Lecture 2 in "Robust computation: from local pieces to global structure"

Irit Dinur

August 8, 2025

1 Robust characterization, systems of constraints

We begin with some formal definitions, putting our discussion from last week into a more rigorous framework.

Notation and definitions

A system of constraints is given by a hypergraph H = (V, E), an alphabet Σ , and a constraint $C_e \subseteq \{f : e \to \Sigma\}$ for each hyperedge $e \in E$. The constraint describes which assignments to the vertices $v \in e$ are allowed and which are not.

An assignment $f: V \to \Sigma$ satisfies the constraint C_e iff $f|_e \in C_e$. An assignment f satisfies the system of constraints if it satisfies all of the constraints, i.e., $f|_e \in C_e$ for all $e \in E$. We refer to the entire system of constraints as H and denote the set of satisfying assignments of H by

$$SAT(H) = \{ f : V \to \Sigma \mid f|_e \in C_e, \forall e \in E \}.$$

We say that SAT(H) is characterized by H. What about robustness?

For a given assignment f, it is not clear easy to tell how close it is to the set SAT(H), but much easier to measure the fraction of constraints that it satisfies,

$$val(f) = \frac{\sum_{e \in E} \mathbf{1}_{C_e}(f|_e)}{|E|} = \Pr_{e \in E}[f|_e \in C_e]$$

Similarly rej(f) = 1 - val(f) is the fraction of constraints that f does not satisfy, i.e., the fraction of constraints that it rejects. We define

$$val(H) = \max_{f:V \to \Sigma} val(f), \quad rej(H) = 1 - val(H)$$
 (1.1)

A system is called *c-robust* if for any assignment f, rej(f) is a good measure for the distance of f from a satisfying assignment.

Definition 1.1 (Robustness). Given a system of constraints H, the robustness of H is defined as

$$c = \min_{f \notin SAT(H)} \ \frac{rej(f)}{\mathrm{dist}(f, SAT(H))}.$$

In words, c is the largest real number such that for every assignment $f: V \to \Sigma$, $rej(f) \ge c \cdot \operatorname{dist}(f, SAT(H))$.

In this terminology, we have proven in the previous lecture that the system of linearity testing equations is a robust system of constraints, with c=4/9. Indeed, if $rej(f) \ge 2/9$ this is trivial because $\frac{4}{9} \operatorname{dist}(f, SAT(H)) \le \frac{4}{9} \cdot \frac{1}{2} = \frac{2}{9} \le rej(f)$ (since for any f it is 1/2 close to either all 0 or all 1), and if rej(f) < 2/9, we saw that $\frac{2}{3} \operatorname{dist}(f, SAT(H)) \le rej(f)$ and thus the system is robust with $c = \min(2/3, 4/9) = 4/9$.

Locally testable codes. A linear code C is locally testable with q queries and robust soundness parameter ρ if there exists a ρ -robust system of (linear) constraints H that characterizes C, namely such that C = SAT(H). Moreover, each constraint in H involves no more than q variables.

The condition C = SAT(H) is sometimes called perfect completeness since it means that for every $f \in C$, rej(f) = 0. The condition of ρ -robustness is related to soundness because if f is δ -far from C then $rej(f) > \rho \cdot \delta$.

Relation to property testing. In the area of property testing, the focus is on a property, say $P \subset \mathbb{F}_2^n$, whether or not there is a tester for it, and with how many queries. The tester (at least in the non-adaptive case) can be viewed as a robust system constraints (each constraint is defined by what the tester looks at for a fixed choice of the randomness, and which views cause it to accept). For example, a locally testable code is a code C and if there is a tester for it, this can translate directly to the existence of a robust system of constraints¹. In the formulation above, the emphasis, or the focus, is more on the system of constraints, compared to caring mainly about the codewords (or more generally the property, SAT(H)).

Coboundary expansion. We will see later on a definition of a linear map from the assignment to the constraints $\delta: \mathbb{F}_2^V \to \mathbb{F}_2^E$ called the coboundary map δ . This map takes an assignment $f: V \to \mathbb{F}_2$ to the set of constraints it violates, $\delta(f)_e = \begin{cases} 0 & f|_e \in C_e \\ 1 & \text{otherwise} \end{cases}$. This is a linear map if the constraints

¹I am ignoring the case of non-perfect completeness.

are linear, and robustness of H becomes exactly the coboundary expansion of this map.

2 Low degree tests

We now turn to another set of functions, of potentially much higher density, that is also characterized by a robust system of constraints, namely the set of low degree polynomials.

Let q be a prime power. A polynomial $f: \mathbb{F}_q^m \to \mathbb{F}$ has total degree d if

$$f(x) = \sum_{(e_1, \dots, e_m), \sum e_i \le d} a_e \prod_{i=1}^m x_i^{e_i}$$

The set of polynomials of degree at most d is denoted by RM(m,d) and is called the Reed-Muller code. It is a linear code, and one can calculate its dimension to be $|RM(m,d)| = \binom{m+d}{d}$. The relative distance is 1 - d/q.

2.1 Characterization of low degree polynomials

What kind of equations does a polynomial of degree at most d satisfy? Assume that q > d + 2. When m = 1 we know that any d + 1 points x_1, \ldots, x_{d+1} and any d + 1 values y_1, \ldots, y_{d+1} determine uniquely a univariate polynomial f of degree at most d such that $f(x_i) = y_i$. In fact, this gives a robust test: choose at random x_0, \ldots, x_{d+1} and accept if $f|_{\{x_0, \ldots, x_{d+1}\}}$ agrees with some degree-d polynomial. Clearly this will always succeed in case $f \in RM(1, d)$. Moreover, denoting agr = 1 - dist,

Claim 2.1. If $Prob_{x_0m...,x_{d+1}}[f|_{\{x_0,...,x_{d+1}\}}]$ agrees with some degree-d polynomial] = α , then $agr(f, RM(1, d)) \ge \alpha$

Proof. Assume that the test passes with probability α . There must be some x_1, \ldots, x_{d+1} such that the test passes with probability α even conditioned on x_1, \ldots, x_{d+1} . Let g be the univariate polynomial of degree at most d that agrees with f on these points. Then g agrees with f on α fraction of the remaining points in $\mathbb{F}\setminus\{x_1,\ldots,x_{d+1}\}$, so altogether $agr(f,RM(1,d)) \geqslant agr(f,g) \geqslant \alpha$.

Moving to m=2, how would we test bivariate polynomials? If we choose random d+2 points, there might not be any relation between them that we can check. It is natural to look at the restriction of f to a random axis-parallel line, say $f(\cdot,a)$ or $f(a,\cdot)$. This is a good test, and a nice analysis was given by Polyschuk and Spielman [PS94]. How does

this test generalize to larger m? The so-called "axis-parallel line test" will choose a random $i \in [m]$ and a random point $a \in \mathbb{F}^m$ and then look at $f(a_1, \ldots, a_{i-1}, \cdots, a_{i+1}, \ldots, a_m)$, namely at a random axis parallel line. When m grows the robustness will decrease proportionally to 1/m as can be seen from the function $f(x) = (x_i)^{d+1}$. This polynomial is far from any degree d function (because for any polynomial of degree d, the difference is a non zero polynomial of degree d + 1, and it can have no more than $\frac{d+1}{q}$ fraction of zeros by the Schwartz-Zippel lemma), yet it passes the axis-parallel line test with probability 1 - 1/m.

The dependence of the robustness on m can be removed with the following test:

- Choose a random $x \in \mathbb{F}_q^m$ and a random $h \in \mathbb{F}_q^m$ such that $h \neq 0$. Let $\ell_{x,h} = \{x + ih \mid i \in \mathbb{F}\}.$
- Read $f|_{\ell_{x,h}}$ and check if it agrees with some degree-d polynomial on this line.

In fact, the second step can be replaced by reading f at a random set of d+2 points on the line $\ell_{x,h}$, and checking if these values agree with some degree-d polynomial. This is due to Claim 2.1.

This test (actually, a variant of it) was analyzed by Rubinfeld and Sudan [RS96]. It is quite similar to the analysis of linearity testing. It proceeds by defining a self-corrected function g (by plurality vote) and then showing that (a) g is close to f, (b) The plurality vote is by high margin, and then (c) g must be low degree. The last two steps involve using some nice dependencies between the constraints of the test, namely the fact that an arbitrary constraint can be expressed as a short sum of other (more random) constraints.

3 Line versus point test and other agreement tests

The set of functions RM(m,d) has polynomial density inside the set of all functions $\{f: \mathbb{F}^m \to \mathbb{F}\}$ when $d \approx m \approx \log(\binom{m+d}{d})$. In this case the low degree test makes a logarithmic number of queries (since $d \approx m = \log \mathbb{F}^m$). Can the number of queries be reduced further?

One idea is to enhance the input, by adding in addition to $f: \mathbb{F}^m \to \mathbb{F}$ another piece of encoding, called the lines table (or lines oracle), which supposedly gives the restriction of the function f to all possible lines. The lines table is a collection $\{f_\ell\}_\ell$, where ℓ is an affine line and $f_\ell: \ell \to \mathbb{F}$ is a univariate degree d polynomial (given, for example, through d+1 coefficients). In the lines table, the intent is that $f_\ell = f|_{\ell}$. Namely, in a

valid encoding, f has degree d, and each f_{ℓ} is its restriction to the line ℓ . Now we can use the collection $\{f_{\ell}\}$ to help us test if f is low degree, keeping in mind that there is no apriori guarantee that f_{ℓ} are consistent with each other or with a global low degree function.

Given both f and $\{f_{\ell}\}$, a natural *test* that this is a representation of a low degree function is as follows

Line vs. point test.

- Choose a random $x \in \mathbb{F}^m$ and a random line $\ell \ni x$.
- Accept if $f(x) = f_{\ell}(x)$.

The following lemma shows that analyzing the line vs point test loses no generality compared to the basic low degree test.

Lemma 3.1. Given $f: \mathbb{F}^m \to \mathbb{F}$ that passes the basic low degree test with probability α , there is a lines table $\{f_\ell\}_\ell$ such the pair $f, \{f_\ell\}$ pass the line vs. point test passes with probability at least α as well.

Proof. Given $f: \mathbb{F}^m \to \mathbb{F}$ that passes the basic low degree test with probability α , we can construct a lines table $\{f_\ell\}_\ell$ as follows. For each line ℓ , let f_ℓ be the degree d polynomial that agrees with f on the maximal number of points in ℓ . Since f passes the basic low degree test with probability α , it follows that for a random line ℓ , the restriction $f|_\ell$ will be at least α -close to a degree d polynomial (see Claim 2.1), on average. Therefore, the pair $f, \{f_\ell\}$ will pass the line vs. point test with probability at least α as well.

This test has been analyzed by Arora and Sudan [AS03]. We will describe another test, which was analyzed concurrently by Raz and Safra [RS97] and whose analysis is more combinatorial. For this test, we ask for the collection of restrictions of f to planes, not lines.

Plane vs. plane test. Input: $\{f_s \mid f_s : s \to \mathbb{F} \text{ is bivariate with degree at most } d\}$ where s ranges over all possible affine planes in \mathbb{F}^m .

- Choose a random line ℓ , and two random planes $s, s' \supset \ell$.
- Accept if $f_s|_{\ell} = f_{s'}|_{\ell}$.

The analysis begins by looking at the case m=3.

4 Analysis of the plane vs. plane test

Let us consider the consistency graph of the test, which is a graph whose vertices are the planes, and where we put an edge between s, s' if $f_s|_{\ell} = f_{s'}|_{\ell}$, where ℓ is the intersection line. Observe that since m=3 every pair of distinct planes intersect in a line or are parallel. If s, s' are parallel we will also put an edge between s, s'. We will write $s \sim s'$ to denote that there is an edge between s, s'. By assumption,

$$\alpha = \underset{s,s'}{\mathbb{P}}[s \sim s'].$$

The key is the following structural restriction on the edges and non edges in the consistency graph.

Claim 4.1. Let s, s' be two planes in \mathbb{F}^3 such that $s \nsim s'$. At most $\frac{d+1}{q}$ of the planes s'' have $s'' \sim s$ and $s'' \sim s'$. We call such triples $\{s, s', s''\}$ bad triangles.

Proof. If $s \neq s'$, then there are at most d point on ℓ such that $f_s(p) = f_{s'}(p)$. Choose a random s''. With probability 1/q, s'' is parallel to ℓ (namely, either disjoint from ℓ or contains it). With the remaining probability, it must intersect ℓ at a point. So with all but $\frac{1}{q} + \frac{d}{q}$ probability, s'' intersects $\ell = s \cap s'$ on a point p such that $f_s(p) \neq f_{s'}(p)$ and so either $f_{s''}(p) \neq f_{s'}(p)$ or $f_{s''}(p) \neq f_s(p)$ (or both). This means that s'' cannot be adjacent to both s and s', and thus there are at most $\varepsilon = \frac{d+1}{q}$ planes that are adjacent to both s and s'.

For a vertex v, let ε_v be the fraction of edges uw such that $u \sim v$, $w \sim v$ but $u \nsim w$.

Claim 4.2.
$$\mathbb{E}_v[\varepsilon_v] \leqslant \varepsilon := \frac{d+1}{q}$$
.

Proof. Consider the bipartite graph between V and E, where we connect a vertex v to an edge uw if $u \not\sim w$ yet $u, w \sim v$. Every non edge $u \not\sim w$ has degree at most $\frac{d+1}{q}|V|$ according to the previous claim. Averaging from the vertex side we get that the average degree of a vertex is $\mathbb{E}[\varepsilon_v|E|] \leq \frac{d+1}{q}|E|$.

Claim 4.3. There must be a vertex v^* with at least $(\alpha - 2\sqrt{\varepsilon})|V|$ consistent vertices $u \sim v^*$, and such that $\varepsilon_{v^*} \leq \sqrt{\varepsilon}$.

Proof. There cannot be more than $\sqrt{\varepsilon}$ vertices with $\varepsilon_v \ge \sqrt{\varepsilon}$, by averaging. Of those that remain, choose a vertex that agrees with a maximal number of vertices u. It must agree with at least $\alpha - 2\sqrt{\varepsilon}$ (because the vertices with

high ε_v have been removed, and even if each was consistent with all other vertices, they could only contribute $2\sqrt{\varepsilon}$ to the total agreement, which now decreases from α to $\alpha - 2\sqrt{\varepsilon}$).

Let $A \subset V$ be the set of planes that are consistent with v^* , so $|A| = (\alpha - 2\sqrt{\varepsilon})|V|$. By our choice of v^* , $\varepsilon_{v^*} \leq \sqrt{\varepsilon}$, so there are relatively few non-edges inside A.

Claim 4.4. Let $\beta = (\alpha - 2\sqrt{\varepsilon} - \varepsilon)/2$, and let $B \subset A$ be the set of planes that are inconsistent with at least $\beta |V|$ planes in A. Then $A \setminus B$ is a clique in the consistency graph, and $|A \setminus B| \ge (\alpha - \frac{\varepsilon}{\beta})|V|$.

Proof. For every $u, w \in A$, if $u \not\sim w$ then by Claim 4.1, there are at most $\varepsilon |V|$ planes that are consistent with both u and w. This means that the remaining $r \in A$ have either $u \not\sim r$ or $w \not\sim r$, so one of u, w must have at least $(|A| - \varepsilon |V|)/2 = \beta |V|$ non-neighbors inside A, so fall into B. Thus, $A \setminus B$ is a clique.

Finally, let us bound the size of the set B. Each $r \in B$ touches $\beta|V|$ non-edges, which make at least $\beta|V|$ bad triangles involving v^* , while the total number of those is $\varepsilon_{v^*}|E| \le \sqrt{\varepsilon}|E|$. Each bad triangle can be counted at most twice, so we get that $|B| \cdot \beta|V|/2 \le \sqrt{\varepsilon}|E|$, and thus $|B| \le \frac{2\sqrt{\varepsilon}|E|}{\beta|V|} = \frac{\sqrt{\varepsilon}}{(\alpha - 2\sqrt{\varepsilon} - \varepsilon)}|V|$.

This analysis gives a good bound when $\alpha \gg \sqrt{\varepsilon}$. For example if $\alpha > 1/q^{1/4}$ then the clique has size at least $\alpha - 1/\sqrt{q}$. This assumption on α is not needed in the original Raz-Safra proof [RS97].

References

- [AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications. *Comb.*, 23(3):365–426, 2003. 5
- [PS94] A. Polishchuk and D. Spielman. Nearly linear size holographic proofs. In *Proc. 26th ACM Symp. on Theory of Computing*, pages 194–203, 1994. 3
- [RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications to program testing. SIAM Journal on Computing, 25(2):252–271, 1996. 4
- [RS97] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In Proc. 29th ACM Symp. on Theory of Computing, pages 475–484, 1997. 5, 7