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1 Robust characterization, systems of constraints

We begin with some formal definitions, putting our discussion from last
week into a more rigorous framework.

Notation and definitions

A system of constraints is given by a hypergraph H = (V, E), an alphabet
Y., and a constraint C, C {f : e — X} for each hyperedge e € E. The
constraint describes which assignments to the vertices v € e are allowed
and which are not.

An assignment f : V — ¥ satisfies the constraint C, iff f|. € C..
An assignment f satisfies the system of constraints if it satisfies all of the
constraints, i.e., f|. € C, for all e € E. We refer to the entire system of
constraints as H and denote the set of satisfying assignments of H by

SAT(H)={f:V —=%| flee C., Yee€ E}.

We say that SAT(H) is characterized by H. What about robustness?

For a given assignment f, it is not clear easy to tell how close it is to the
set SAT(H), but much easier to measure the fraction of constraints that it
satisfies,

val(f) = 26E|1E0|<f|)

Similarly rej(f) = 1 —val(f) is the fraction of constraints that f does not
satisfy, i.e., the fraction of constraints that it rejects. We define

val(H) = frzr‘}fgczval(f), rej(H) =1—wval(H) (1.1)

- Blfl.cc)

A system is called c-robust if for any assignment f, rej(f) is a good
measure for the distance of f from a satisfying assignment.
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Definition 1.1 (Robustness). Given a system of constraints H, the robust-
ness of H is defined as

rej(f)

©7 jesarim dist(f, SAT(H))

In words, c is the largest real number such that for every assignment f :

V — 3, rej(f) = c-dist(f, SAT(H)).

In this terminology, we have proven in the previous lecture that the
system of linearity testing equations is a robust system of constraints, with
¢ =4/9. Indeed, if rej(f) > 2/9 this is trivial because § dist(f, SAT(H)) <
31 =2 <rej(f) (since for any f it is 1/2 close to either all 0 or all 1),
and if rej(f) < 2/9, we saw that Z dist(f, SAT(H)) < rej(f) and thus the
system is robust with ¢ = min(2/3,4/9) = 4/9.

Locally testable codes. A linear code C' is locally testable with ¢ queries
and robust soundness parameter p if there exists a p-robust system of (lin-
ear) constraints H that characterizes C, namely such that C = SAT(H).
Moreover, each constraint in H involves no more than ¢ variables.

The condition C' = SAT(H) is sometimes called perfect completeness
since it means that for every f € C, rej(f) = 0. The condition of p-
robustness is related to soundness because if f is §-far from C' then rej(f) >
p-o.

Relation to property testing. In the area of property testing, the focus is
on a property, say P C [FJ, whether or not there is a tester for it, and with
how many queries. The tester (at least in the non-adaptive case) can be
viewed as a robust system constraints (each constraint is defined by what
the tester looks at for a fixed choice of the randomness, and which views
cause it to accept). For example, a locally testable code is a code C' and
if there is a tester for it, this can translate directly to the existence of a
robust system of constraints!. In the formulation above, the emphasis, or
the focus, is more on the system of constraints, compared to caring mainly
about the codewords (or more generally the property, SAT(H)).

Coboundary expansion. We will see later on a definition of a linear map
from the assignment to the constraints § : IFy — IFY called the coboundary
map 0. This map takes an assignment f : V — Fy to the set of constraints

)0 fleeC.

it violates, d(f)e 1 otherwise

. This is a linear map if the constraints

1T am ignoring the case of non-perfect completeness.



are linear, and robustness of H becomes exactly the coboundary expansion
of this map.

2 Low degree tests

We now turn to another set of functions, of potentially much higher density,
that is also characterized by a robust system of constraints, namely the set
of low degree polynomials.

Let g be a prime power. A polynomial f : IF;* — IF has total degree d if

= Y a][e

(617---7€'m),z €1<d =1

The set of polynomials of degree at most d is denoted by RM (m,d) and is
called the Reed-Muller code. It is a linear code, and one can calculate its
dimension to be |RM (m,d)| = (m;d). The relative distance is 1 — d/q.

2.1 Characterization of low degree polynomials

What kind of equations does a polynomial of degree at most d satisfy?
Assume that ¢ > d + 2. When m = 1 we know that any d + 1 points
x1,...,%q+1 and any d+ 1 values yy, ..., yqr1 determine uniquely a univari-
ate polynomial f of degree at most d such that f(x;) = y;. In fact, this
gives a robust test: choose at random xy, ..., x4, and accept if f‘{w07-~~7xd+1}
agrees with some degree-d polynomial. Clearly this will always succeed in
case f € RM(1,d). Moreover, denoting agr = 1 — dist,

Claim 2.1. If Probyym...z,. . [f|{z0,...was1} agrees with some degree-d polynomial] =
«a, then agr(f, RM(1,d)) > «

Proof. Assume that the test passes with probability «. There must be some
x1,...,Tqr1 such that the test passes with probability a even conditioned
on ry,...,rqr1. Let g be the univariate polynomial of degree at most d
that agrees with f on these points. Then g agrees with f on « fraction of
the remaining points in F\ {z1, ..., 241}, so altogether agr(f, RM(1,d)) >

agr(f,g) > . m

Moving to m = 2, how would we test bivariate polynomials? If we
choose random d + 2 points, there might not be any relation between them
that we can check. It is natural to look at the restriction of f to a ran-
dom axis-parallel line, say f(-,a) or f(a,-). This is a good test, and a
nice analysis was given by Polyschuk and Spielman [P594]. How does



this test generalize to larger m? The so-called “axis-parallel line test”
will choose a random ¢ € [m] and a random point ¢ € F™ and then look
at f(ay,...,a;—1, * ,@i41,...,ay), namely at a random axis parallel line.
When m grows the robustness will decrease proportionally to 1/m as can
be seen from the function f(z) = (z;)?**. This polynomial is far from any
degree d function (because for any polynomial of degree < d, the differ-
ence is a non zero polynomial of degree d + 1, and it can have no more
than d%;l fraction of zeros by the Schwartz-Zippel lemma), yet it passes the
axis-parallel line test with probability 1 — 1/m.

The dependence of the robustness on m can be removed with the fol-
lowing test:

— Choose a random x € ]FZ‘ and a random h € IFZJ” such that h # 0. Let
gm,h = {$+Zh| lE]F}

~ Read f|,,, and check if it agrees with some degree-d polynomial on
this line.

In fact, the second step can be replaced by reading f at a random set of
d + 2 points on the line ¢, 5, and checking if these values agree with some
degree-d polynomial. This is due to Claim 2.1.

This test (actually, a variant of it) was analyzed by Rubinfeld and Sudan
[RS96]. It is quite similar to the analysis of linearity testing. It proceeds
by defining a self-corrected function g (by plurality vote) and then showing
that (a) ¢ is close to f, (b) The plurality vote is by high margin, and
then (c) g must be low degree. The last two steps involve using some nice
dependencies between the constraints of the test, namely the fact that an
arbitrary constraint can be expressed as a short sum of other (more random)
constraints.

3 Line versus point test and other agreement tests

The set of functions RM (m, d) has polynomial density inside the set of all

functions {f : F™ — F} when d =~ m =~ log((m;d)). In this case the low

degree test makes a logarithmic number of queries (since d ~ m = log F™).
Can the number of queries be reduced further?

One idea is to enhance the input, by adding in addition to f : F™ — [F
another piece of encoding, called the lines table (or lines oracle), which
supposedly gives the restriction of the function f to all possible lines. The
lines table is a collection {f,},, where ¢ is an affine line and f, : { — F
is a univariate degree d polynomial (given, for example, through d + 1
coefficients). In the lines table, the intent is that f, = f|,. Namely, in a
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valid encoding, f has degree d, and each f, is its restriction to the line /.
Now we can use the collection { f;} to help us test if f is low degree, keeping
in mind that there is no apriori guarantee that f, are consistent with each
other or with a global low degree function.

Given both f and {f,}, a natural test that this is a representation of a
low degree function is as follows

Line vs. point test.

— Choose a random z € IF™ and a random line ¢ > z.

— Accept if f(x) = fi(z).

The following lemma shows that analyzing the line vs point test loses
no generality compared to the basic low degree test.

Lemma 3.1. Given f : F™ — [ that passes the basic low degree test with
probability «, there is a lines table {f;}o such the pair f,{fe} pass the line
vs. point test passes with probability at least o as well.

Proof. Given f : [F™ — [F that passes the basic low degree test with proba-
bility «, we can construct a lines table { f;}, as follows. For each line ¢, let
f¢ be the degree d polynomial that agrees with f on the maximal number
of points in ¢. Since f passes the basic low degree test with probability
a, it follows that for a random line ¢, the restriction f|, will be at least
a-close to a degree d polynomial (see Claim 2.1), on average. Therefore,
the pair f,{f,} will pass the line vs. point test with probability at least «
as well. O

This test has been analyzed by Arora and Sudan [AS03]. We will
describe another test, which was analyzed concurrently by Raz and
Safra [R597] and whose analysis is more combinatorial. For this test, we
ask for the collection of restrictions of f to planes, not lines.

Plane vs. plane test. Input: {f;| fs:s — F is bivariate with degree at most d}
where s ranges over all possible affine planes in F™.

— Choose a random line ¢, and two random planes s,s” D /.
— Accept if file = fsle-

The analysis begins by looking at the case m = 3.



4 Analysis of the plane vs. plane test

Let us consider the consistency graph of the test, which is a graph whose
vertices are the planes, and where we put an edge between s, s" if f|, = fols,
where ¢ is the intersection line. Observe that since m = 3 every pair of
distinct planes intersect in a line or are parallel. If s, s’ are parallel we will
also put an edge between s,s’. We will write s ~ s’ to denote that there is
an edge between s, s'. By assumption,

a=Pls~ s
8,8’
The key is the following structural restriction on the edges and non edges
in the consistency graph.

Claim 4.1. Let s,s’ be two planes in IF? such that s + s’. At most % of
the planes s” have §” ~ s and §” ~ s'. We call such triples {s, s, s"} bad
triangles.

Proof. If s + &', then there are at most d point on ¢ such that fi(p) = fo(p).
Choose a random s”. With probability 1/q, s” is parallel to ¢ (namely,
either disjoint from ¢ or contains it). With the remaining probability, it
must intersect ¢ at a point. So with all but é + g probability, s” intersects
= sN s’ on a point p such that fs(p) # f«(p) and so either fo(p) # fo(p)
or fer(p) # fs(p) (or both). This means that s” cannot be adjacent to both
s and s, and thus there are at most ¢ = % planes that are adjacent to
both s and s'. O
For a vertex v, let €, be the fraction of edges uw such that v ~ v, w ~ v
but u + w.

Claim 4.2. E,[¢,] < e := T,

Proof. Consider the bipartite graph between V' and F, where we connect
a vertex v to an edge uw if u » w yet u,w ~ v. Every non edge u + w
has degree at most %|V| according to the previous claim. Averaging from

the vertex side we get that the average degree of a vertex is E[e,|F|] <
R m

Claim 4.3. There must be a vertex v* with at least (o —2+/2)|V/| consistent
vertices u ~ v*, and such that e, < /.

Proof. There cannot be more than /¢ vertices with €, > /2, by averaging.
Of those that remain, choose a vertex that agrees with a maximal number
of vertices u. It must agree with at least a— 2 /e (because the vertices with



high ¢, have been removed, and even if each was consistent with all other
vertices, they could only contribute 2 1/ to the total agreement, which now
decreases from «a to o — 2/¢). O

Let A C V be the set of planes that are consistent with v*, so |A| =
(a — 24/¢)|V|. By our choice of v*, g,» < /e, so there are relatively few
non-edges inside A.

Claim 4.4. Let § = (o — 2/ —¢)/2, and let B C A be the set of planes
that are inconsistent with at least 5|V| planes in A. Then A\ B is a clique
in the consistency graph, and [A\ B| > (a — §)|V/|.

Proof. For every u,w € A, if u » w then by Claim 4.1, there are at most
e|V] planes that are consistent with both w and w. This means that the
remaining r € A have either u » r or w * r, so one of u,w must have at
least (|A| —¢|V])/2 = B|V| non-neighbors inside A, so fall into B. Thus,
A\ B is a clique. m|

Finally, let us bound the size of the set B. Each r € B touches §|V/|
non-edges, which make at least 5|V| bad triangles involving v*, while the
total number of those is €,:|E| < /| E|. Each bad triangle can be counted

at most twice, so we get that |B|-5|V|/2 < /2| E|, and thus | B| < Qﬁfl =

aaalVl

This analysis gives a good bound when « > /e. For example if o >
1/g"/* then the clique has size at least a — 1/ v/q- This assumption on « is
not needed in the original Raz-Safra proof [R597].

References

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and
its applications. Comb., 23(3):365-426, 2003. 5

[PS94] A. Polishchuk and D. Spielman. Nearly linear size holographic
proofs. In Proc. 26th ACM Symp. on Theory of Computing, pages
194-203, 1994. 3

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of
polynomials with applications to program testing. SIAM Journal
on Computing, 25(2):252-271, 1996. 4

[RS97] R. Raz and S. Safra. A sub-constant error-probability low-degree
test, and a sub-constant error-probability PCP characterization of
NP. In Proc. 29th ACM Symp. on Theory of Computing, pages
475484, 1997. 5, 7



	Robust characterization, systems of constraints
	Low degree tests
	Characterization of low degree polynomials

	Line versus point test and other agreement tests
	Analysis of the plane vs. plane test

