df(t) = 0 and rejects otherwise. Indeed, every dg ∈ Bi has that d(dg) ≡ 0 so this
test is complete for Bi.

– The probability Pt∈X(i+1) [dif(t) , 0] is the test rejection probability.

– The soundness promise we have is that if the test rejects with small probability then f is close to some
dg ∈ Bi (β > 0 is the soundness parameter).

∗Weizmann Institute of Science, ISRAEL. email: yotam.dikstein@weizmann.ac.il.
1Recall that we have probability distributions on X(j) where Ps∈X(j) [s] ∝ #{t ∈ X(d), t ⊇ s}. Thinking about it too much

makes your head hurt, so we usually just imagine that all probabilities are equal.
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1.1 Motivation
We will see more motivation for coboundary expansion by the end of this seminar. Here are some slogans
that will do for now.

– As we saw last week, it generalizes graph connectivity to higher dimension.

– This notion relates to testability and robustness of topological properties of a simplicial complex:
topological overlap 2 [Gro10] and cover stability [DM22].

– Locally testable codes and quantum codes could be phrased in a similar way as coboundary expansion.
Techniques for proving coboundary expansion could be used in other settings as well. This is viewed by
some as a clean and simple setting to test such techniques.

We stress that the fact that df(t) = 0 on almost all triangles t ∈ X(i + 1), doesn’t necessarily mean that f
itself is close to a function h ∈ Ci such that dh(t) = 0 on all t ∈ X(i + 1).

Example 1.2. Here is an example for a non-coboundary expander. Let X be the path over 2n vertices (a
1-dimensional simplicial complex). That is X(0) = [2n], and X(1) = {{vi, vi+1} | i = 1, 2, ..., 2n − 1}. The
coboundary map defines a set of equations:

df (vivi+1)︷                ︸︸                ︷
f(vi) + f(vi+1) = 0.

The only functions that satisfy all equations are the constant functions. However, the function

f(vi) =

{
1 1 ⩽ i ⩽ n

0 i > n
,

is far from both constant functions. Yet, it satisfies all but one equation (i.e. df(vivi+1) = 0 except when
i = n). In the language, dist(f , dg) ⩾ 1

2 for any g ∈ B0, but Pi [df(vivi+1) , 0] = 1
2n−1 .

1.2 Coboundary Expansion via Decoding Cones
For the rest of this talk, we restrict ourselves to coboundary expansion for level 1. However, all results
generalize to arbitrary levels. We now develop a method to decode a function f : X(1) → F2 such that
df ≈ 0, to some dg ≈ f . This method will work on symmetric simplicial complexes. The following appeared
in [Gro10] implicitly, spelled out explicitly by [LMM16], and then abstracted by [KM19] and independently
by [KO21].

Definition 1.3 (Decoding cone). A decoding cone is a triple C = (v0, {Pu}u∈X(0),v0,u, {Tuw}uw∈X(1)) such
that

1. v0 ∈ X(0).

2. For every v0 , u ∈ X(0) Pu ⊆ X(1) is (edges of) a path from v0 to u.

3. For every uw ∈ X(1), Tuw ⊆ X(2) is a “tiling” of the cycle Pu ◦ uw ◦ Pw. More precisely, Tuw is
a set of triangles, such that the set of edges that appear an odd number of times in the multi-set⋃

xyz∈Tuw{xy, yz, zx} is Pu ◦ uw ◦ Pw
3.

For a function f we define its C-decoding gC : X(0) → F2 by

gC(v0) = 0 and gC(u) =
∑

e∈Pu

f(e).

If f = dh ∈ B1, then it is easy to see that gC(u) = h(u) + h(v0) and in particular f = dgC as well, so
the decoding is “complete”. The following observation connects the tilings to the “soundness”.

2Loosly, how many collisions must there be in a low-dimensional embedding of the simplicial complex?
3Actually, it should be the edges that appear an odd number of times in the cycle. We ignore this subtle point.
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Figure 1: Tiling the complete partite complex

Observation 1.4. Assume that df = 0 on every triangle in Tuw. Then f(uw) = gC(u) + gC(w) = dg(uw).

Proof of Observation 1.4. We need to prove f(uw) = gC(u) + gC(w), which is equivalent to f(uw) +∑
e∈Pu

f(e) +
∑

e∈Pw
f(e) = 0. These are exactly the edges that appear an odd number of times in

all the triangles of Tuw. Hence this is equal to
∑

t∈Tuw
df(t) = 0. We assumed that df = 0 on all these

triangles so the observation follows. □

In light of Observation 1.4, it seems as though the less triangles we have to sum the better. In light of
this we define

diam(C) = max
uw

|Tuw|.

1.3 Cones ⇒ Coboundary Expansion of Complete Partite Complex
The three partite complete complex is the complex whose vertices are three copies of [n], X(0) = A ·∪ B ·∪ C.
Every possible {a, b, c} (for a ∈ A, b ∈ B, c ∈ C) is a triangle in X(2).
Claim 1.5. Let X be the three-partite complete complex. Then h1(X) ⩾ 1

4 .

Proof of Claim 1.5. Fix f : X(1) → F2. We need to find some g ∈ C0 such that dist(f , dg) ⩽ 4 P [df , 0].
Let us construct a set of cones, such that one of the cones will be a good decoding of f . The idea is that the
tiling in these cones samples random triangles in the complex; so if Pt∈X(2) [df , 0] is small, then df = 0 on
most triangles of a tiling of one of the cones. Details follow.

For i, j, k ∈ [n], let Ci,j,k = (ai, {P ijk
u }u, {T ijk

uw }uw) where:

1. Pb = {aib}, Pc = {ajc} and Pa′ = {{ai, bj}, {bj , a′}}.

2. We tile as depicted in Figure 1.

We will show that one decoding gijk = gCi,j,k is a good decoding by showing it is good in expectation.

E
(i,j,k)

[
dist(f , dgijk)

]
= E

(i,j,k)

[
P
e

[
f(e) , dgijk(e)

]]
.

By Observation 1.4, this is at most

E
e∈X(1),(i,j,k)

[
P

[
df , 0 on one of Cijk

e ’s triangles
]]

.

There are at most four triangles in every Tuw so this is at most 4 times the probability of sampling a triangle
t ∈ Tuw uniformly such that df(t) , 0, i.e.

⩽ 4 E
e∈X(1),(i,j,k)

[
P

t∈T ijk
e

[df , 0]
]

,

where T ijk
e is the tiling of e for Cijk. Taking expectation over e, i, j, k, t ∈ T ijk

e is just a uniformly random
triangle so this is at most

4 P [df , 0] .
In particular there is one decoding gijk such that dist(f , gijk) ⩽ 4 P [df , 0] . □
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1.4 Generalizing the Technique
Let us generalize this technique. An automorphism of a simplicial complex is a bijection σ : X(0) → X(0)
such that s ∈ X(i) ⇔ σ(s) ∈ X(i). The set (group) of automorphisms is denoted by Aut(X). We say that
Aut(X) is transitive on X(k) if for every pair of k-faces s, s′ there is some σ ∈ Aut(X) such that σ(s) = s′.

Lemma 1.6. Let X be a simplicial complex such that Aut(X) is transitive on k-faces. Assume there exists a
cone C with diameter R. Then h1(X) ⩾ 1

(k+1
3 )R

.

The proof for this lemma is just an abstraction of what we did above. The only difference is that instead
of taking {Cijk} we take {Cσ}σ∈Aut(X) where Cσ is the cone obtained by applying σ to every vertex, edge
and triangle in C (i.e. v0 becomes σ(v0), the path Pu becomes Pσ(u), a path from σ(v0) to σ(u) etc.).

Example 1.7. Let σijk be the automorphism on the complete bipartite complex such that aℓ
σijk7→ aℓ+i,

bℓ
σijk7→ bℓ+j and cℓ

σijk7→ cℓ+k (summation is modulo n). The set of automorphisms σijk show that Aut(X) is
transitive on X(1).

Lemma 1.6 is one of the most powerful tools in our arsenal for coboundary expansion, however it has a
few caveats.

1. It only applies to symmetric complexes.

2. The dependence on diameter leads to bad constants if the diameter is large4.

3. If Aut(X) is only transitive on X(k) for large k, the constant gets even worse.

It was used by the above authors to show coboundary expansion of most simplicial complexes that are known
to be coboundary expanders, including the spherical building. The work in [DD23] was mainly to overcome
the last two points.

2 Spherical Building
We won’t define spherical buildings in full generality. The SLn(Fq)-building is the simplicial complex whose
vertices are non-trivial subspaces of Fn

q and whose faces are partial flags. That is

S(k) = {{W0, W1, ..., Wk} | W0 ⊂ W1 ⊂ ... ⊂ Wk} .

This complex is very important for the study of high dimensional expansion. The reason is that [LSV05]
(and others) showed how to construct bounded-degree families of simplicial complexes that locally resemble
these objects. These sparse complexes have given us

Theorem 2.1 ([DD23], informal). The spherical building S is a coboundary expander with hk(S) =
exp

(
−O

(
k6 log(1 + k)

))
. In particular h1(x) = Ω(1).

As a corollary, we can also show that the complexes of [LSV05] are cosystolic expanders. This corollary
uses local-to-global techniques and builds upon previous work by [KKL14] and [EK16].

2.1 Coboundary Expansion of the Spherical Building
In order to prove Theorem 2.1 (for k = 1) we need two components. The first component is a reduction
between the coboundary expansion of S to that of its low-dimensional analogues. For i ∈ {1, 2, ..., n − 1},
let S[i] = {W ∈ S(0) | dim(W ) = i}. For a set of dimensions D ⊆ {1, 2, ..., n − 1} let SD be the induced
complex on vertices SD(0) :=

⋃
d∈D S[D].

Lemma 2.2. Let p > 0. Assume that there is a set D ⊆ ([n]5 ) such that |D| ⩾ p(n
5) and such that h1(SD) ⩾ β

for every D ∈ D, then h1(S) ⩾ Ω(pβ).
4Open question: can we strengthen this technique to get a constant closer to one?
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Figure 2: Tiling for Cones in the Spherical Building

The family D we take is all {i1 < i2 < i3 < i4 < i5} such that ij ⩾ 10ij−1. It is direct to show that
|D| ⩾ 10−10(n

5).
The rest of the talk will focus on showing the second component, that is, that for every D ∈ D, h1(SD) ⩾ β

using cones.
Claim 2.3. Let D ∈ D. Then h1(SD) ⩾ 1

110 .

Proof. Fix D ∈ D. It is well known that SLn(Fq) acts transitively on 4-faces of SD. So we just need to find
a short cone, and then the claim shall follow from Lemma 1.6.

We define C = (v0, {Pu}, {Tuw}) as follows.

1. v0 ∈ S[i1] be any lowest dimension subspace.

2. Let u ∈ X(0). If u ∈ S[i1] there is some s ∈ S[i2], s ⊇ u + v0. We take Pu = {v0s, su}. For the other
cases we take Pu = {v0s, sr, ru} where r ⊆ u is a i1-dimensional subspace and s ⊇ r + v0.

The tiling here is more involved, but still simple enough. It is recommended to stare at Figure 2 while
reading the text. There are three cases. Let uw ∈ SD(1).

I If dim(u), dim(w) ⩽ i4. In this case, there exists some x ∈ S[i5] such that x contains all subspaces in
Pu ∪ Pw. In particular, the 7-triangle star is a tiling of Pu ◦ uw ◦ Pw.

II The second case is where dim(u) = i5 and dim(w) ⩽ i3. In this case we first find some u′ ⊆ u such that
dim(u′) = i4 and u′ contains the neighbours of u in the cycle. We tile using two triangles uu′y (for both
neighbours y of u). We now have the same cycle, on where we replaced u by a low-dimensional vertex,
thus reducing to the first case.

III The final case is where dim(u) = i5 and dim(w) = i4. In this case we first replace w by some w′ of
dimension i3 as before, and then reduce to the second case.

□

References
[LSV05] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. “Explicit constructions of Ramanujan
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A Sketch of Lemma 2.2
We probably will not get to this in the talk itself, so feel free to contact me for further discussion. For those
interested, we give a short description of the iterative decoding underneath Lemma 2.2. The decoding for
an f : S(1) → F2 is as follows. We first choose a sub-complex SD such that wt(f |SD ) ⩽ p−1wt(f) (this is
just another averaging argument where the size of D comes into play). We decode f to some dg for some
g : SD(0) → F2.

Next we set g for vertices v < SD(0) by g(v) = maxu∈SD ,u∼v(f(uv) + g(u)).
Showing that f ≈ dg when wt(f) ≈ 0, is done by an interative argument, starting from edges uv ∈ SD

(where it follows from coboundary expansion of g), then on edges where u ∈ SD, v < SD, and finally for edges
uv where u, v < SD. Every step builds upon the previous ones. See the technical overview in [DD23] for more
details.
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