
Lecture 1 in “Robust computation: from local
pieces to global structure”

Irit Dinur

July 23, 2025

1 Introduction - robust local to global
When studying large complex objects (a large set of data or a large com-
putation) we often look at small pieces of it that are easy to understand,
and then study how these relate to the global object. This question occurs
in many scenarios in computer science: in error correcting codes, in prob-
abilistically checkable PCPs, in hardness of approximation of constraint
satisfaction problems (CSPs), and more.

We will look into some nice local to global techniques and theorems,
and show how they apply in a variety of settings.

When can a global object like a proof be broken down into local pieces?
A proof is classically thought of as a complex global object. Of course
verification can be broken into local steps, but if even one piece is wrong,
the entire correctness breaks down. Can this be robustified? A priori it
seems impossible, and that’s the power of the PCP theorem.

The PCP theorem says that proofs can be verified by reading only a few
bits, with good confidence. This is a very robust way to verify correctness,
and it is the essence of the PCP theorem.

2 Example: verifying a system of linear equations
Let us begin with a simple but important example, which we can call the
bank statement example. The input is a sequence of numbers a1, . . . , an,
and we want to verify that the bottom line of a bank statement is correct,
namely S = ∑n

i=1 ai. We can think of the bank statement as a system of
equations that describes the bottom line, like so:

s1 = a1

1



s2 = a2 + s1

s3 = a3 + s2
...

sn = an + sn−1

Here the variables are s1, . . . , sn, and the input a1, . . . , an is viewed as con-
stants in the equations. How robust is this system of equations? If the bank
is cheating me and giving me a false bottom line, how many equations does
it need to violate?

While we think about this, let us look at a simpler system of equations.
Let the variables be x1, . . . , xn, and let the equations be

xi = xj, ∀{i, j} ∈ E.

This system is very naturally described by a graph whose vertices are [n]
and whose edges are E.

It is easy to see that the graph is connected iff the only solutions are
constant (namely there is some b ∈ {0, 1} such that xi = b for all i).
How robust is this system? If we have a solution that satisfies most of the
equations, is it “close” to a constant solution?

This depends on the graph. If the graph is a long path, for example,
then the answer is no (Why?). If the graph is a grid, again the answer
is no. But, if the graph is an expander, the answer is yes. In fact, this
is really an equivalent definition of expansion: whenever there is a non
constant assignment of values, compare the fraction of violated equations
(edges crossing between color classes) and the distance of the assignment
to the constant functions.

This was a very simple example, with equality equations. Going back
to the bank statement example, that system looks like a path, so can easily
be "broken". Can this be improved?

For enhancing robustness, equations can includemore than two variables
each. Now, the system of equations is no longer a graph, but rather a
hypergraph. Notions of robustness correspond to new notions of expansion,
called high dimensional expansion, variants of which we will encounter later
on.

3 The Hadamard Code and linearity testing
Here is a proposed way to "robustify" the bank statement system. First, let
us abstract the problem. We are given input S, a1, . . . , an ∈ F2 and a linear

2



claim saying that S = ∑n
i=1 ai. How can this linear statement be checked?

The idea is to encode the input, in a way that allows us to check the claim
locally.

We will use the celebrated Hadamard code. This is a well known error
correcting code, that maps n bits to 2n bits, given by the linear map

∀a ∈ Fn
2 , a 7→ fa

where fa is defined by

∀x ∈ Fn
2 , fa(x) =

n∑
i=1

aixi.

The image of this map is an n-dimensional subspace L ⊂ F2n

2 = {f : Fn
2 →

F2}, consisting of all possible linear functions. We will split this task into
two parts:

– Check that the given function f is indeed linear, namely f = fa for
some a ∈ Fn

2 .

– Check that said a satisfies the linear equation ∑i αiai = b.

Blum Luby and Rubinfeld studies the linearity testing problem, and it
became the first result in “property testing”. The proposed the following
test: choose x, y ∈ Fn

2 uniformly at random, and check whether f(x+ y) =
f(x)+f(y) holds. It is easy to see that f is linear iff the test always passes,

Claim 3.1. Consider the following system of linear equations,

∀x, y ∈ Fn
2 , f(x+ y) = f(x) + f(y) (3.1)

Then
L = {f : Fn

2 → F2 | f satisfies all equations in (3.1)}

Proof. There are two parts to the claim, first, clearly, every linear function
fa, for every a, satisfies the equations.

fa(x+ y) =
n∑

i=1
ai(xi + yi) =

n∑
i=1

aixi +
n∑

i=1
aiyi = fa(x) + fa(y).

Next, if a function satisfies all equations, then it must be linear. Let us
see the latter. Fix ai := f(ei) for all i ∈ [n]. We claim that f = fa.

f(x) = f

(
n∑

i=1
xiei

)
=

n∑
i=1

xif(ei) =
n∑

i=1
xiai = fa(x).

where the second equality is by repeated use of the equations in (3.1). �

3



What BLR showed is much stronger. They showed that the system
(3.1) is robust, namely that if the test fails with small probability then the
function is close to linear.

Theorem 3.2 (Blum-Luby-Rubinfeld (BLR) linearity testing). If a function
f : Fn

2 → F2 satisfies 1− δ fraction of equations in (3.1), namely

ε(f) = P
x,y∈Fn

2
[f(x) + f(y) , f(x+ y)] 6 δ

then there exists a nearby function ` ∈ L, dist(f, `) 6 O(δ)

4 Proof of Theorem 3.2
There are two different and insightful proofs for this theorem. A very short
one, based on Fourier analysis, and a more constructive one, based on the
local correction. We will see both proofs in this course, starting from the
constructive one. Let us define a function ` by a majoriy vote over all
equations involving f(x), namely:

`(x) = Majy∈Fn
2

[f(y) + f(x+ y)] (4.1)

where Maj is the majority function, which outputs 1 if the input is 1 on
more than half of the inputs, and 0 otherwise. We can think of ` as a
correction to f . If f satisfies all equations, then ` = f . We will prove that
if f satisfies ore than 7/9 of the equations, then ` is both close to f , and in
L.

Define the probability of the popular vote for x as

Px = P
y
[f(y) + f(x+ y) = `(x)]

We will show two claims, the first showing that Px is large for all x, and
the second showing that ` is linear. Finally, it will be easy to show that
f ≈ `.

Claim 4.1. If ε(f) < 2/9 then for all x ∈ Fn
2 , Px > 2/3.

Proof. Fix x, and choose y and z independently uniformly at random. On
one hand,

Px = P
y
[f(y) + f(x+ y) = `(x)] (4.2)

Px = P
z
[f(z) + f(x+ z) = `(x)] (4.3)

4



thus the probability that f(y)+f(x+y) = f(z)+f(x+z) is (Px)2+(1−Px)2

because y and z are independent. Switching terms around this holds iff

f(y) + f(z) = f(x+ y) + f(x+ z)

Now by the assumption of the theorem, with probability at least 1 − δ,
f(y)+f(z) = f(y+z). Similarly, with probability 1−δ, f(x+y)+f(x+z) =
f(y + z) since x + y, x + z are uniform and independent. So by a union
bound the probability that both hold (now there is no independence!) is at
least 1− 2δ > 5/9. So

P 2
x + (1− Px)2 > 5/9

and this can only hold if Px < 1/2 or Px > 2/3. The first is ruled out since
Px > 1/2. �

Claim 4.2. For every x, y, `(x) + `(y) = `(x+ y), hence ` ∈ L.

Proof. Fix x, y. By the previous claim, Px > 2/3, Py > 2/3 and Px+y > 2/3,
so each of the following three equations hold with probability above 2/3 over
the choice of z:

`(x) = f(z) + f(x+ z)
`(y) = f(z) + f(y + z)

`(x+ y) = f(x+ z) + f(y + z)

The only slightly tricky statement is the third equation. Note that choosing
a random z and setting w = x+ z gives a uniformly distributed w and then
`(x+ y) = f(w) + f(w + (x+ y)) = f(x+ z) + f(y + z) for more than 2/3
of the choices of w which means 2/3 of the choices of z.

In combination, each equation fails for less than 1/3 of the z’s, so there
must be some z0 for which all three equations hold simultaneously. If we
sum them up we get identically zero on the right hand side, implying that
`(x) + `(y) + `(x+ y) = 0. �

That’s great, we have shown that our majority vote function ` is in fact
linear. It remains to observe that it is close to f .

Whenever f(x) , `(x) we have that (since Px > 2/3) for at least 2/3 of
the choices of y, f(x) , f(y) + f(x+ y) holds. So we have

ε(f) = E
x
P
y
[f(x) , f(y) + f(x+ y)]

> P
x
[f(x) , `(x)] · E

x:f(x),`(x)
P
y
[f(x) , f(y) + f(x+ y)]

= dist(f, `) · E
x:f(x),`(x)

Px

5



> dist(f, `) · 23

where in the first inequality we used the formula E[A] > P[B] ·E[A|B]. As
long as ε(f) 6 2/9 we have shown that

ε(f) > 2
3 · dist(f, `) > 2

3 dist(f, L)

and altogether ε(f) > min(2
9 , dist(f, L) · 2

3) > 2
9 dist(f, L).

4.1 Testing a system of linear equations
Given that we can test linearity, we can now test any system of equations!
Suppose the system is Ma = b for some fixed M, b. Take a random linear
combination of the rows of M, namely let yM for some random vector y, and
read off f(x) + f(x+ yM). We are relying on the fact that the Hadamard
code is a locally correctible code: if we want to know the value at x0 = yM
we make two queries, to x and to x+ x0 for a uniformly random x.

4.2 Locally testable code
We have proven that the Hadamard code is an LTC. Other codes (with
much better rate) are also LTCs, such as the Reed-Muller code, and some
newer codes defined on high dimensional expanders.

These other codes don’t always allow for such elegant local correction, so
it is open whether they provide a way to check arbitrary linear constraints.

5 Geometry of the linearity testing constraints
We defined the Hadamard code via its “parity checks”, namely via the linear
constraints defining it (3.1), which are the triples

{x, y, x+ y} ∀x , y ∈ Fn
2 \ {0}.

Each constraint can be viewed as a row in the parity check matrix of the
Hadamard code, which has three non-zero entries. There are (2n−1)(2n−1−
1) ≈ 22n−1 constraints and clearly they are not all linearly independent. In
fact, the proof heavily relies on having very short dependencies among these
constraints. The following table shows four constraints, whose non zeros are
indexed by appropriate choice of three out of x, y, z, x+ y, x+ z, y + z.

6



x y z x+y x+z y+z
1 1 1

1 1 1
1 1 1

1 1 1

These four constraints are dependent, as can be seen from the fact that the
four rows sum to zero. This fact is at the heart of the proof of Claim 4.2.

It is interesting that in this table, every two rows intersect on exactly
one out of the three non-zeros. In fact, geometrically, we can draw the
constraints as hyperedges (triangles) in a hyper-graph whose vertices are
Fn

2 \{0}. The four constraints correspond to the four triangles in the figure
below (one triangle is shown in a different color to make the figure more
legible).

x

x + y

y

y + z

z

x + z

One way to understand this figure is by starting with a single violated
hyperedge. One violated constraint immediately implies that at least one of
the other constraints is violated. This is because the four constraints must
some to zero. Therefore, if we look at all possible hyperedges touching a
given point, say x, every pair of violated and non-violated constraint span
a new violated constraint that doesn’t touch x.

We can think about a random walk that moves from triangle to triangle
in a way that the violated triangles propagate.

7


	Introduction - robust local to global
	Example: verifying a system of linear equations
	The Hadamard Code and linearity testing
	Proof of Theorem 3.2
	Testing a system of linear equations
	Locally testable code

	Geometry of the linearity testing constraints

