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Abstract

Given a function f : X → Σ, its `-wise direct product is the function F = f ` : X` → Σ`

defined by
F (x1, . . . , x`) = (f(x1), . . . , f(x`)).

In this paper we study the local testability of the direct product encoding (mapping f 7→ f `).
Namely, given an arbitrary function F : X` → Σ`, we wish to determine how close it is to
f ` for some f : X → Σ, by making the smallest possible number of random queries into F
(namely, two).

This question has first been studied by Goldreich and Safra and later the following simple
two-query test has been studied by Dinur and Reingold: Choose a random pair x,x′ ∈ X` that
have m coordinates in common. Accept iff F (x) and F (x′) agree on the common coordinates.
Dinur and Reingold showed that if the test accepts with sufficiently high probability (close to
1) then F is close to f ` for some f .

In this work we analyze the case of low acceptance probability of the test. We show that
even if the test passes with small probability, ε > 0, already F must have a non-trivial structure
and in particular must agree with some f ` on nearly ε of the domain. Moreover, we give a
structural characterization of all functions F on which the test passes with probability ε. We
find a list of functions f1, . . . , ft such that essentially the only way T ′ will accept on a pair
x,x′, is if both F (x) and F (x′) agree with fi. This is related to approximate local-decoding
of this code, as studied by Impagliazzo et. al. Our result means that both the testing and the
approximate local decoding can be done in “one shot” with the minimal possible number (only
two) of queries.

Our results hold for values of ε as small as `−Ω(1), and we show that below 1/` no charac-
terization is possible.
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1 Introduction
Given a function f : X → Σ, its `-wise direct product is the function F = f ` : X` → Σ` defined
by

F (x1, . . . , x`) = (f(x1), . . . , f(x`)).

We think of |X| as being very large compared to Σ, ` (for concreteness one may keep in mind
X = [n] and Σ = {0, 1}), and view the mapping f 7→ f ` as an encoding of f . This encoding
is useful in various amplification scenarios, for example in PCP constructions where one wants to
read many (up to `) values of f without making many queries. Thus F can be viewed as a way to
aggregate the answers of f , but there is a caveat: one must be able to test that F does not cheat,
i.e., that F is ‘faithful’ to some underlying f .

In this paper we study the testability of the direct product encoding. Namely, given an arbitrary
function F : X` → Σ`, we wish to determine how close it is to f ` for some f : X → Σ, by making
the smallest possible number of random queries into F , namely two.

This question has first been studied by Goldreich and Safra [GS97], who showed that this
encoding is testable with a constant number of queries. A very simple two query test for this
encoding was analyzed in [DR04], where it was shown that if the test succeeds with probability
99%, then F agrees with some f ` on at least say 95% of the domain. This pretty much pinpoints
functions F that pass the test with high probability. One may wonder which are the functions F
that pass the test with an arbitrary probability ε? In this paper we answer this question for values
of ε as small as `−Ω(1).

One motivation for this question comes from Probabilistically Checkable Proofs (PCPs). It is
easy to construct PCPs with small soundness error1 just by sequential repetition of a PCP with
constant soundness error. However, this increases the number of queries made to the proof. One
way to reduce the number of queries is by replacing the proof f by its direct product encoding
F = f `. However, one must be able to test that the encoded proof F does not cheat, i.e., that
F is ‘faithful’ to some underlying f . Moreover, since we are interested in small error, our test
must be such that if it passes with probability above ε, then we can already conclude that F is
sufficiently close to f ` for some f . A similar property is known to hold for the low degree test and
its accompanying encoding [RS97, AS97]. This plays a crucial role in the composition of PCPs
based on the low degree test.

Thus our results are analogous to the small-error analysis of the low degree test [RS97, AS97];
and the direct product encoding can be viewed as a combinatorial alternative to the low degree
encoding used in small-error PCP constructions. Presumably, one could incorporate this encoding
in PCP constructions, but the details are beyond the scope of the current work.

The so-called low-error (or low-acceptance-probability) regime is often more difficult to ana-
lyze. One reason is the non-uniqueness of the solution: Clearly F can be a hybrid of 1/ε different
legal codewords and still pass the test with probability ε. Thus, this is called the list-decoding
regime since one can, at best, guarantee that success of the test implies existence of a list of code-
words that have non-trivial agreement with the received word (F in our case).

1The soundness error is the probability that the verifier accepts when it should reject.

1



Let us now formally describe the test T and state our main theorem. Given a function F :
X` → Σ`, the test T has a parameter m which we fix to be m = `c for some constant c = 19/75,
and is as follows:

1. Choose x ∈ X` uniformly at random.

2. Choose a random set I ⊂ [`], |I| = m, and choose a random x′ ∈ X` conditioned on x′i = xi

for all i ∈ I .

3. Accept iff F (x)I = F (x′)I .

This test makes two queries into F , at x and at x′. If F = f ` for some function f then clearly
the test succeeds with probability one. In fact, even if F = f1 × f2 × · · · × f` for an `-tuple
~f = (f1, . . . , f`) of possibly distinct functions fi : X → Σ (in the sense that F (x1, . . . , x`) =
(f1(x1), . . . , f`(x`))) T still accepts with probability one. Our first theorem states that if T passes
with probability ε then it is explained by closeness of F to f1 × · · · × f` on some εO(1) fraction of
the domain.

Theorem 1.1 Let F : X → Σ`. If T accepts F with probability ε, then there exists a tuple
~f = (f1, . . . , f`) of functions fi : X → Σ such that for Ω(ε5) fraction of the tuples x ∈ X:

Pr
i∈[`]

[F (x)i = fi(xi)] ≥ 1−O(`−Ω(1))

Let us make a couple of comments about the above theorem.

• The theorem concludes that on many of the tuples x, F (x) ≈ ~f(x) rather than F (x) = ~f(x).
This weaker conclusion is inherent, as can be seen by taking F = f ` and then changing each
F (x) arbitrarily in fewer than `/m coordinates. Such a function F will pass the test with
high probability, yet is only close to f ` in the above sense.

• A second apparent weakness of this theorem is the fraction Ω(ε5) of tuples that support ~f
which fails to fully explain the ε success probability of T . Our second result is a stronger
theorem (Theorem 1.3 below) that addresses this issue, and we turn to it shortly.

First, however, let us return to the question of testing whether F is close to the `-th power f `

of a single function f : X → Σ (rather than to f1 × f2 × · · · × f`). For this we must consider the
modified test T ′, which is the same as T except that the last step is now:

3′. Choose s : [`] → [`] to be a random permutation on [`]. Denote by s(x′) ∈ X` the vector
defined by s(x′)i = x′s(i). Read F (x) and F (s(x′)) and accept iff for every i ∈ I F (x)i =

s−1(F (s(x′)))i.

Clearly if F = f ` then the test accepts always. We prove via reduction from the main theorem
that,
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Theorem 1.2 Let F : X → Σ`. If T ′ accepts F with probability ε , then there exists a function
f : X → Σ such that for Ω(ε6) fraction of the tuples x ∈ X it holds:

Pr
i∈[`]

[F (x)i = f(xi)] ≥ 1−O(`−Ω(1))

The proof of this theorem encounters unexpected complications (see Section 4), and it is unclear
whether these can be avoided. As previously mentioned, our stronger “structural characterization”
below improves this theorem in that the agreement of F with f ` goes from εO(1) to ε(1 − o(1)).
We remark that both T and T ′ were essentially considered in [DR04] modulo a slight technical
difference, where their high-acceptance-probability (low error) behavior was analyzed.

1.1 The Structural Characterization
Our next result is stronger in that it characterizes (up to lower order terms) functions F on which
T ′ accepts with probability ε. Consider the following “generic” construction of a function F on
which T ′ accepts with probability ε. Choose functions f1, . . . , ft : X → Σ. For each function, fix
a set Si ⊆ X of tuples and set F (x) approximately equal to fi(x) for all x ∈ Si. Outside ∪Si fix
F randomly. Assuming first (for simplicity) that the fi’s are far from each other (hence the Si’s are
roughly disjoint), it is easy to check that

∑
i

Pr[x,x′ ∈ Si] ≥ ε =⇒ Pr[T ′ accepts F ] ≥ ε.

(neglecting an additive `−Ω(1) term).
Our structural characterization can be viewed as an “inverse theorem” in that for any given F it

finds functions fi and supports Si ⊆ X such that essentially the only way T ′ will accept on a pair
x,x′, is if they both belong to Si for some i,

∑
i

Pr[x,x′ ∈ Si] ≥ ε ⇐= Pr[T ′ accepts F ] ≥ ε.

(again, neglecting an additive `−Ω(1) term).
We also show that at least one fi must agree with F on at least ε(1 − o(1)) of the domain.

This is proven using the eigenvalues of the transition matrix of T ′. The precise statement of our
theorem is subtle, essentially since the functions fi need not be far apart and this, in turn, causes
the sets Si to possibly intersect. An informal version is as follows (the precise statement appears
as Theorem 5.1):

Theorem 1.3 (Structural Theorem - Informal Statement) Let F : X` → Σ` be a function on
which T ′ accepts with probability ε > 0. There is a list of functions f1, . . . , ft : X → Σ and an i
such that F agrees with (fi)

` on at least ε(1 − o(1)) of X. Moreover, if T ′ accepts on x,x′ then
with probability 1 − `−Ω(1), (i) F (x) and F (x′) agree with fi for some 1 ≤ i ≤ t; (ii) For each i
such that F (x) agrees with fi also F (x′) agrees with fi.

In the above, agreement is taken to be agreement on 1− `−Ω(1) fraction of the coordinates.

3



One consequence of this result is that if T ′ accepts on x,x′ then we can approximately locally
decode F back to fi. The theorem guarantees that conditioned on T ′ accepting on x,x′, then
almost surely there is some i such that for almost all j: the j-th coordinate of F (x) equals fi(xj).
Let us make a couple of remarks:

• This is related to the issue of locally list decoding which was defined in [STV01] in the con-
text of hardness amplification. Locally list decoding the direct product encoding was studied
in two relatively recent works [IJK06, IJKW08]. In that setting, F is already guaranteed to
agree with f ` on an ε fraction of the domain, and the goal is to generate (uniformly) a list of
circuits that have oracle access to F , one of which computes f on almost all inputs. Our the-
orem complements this result in that it removes the need for the assumption about F being
ε-close to f ` (rather, we can test whether this holds). Moreover, both testing and decoding
can be performed “in one shot” while making the smallest possible number of queries (i.e.
two). In addition, it seems that Theorem 1.3 can also be used to give similar local decoding
results, but we did not work out the details. We add that [IJKW08] were able to extend their
results to derandomized direct products, and it would be extremely interesting to similarly
derandomize our testing results.

• By reading d ¿ ` coordinates of F (x) we can obtain several values of fi and ensure that
(whp over the possible d-tuples Xd) nearly all of the d values are consistent with a single fi

while still making only two queries into F . Such “consistent reading” behavior is known for
low degree tests (see [RS92, DFK+99]) and is quite useful in composition of PCPs where
consistency is a key issue.

1.2 Parallel Repetition
As mentioned above, direct products are often used for amplification. One of the most celebrated
such results is the parallel repetition theorem of Raz [Raz98]. Without getting into the details let
us mention that our test can be viewed as an `-fold repetition of a single-coordinate ‘equality’
test. This test has perfect completeness and therefore cannot benefit from any parallel repetition
theorem. Even if this wasn’t the case, parallel repetition theorems could possibly bound the success
of a test but would not provide any structural information about functions that pass with “non-
negligible” probability.

Even so, one may hope to benefit from the proof techniques. Raz’s techniques do not seem to
help our setting, in particular since they are “too strong”: they guarantee an upper bound that is
exponentially small in `, in contrast to the fact that the success probability of T is meaningful only
if it is much larger, at least 1/` (see Section 6 for an appropriate example).

Nevertheless, an earlier proof of a (weaker) parallel repetition theorem due to Feige and Kil-
ian [FK94] turns out to provide the key to our proof. We elaborate on this shortly.

1.3 Our Proof
The analysis of [DR04] in the high-acceptance-probability setting proceeds by defining a majority
function f based on F , by taking for each x the most popular value among all tuples x containing
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x. It is shown that if T accepts F with high enough (say 99%) probability then F ≈ f `. In our low-
acceptance-probability setting such an approach cannot succeed, as can be seen by the following
example: For each x let F (x) be (0, . . . , 0) with probability 1

2
and (1, . . . , 1) with probability 1

2
.

Then T accepts with probability 1
2

while the majority function f is a random function, and surely
F is far from f `. Observe however, that this does not contradict our theorem as F is indeed close
to two direct product functions: 0` and 1`.

Locally testing a code in the list-decoding regime has been studied in the literature, for example
in the high-error low degree test of [AS97, RS97]. The low degree polynomial codes have a high
relative distance which is crucial for the low-degree test analyses. Indeed, we were set back by the
observation that a combinatorial analysis a la Raz-Safra will not work here2.

The key to our proof comes from the work of Feige and Kilian [FK94] in their analysis of
parallel repetition games. They study parallel repetition of so-called miss/match games, and prove
a structural dichotomy lemma which easily adapts to our setting. Essentially the lemma says the
following: every function F : X` → Σ` either causes our test T to reject whp, or there are many
exponentially-small sets E ⊂ X` on which F ≈ f1,E × · · · × f`,E (however possibly each E has a
distinct ~fE = (f1,E, . . . , f`,E)).

This lemma leverages noticeable success of the test to deduce a certain structure for F . How-
ever, deducing structure on tiny (exponentially small) subsets E is not very useful unless, and this
is the key point, these subsets can be glued together in a meaningful way. The main technical work
in the proof of Theorem 1.1 goes to showing how to go from local to global agreement and to
stitch the tiny E’s together into one big set that agrees with a single direct product. We first show
that some noticeable fraction of pairs E, E ′ intersect non-trivially. Then we deduce that such an
intersection implies that ~fE ≈ ~fE′ . Finally we find a “popular” set E that agrees with sufficiently
many of the E ′’s and proceed to prove that the function fE agrees with F non-trivially on at least
an εO(1) fraction of X`.

We then extend this theorem in two ways to Theorems 1.2 and 1.3. The proofs of both of
these theorems encounter unexpected complications on which we elaborate in the corresponding
Sections 4 and 5.

Organization of the Paper Section 2 contains basic definitions and lemmas. Sections 3, 4, and 5
contain the proofs of Theorems 1.1, 1.2, and 1.3. We conclude with a discussion of the tightness
of the parameters in Section 6. A proof of the Feige-Kilian lemma is included in Appendix A.

2 Preliminaries
There is a certain amount of freedom in choosing the parameters, and we have not made an attempt
to optimize them. We require that |X| > `3. Also throughout the paper always 2`−1/75 < ε < 1/48
(we require ` to be large enough for this to be non-void). We fix the remaining parameters as
follows: ρ = `−1/75, η = `−7/75, m = `19/75.

2There are functions F that pass our test whp, but exhibit many “non-transitive triangles”: triples x,y, z ∈ X such
that T accepts x,y and x, z but rejects y, z.
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2.1 General Definitions, Notations, and Tools
Denote X = X`. An element in X is called an `-tuple or a tuple and is usually denoted by x,x′,y
etc. . The i-th coordinate of a tuple x is denoted by xi ∈ X . For a k ∈ [`], the notion of a k-block
is important in our proof:

Definition 2.1 A k-block b is a pair (y,~ι) where ~ι = (i1, . . . , ik) is a list of indices in increasing
order i1 < i2 < · · · < ik and y ∈ Xk.

We use the letters b, b′ to denote k-blocks, and unless stated otherwise we assume that b =
(y,~ι), b′ = (y′,~ι′). For a pair of blocks b, b′ we use the notation b ∩ b′ = ∅ if ~ι ∩ ~ι′ = ∅. The
union of disjoint blocks is defined in the natural way: The set of indices is the concatenation of the
indices in the original blocks in correct order, and the values of y, y′ are concatenated appropriately.

For a tuple x ∈ X and a set of indices ~ι = (i1, . . . , ik), we denote xb = x~ι = (xi1 , . . . , xik).
We say that a tuple x contains a block b and denote b ⊂ x if x~ι = y. For a k-block b, denote by

Xb = {x | x~ι = y} and similarly Xb,b′ = {x | x~ι = y,x~ι′ = y′} .

In particular for a 1-block (x, i), X(x,i) = {x | xi = x}. For x ∈ Xb and F : X → Σ` we define

F (x)b
def
= F (x)~ι.

The following lemma shows that for a Boolean function on X the expectation remains roughly
the same when restricting to a random Xb. It is used several times in the course of our proof, and
is similar to a lemma in [FK94]. The proof for the precise statement can be found in [OG05]:

Lemma 2.2 Let X be a set and n > 1 an integer, and denote X = Xn. Let f : X → {0, 1} with
expectation µ = Ex∈X[f(x)]. For (x, i) ∈ X × [n], denote µ̃x,i = Ex∈X(x,i)

[f(x)]. Then,

1. Pr(x,i)[|µ− µ̃x,i| ≥ 1/ 3
√

n] ≤ 1/ 3
√

n

2. E(x,i)[(µ̃x,i)
2]− µ2 ≤ µ

n

3. For 1 ≤ r < n and an r-block b = (y,~ι) denote µ̃b = Ex∈Xb
[f(x)]. Then, Prb[|µ − µ̃b| ≥

r/ 3
√

n− r] ≤ r/ 3
√

n− r.

We conclude with the following standard bounds.

Lemma 2.3 (Chernoff Bound) Let x1, ..., xn i.i.d Bernoulli random variables having Pr[xi =
1] = p, then: Pr[|∑xi − pn| > εn] < exp(−ε2n/2).

Lemma 2.4 (Chebyshev Bound) Let X be a random variable with expectation µ and variance
σ2, then, for any c > 0:

Pr[|X − µ| > c] <
σ2

c2
.
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2.2 The Feige-Kilian Dichotomy Lemma
We now turn to describe the Dichotomy Lemma of Feige and Kilian which is the basis for our
approach. Without getting into details, in their setting there is a game of questions and answers
that is repeated ` times. Here a question would be an element of X , and an answer for it would
be an element of Σ. More generally, given a k-block (which is essentially a tuple of questions), an
answer for it is a tuple a ∈ Σk.

Fix F : X → Σ` for the rest of this section. Let 1 ≤ k < ` and let b = (y,~ι) be a k-block. The
following definitions are quoted from [FK94].

Definition 2.5 (Live Block) A k-block b is alive if there exists an answer a ∈ Σk such that
Prx∈Xb

[F (x)b = a] ≥ ε. Such an answer a is called a live answer for b.

Clearly, each block b can have at most 1/ε live answers.

Definition 2.6 Let b be a block and a ∈ Σk, and let 0 ≤ η < 1/2. The pair (x, i) ∈ X × ([`] \~ι)
is 1− η determined by (b, a) if there exists σ ∈ Σ such that Prx∈Xb,(x,i)

[F (x)i = σ | F (x)b = a] ≥
1− η.

Recall that our goal is to find a direct product g1 × · · · × g` that agrees with F on a noticeable
fraction of X, for some gi : X → Σ. In the sequel we follow [FK94] who use notation g :
X × [`] → Σ to group together ` functions g(·, i) : X → Σ. Given such a g, we denote by
~g : X → Σ` the function defined by

∀x = (x1, . . . , x`) ∈ X ~g(x)
def
= (g(x1, 1), g(x2, 2), . . . , g(x`, `))

Definition 2.7 (Good Block) A block b is good if b is alive and for every live answer a for it,

Pr
(x,i)∈X×([`]\~ι)

[(x, i) is 1− η determined by (b, a)] > 1− η.

In that case a is called a good answer for b, and we denote by gb,a : X × ([`] \~ι) → Σ the function
assigning each (x, i) a value σ that maximizes the probability in Definition 2.6. gb,a is called the
function that is 1− η determined by (b, a).

For a good block b = (y,~ι) and good answer a the function gb,a is only defined on the domain
X × ([`] \ ~ι). Therefore, we arbitrarily extend each gb,a to the domain X × [`] demanding only
gb,a(yi, i) = ai for each (yi, i) ∈ (y,~ι).

For two vectors v,w ∈ Σ` we write v
1−η≈ w to denote Pri∈[`][vi = wi] ≥ 1− η.

Claim 2.8 Let b be a good block with good answer a. Then for any ρ > 0,

Pr
x∈Xb

[F (x)
1−ρ≈ ~gb,a(x) | F (x)b = a] ≥ 1− 2η

ρ
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Proof: We denote g = gb,a. For each x ∈ Xb denote αx = Pri∈[`][F (x)i = g(xi, i)]. We first
prove Ex∈Xb

[αx|F (x)b = a] ≥ 1− 2η. Let us define

D
def
= {(x, i) ∈ X × ([`] \~ι) | (x, i) is 1− η determined}

and note that choosing (x, i) from X × [`] \~ι, we have Pr[(x, i) ∈ D] ≥ 1− η since b, a are good.
We have

Ex∈Xb
[αx|F (x)b = a] ≥ Pr

x∈Xb,i∈[`]\~ι
[F (x)i = g(xi, i) |F (x)b = a]

= Pr
(x,i),x∈Xb,(x,i)

[F (x)i = g(xi, i) |F (x)b = a]

≥ Pr[(x, i) ∈ D] · Pr[F (x)i = g(xi, i) |F (x)b = a and (x, i) ∈ D]

≥ (1− η)2 ≥ (1− 2η).

where the first inequality holds since for all i ∈ ~ι equality trivially holds, and (x, i) is chosen from
X × ([`] \~ι). Finally, by Markov’s inequality we get

Pr
x∈Xb

[F (x)
1−ρ≈ ~gb,a(x) | F (x)b = a] = Pr[αx ≥ 1− ρ | F (x)b = a] ≥ 1− 2η

ρ

We can now state the Dichotomy Lemma:

Lemma 2.9 (Dichotomy Lemma of [FK94]) Let F : X → Σ`, and let ε ≥ 2`−1/75, then exactly
one of following cases holds:

1. (Case 1) The probability that a random k-block is alive is at most ε.

2. (Case 2) The probability that a random live k-block is good is at least 1− ε.

For completeness of presentation we include a proof of this lemma in Appendix A.

2.3 Agreement
The following definitions will be useful.

Definition 2.10 (Agreement) Fix a k-block b. Let the agreement on b be defined as

Ak(b) = Pr
x,x′∈Xb

[F (x)b = F (x′)b]

and let
Ak = Eb : |b|=k[Ak(b)]

Let k1, k2 be integers such that k1 + k2 ≤ `. Let b1 be a k1-block and b2 be a k2-block such that
b1 ∩ b2 = ∅. Define

Ak1,k2(b1, b2) = Pr
x,x′∈Xb1,b2

[F (x)b1 = F (x′)b1 ]
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Observation 2.11 1. Pr[T accepts] = Am

2. Ak1,k2(b1, b2) ≥ Ak1+k2(b1 ∪ b2)

Lemma 2.12 Let s, r > 0 be integers, s + r ≤ `. Fix an s-block b1. Then, choosing b2 disjoint
from b1,

Eb2 [As,r(b1, b2)]−As(b1) ≤ r

`− (r + s)
.

Proof: Fix a ∈ Σs and let fa : Xb1 → {0, 1} be defined by

fa(x) = 1 ⇔ F (x)b1 = a

Denote µa = E[fa], note that:

As(b1) = Pr
x,x′∈Xb1

[F (x)b1 = F (x′)b1 ] =
∑
a∈Σs

µ2
a.

Let us first prove the inequality for the case r = 1:
Given (x, i) ∈ X × ([`] \~ι) let us denote Prx∈Xb1,(x,i)

[F (x)b1 = a] by µa,(x,i):

E(x,i)∈X×([`]\~ι)[As,1(b1, (i, x))]−As(b1) = E(x,i)∈X×([`]\~ι)
∑
a∈Σs

µ2
a,(x,i) −

∑
a∈Σs

µ2
a

=
∑
a∈Σs

E(x,i)∈X×([`]\~ι)µ
2
a,(x,i) − µ2

a

Using Lemma 2.2 ≤
∑
a∈Σs

µa/(`− s)

∑
a∈Σs

µa = 1 → = 1/(`− s)

Turning back to the general case, note that we can choose b2 sequentially coordinate by coordi-
nate and get a list of blocks in increasing order: b2,1, · · · , b2,r. In order to bound Eb2 [As,r(b1, b2)]−
As(b1) we look at the telescoping series:

Eb2,r [As,r(b1, b2,r)]− Eb2,r−1 [As,r−1(b1, b2,r−1)] + Eb2,r−1 [As,r−1(b1, b2,r−1)]− · · · − As(b1) (1)

Note that for every 0 ≤ i ≤ r − 1, we can bound

Eb2,r−i
[As,r(b1, b2,r−i)]− Eb2,r−(i+1)

[As,r−(i+1)(b1, b2,r−(i+1))]

by 1
(`−(s+i))

as we did in the proof for the case r = 1. Thus (1) can be bound by r
(l−(s+r))

and we
are done.
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3 Local to Global
In this subsection we prove our first main result.
Theorem 1.1 Let F : X → Σ` be a function that the test T accepts with probability 3ε, (ε ≥
2`−1/75), then there exists a function g : X × [`] → Σ such that, for ε5/16 fraction of the tuples
x ∈ X it holds:

F (x)i

1−9ρ≈ ~g(x).

We begin with the following lemma, showing that if the test T accepts with some probability
then most live blocks are good.

Lemma 3.1 If the test T accepts a function F with probability 3ε, (ε ≥ 2`−1/75), then there exists
m/2 ≤ k ≤ m, such that at least ε of the k-blocks are alive, and at least 1− ε of the live k-blocks
are good.

Proof: By Lemma 2.9 either Case 1 or Case 2 apply to F . If Case 1 doesn’t apply, then there must
be at least ε live k-blocks, of which at least 1− ε are good and the lemma is proven.

It remains to prove that if Case 1 applies to F , then the test T accepts with probability at most
3ε, thereby contradicting the hypothesis of the lemma.

So assume there are at most ε live k-blocks. Let us rewrite in which the way the test T selects
the tuples x,x′:

1. Choose a random k-block b′.

2. Pick a random m− k-block b′′, such that b′′ ∩ b′ = ∅, and let b = (y,~ι) be the m-block that
is obtained from the union of b′ and b′′.

3. Pick a random x ∈ Xb.

4. Pick a random x′ ∈ Xb.

Clearly b is a random m-block, and the distribution over x,x′ is identical to the distribution induced
by T . Now we examine the probability of T in terms of the agreement.

Pr[T accepts] = Am = EbAm(b) = Eb′,b′′Am(b′ ∪ b′′) ≤ Eb′,b′′Ak,m−k(b
′, b′′) (2)

Where the first equality and last inequality are obtained from Observation 2.11. We separate the
expectation in (2) into two parts: the blocks b′ that are alive, and those who are not.

The live blocks can contribute up to ε, since they appear with probability ≤ ε.
It is left to bound the contribution of each of the non alive blocks: Let b′ be a non-alive k block,

then according to Lemma 2.12:

Eb′′ [Ak,m−k(b
′, b′′)]−Ak[b

′] ≤ m− k

`− (m− k)
≤ m

`/2
< ε

Since b′ is non alive block, then Ak[b
′] < ε, and therefore: Eb′′ [Ak,m−k(b

′, b′′)] < 2ε.
Altogether the expectation in (2) is bounded by 3ε.
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From now until the end of the proof, unless stated otherwise, a block is assumed to be a k-block.
Let us define an indicator variable I(x, b, b′, a, a′) to be equal 1 iff x ∈ Xb,b′ and F (x)b = a and

F (x)b′ = a′ and a, a′ are good for b, b′ respectively. Now set I(x, b, b′)
def
=

∑
a,a′ I(x, b, b′, a, a′).

Clearly I(x, b, b′) is either zero or one and it is one exactly if both F (x)b is a good answer for b
and F (x)b′ is a good answer for b′. LetD1 be a distribution on triples (b, b′,x) defined by choosing
two random k-blocks b, b′ such that b ∩ b′ = ∅ and a tuple x containing b, b′. (We recall that for
blocks b = (y,~ι) and b′ = (y′,~ι′) b ∩ b′ = ∅ iff ~ι ∩~ι′ = ∅). We first prove that

Lemma 3.2 E(x,b,b′)∼D1 [I(x, b, b′)] ≥ ε2.

We will then consider a graph whose vertices are the blocks and whose edges are roughly between
pairs (b, b′) for which Prx[I(x, b, b′)] is large. We will then choose a block b∗ that has maximal
degree in this graph and prove that gb∗,a∗ is the global function we are seeking for an appropriate
good answer a∗.

Proof: Let us examine another distribution D2 defined by first choosing a uniform tuple x ∈ X
and then choosing two blocks b, b′ ⊂ x independently at random.

We prove Lemma 3.2 in two steps. First we prove that

E(x,b,b′)∼D2 [I(x, b, b′)] ≥ 3ε2 (3)

and then we argue that D1,D2 are close enough for our needs.
Let ax = Prb⊂x[F (x)b is alive for b], and gx = Prb⊂x[F (x)b is good for b]. Observe that

Ex[(gx)
2] = Pr

(b,b′,x)∼D2

[I(x, b, b′)].

We would like to connect the probability that T accepts with the expectation of ax. However,
the test T checks consistency on blocks of size m, while ax refers to blocks of size k. Therefore,
we consider a new test Tk which acts as follows:

• Choose a random k block b′.

• Pick a random m− k block b′′, such that b′ ∩ b′′ = ∅, and let b = b′ ∪ b′′.

• Pick x,x′ ∈ Xb uniformly at random.

• Accept iff F (x)b′ = F (x′)b′ .

Claim 3.3
Pr[Tk accepts ] ≥ Pr[T accepts ].

Proof: Using Observation 2.11, we get:

Pr[T accepts] = Am = EbAm(b) = Eb′,b′′Am(b′ ∪ b′′) ≤ Eb′,b′′Ak,m−k(b
′, b′′) = Pr[Tk accepts].

11



Let sx denote the probability of Tk succeeding conditioned on choosing x as the first tuple.

sx = ax · Pr[Tk succeeds on b,x | x, F (x)b is alive for b]

+ (1− ax) · Pr[Tk succeeds on b,x | x, F (x)b is not alive for b]

≤ ax · 1 + (1− ax) · ε ≤ ax + ε

So ax ≥ sx − ε. Now E[ax] ≥ E[sx] − ε = Pr[Tk succeeds] − ε ≥ 2ε, and therefore E[(ax)
2] ≥

E[ax]
2 ≥ 4ε2. Note that from Lemma 3.1 we get that: E[gx] ≥ (1−ε)E[ax], yielding to E[(gx)

2] ≥
(1− ε)2E[(ax)]

2 ≥ 3ε2 So (3) is established.
Now we have to connect between the distributions D1 and D2: Define A as the event of select-

ing b, b′ such that b ∩ b′ = ∅.

Claim 3.4 Fix any values of b1, b2 and x0 ⊃ b1, b2 then:

Pr
D1

[x = x0 and b = b1 and b′ = b2] = Pr
D2

[x = x0 and b = b1 and b′ = b2|A]

Proof: If b1 ∩ b2 6= ∅, then under both of the distributions the above probability is 0, otherwise:
PrD1 [b = b1 and b′ = b2 and x = x0] =

(
`
k

)−1 · |X|−k · (`−k
k

)−1 · |X|−k · |X|−(`−2k) and PrD2 [x =

x0 and b = b1 and b′ = b2|A] = |X|−` · ( l
k

)−1 · (l−k
k

)−1
. So equality holds.

Let us calculate

Pr
D2

[A] =

(
`
k

) · (`−k
k

)
(

`
k

)2 ≥ (1− 2k/`)k ≥ 1− 2k2/`. (4)

Now let us calculate PrD2 [I(x, b, b′) |A] using Bayes’ rule:

E(x,b,b′)∼D1 [I(x, b, b′)] = Pr
D2

[I(x, b, b′)|A] =
PrD2 [I(x, b, b′) and A]

PrD2 [A]
≥ Pr

D2

[I(x, b, b′)]− Pr
D2

[A]

Plugging in (3) and (4) we get a lower bound of ε2, and we are done.

Our next step is to define a graph on the blocks. Recall that the number of good answers for
any block b is at most 1/ε, since each good answer is also alive. Let us choose randomly for each
good block b a good answer ab (and an arbitrary answer for the non-good blocks). In expectation
over these random choices, (and by Lemma 3.2)

E(x,b,b′)∼D1 [I(x, b, b′, ab, ab′)] ≥ ε2

1/ε2
= ε4. (5)

Therefore let us fix some deterministic choice of ab per b that attains this expectation.
For blocks b1, b2, such that b1 ∩ b2 = ∅ let a1 = ab1 , a2 = ab2 and if b1, b2 are good then let

g1 = gb1,a1 , g2 = gb2,a2 . Define b1 ∼ b2 iff Ex[I(x, b1, b2, a1, a2)] ≥ ε4/2. So by (5) and Markov’s
inequality Pr(b1 ∼ b2) ≥ ε4/2 where b1, b2 are random blocks such that b1 ∩ b2 = ∅ (as implied by
the distribution D1).
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We will prove next that almost always if b1 ∼ b2 then g1 ≈ g2. Let us recall that since b1 is a
good block with good answer a1 then by Claim 2.8,

Pr
x∈Xb1

[
F (x)

1−ρ≈ ~g1(x)

∣∣∣∣ F (x)b1 = a1

]
≥ 1− 2η

ρ
(6)

Suppose we could replace Xb1 by Xb1,b2 , namely, prove that

Pr
x∈Xb1,b2

[
F (x)

1−ρ≈ ~g1(x)

∣∣∣∣ F (x)b1 = a1

]
≥ 1− 2η

ρ
. (7)

The only difference between (6) and (7) is the domain from which x is chosen. Similarly suppose
this could be done for b2 and g2. In that case we would be on our way to showing that in fact
g1 ≈ g2 essentially since b1 ∼ b2 implies that on a non-negligible fraction of x ∈ Xb1,b2 , F (x)
agrees both with g1 and with g2.

So how do we convert (6) to (7)? The idea is that for a random b2, Xb1,b2 is a random restriction
of Xb1 which cannot change probabilities too much:

Claim 3.5 Fix a good block b and let g = gb,ab
. Then for at least 1− 2k

3√`−k
of the blocks b′,

Pr
x∈Xb,b′

[
F (x)

1−ρ≈ ~g(x)

∣∣∣∣ F (x)b = ab

]
≥ 1− 2

ε
(
2η

ρ
+

k
3
√

`− k
) ≥ 1− 6ε5

We defer the proof to the end of this section.

Constructing a graph on the blocks. We now construct a graph whose vertices are all the k-
blocks in two steps. First, place an edge between b1 and b2 iff b1 ∼ b2. Using (4) we know that

Pr
b1,b2

[b1 ∼ b2] ≥ Pr
b1,b2:b1∩b2=∅

[b1 ∼ b2]− Pr[b1 ∩ b2 6= ∅] ≥ ε4/2− 2k2/`.

Hence the graph is pretty dense. Next, for each block b remove (if exist) edges to all blocks b′ which

violate Claim 3.5, namely, blocks b′ for which Prx∈Xb,b′

[
F (x)

1−ρ≈ ~g(x)

∣∣∣∣ F (x)b = ab

]
< 1−6ε5.

These are blocks on which the transition from Xb to Xb,b′ causes a big change. Claim 3.5 implies
that the fraction of edges removed is at most 4k

3√`−k
. The final graph has edge density at least

ε4/2− 2k2/`− 4k
3√`−k

≥ ε4/4.

Concluding the Proof of Theorem 1.1 Let us fix b∗ to be a vertex with maximal degree in this
graph, and g = gb∗,ab∗ will be our global function. The last step in our proof is to show that

Pr
x

[~g(x)
1−9ρ≈ F (x)] ≥ ε5/16.

Let b be a neighbor of b∗ in the graph. We first show that

Pr
(x,i)

[gb,ab
(x, i) = g(x, i)] ≥ 1− 4ρ. (8)
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Indeed, by Claim 3.5 we know that

Pr
x∈Xb,b∗

[
F (x)

1−ρ≈ ~g(x)

∣∣∣∣F (x)b∗ = a∗
]
≥ 1− 6ε5

and

Pr
x∈Xb,b∗

[
F (x)

1−ρ≈ ~gb,ab
(x)

∣∣∣∣ F (x)b = ab

]
≥ 1− 6ε5.

On the other hand, since b ∼ b∗ we know that Prx∈Xb,b∗ [F (x)b = ab and F (x)b∗ = ab∗ ] ≥ ε4/2.
Putting these three equations together we deduce that on at least a fraction ε4/2 − 12ε5 ≥ ε4/4

of Xb,b∗ we have ~g(x)
1−ρ≈ F (x)

1−ρ≈ ~gb,ab
(x), so ~g(x)

1−2ρ≈ ~gb,ab
(x). We now need the following

claim.

Claim 3.6 Let g1, g2 : X × [t] → Σ be two functions, and let β = Pr(x,i)[g1(x, i) 6= g2(x, i)] > 0.
The fraction of tuples x ∈ X t for which |Pri[g1(xi, i) 6= g2(xi, i)]− β| ≥ β/2 is at most 4

βt
.

Proof: Denote Bi = B ∩X × {i}, and βi = Prx∈X [(x, i) ∈ Bi]. We define an indicator random
variable Ii(x) to equal 1 iff (xi, i) ∈ Bi, and let I(x) =

∑t
i=1 Ii(x). Clearly: Ex[Ii(x)] = βi and

1
t

∑
βi = β.

Now we would like to examine the variance and the expectation of I(x) in order to prove Claim
3.6.

ExI(x) =
∑

EIi(x) =
∑

βi = tβ.

Also,

E(I2) = E

[∑

i6=j

Ii(x)Ij(x) +
∑

i

Ii(x)

]
=

∑

i6=j

βiβj + tβ

and
Var[I] = E(I2)− (EI)2 = tβ −

∑
i

β2
i ≤ tβ(1− β)

where the last inequality follows from the fact that
∑

β2
i is minimized when all βi are equal. Using

Lemma 2.4 we get that

Pr[|I − tβ| > tβ/2] <
tβ(1− β)

t2β2/4
<

4

βt

We apply Claim 3.6 on the space Xb,b∗ (which for our purpose is the same as X t with t = `− 2k).
We deduce that if β = Pr[g(x, i) 6= gb,ab

(x, i)] > 4ρ then the fraction of tuples x ∈ Xb,b∗ for which

~g(x)
1−2ρ≈ ~gb,ab

(x) is at most 4
4ρ(`−2k)

, and cannot be as large as ε4/4. So (8) is established.
Choose now a random block b and a random x ∈ Xb (so clearly x is uniform in X). b is a

neighbor of b∗ with probability at least ε4/4. Conditioned on that and based on Claim 2.8, with

probability at least ε(1 − 2η
ρ
) > ε/2 x is such that F (x)b = ab and also F (x)

1−ρ≈ ~gb,ab
(x).

Again by (8), using Claim 3.6 we know that the fraction of tuples on which ~gb,ab
(x)

1−6ρ

6≈ ~g(x)
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is small (< 4
β(`−2k)

< ε74). On all other tuples we must have (by the triangle inequality) that

F (x)
1−7ρ≈ ~g(x). Altogether, this holds for at least ε5/16 of the tuples x ∈ X, and Theorem 1.1 is

established.
We now finish the proof of Claim 3.5.

Proof: (of Claim 3.5) Let us define a Boolean function f : Xb → {0, 1} by

f(x) = 1 ⇐⇒ F (x)b = ab and F (x)
1−ρ

6≈ ~g(x)

Using Claim 2.8 we get:

µ
def
= Ex∈Xb

f(x) ≤ Pr
x∈Xb

[F (x)b 6= a] · 0 + Pr
x∈Xb

[F (x)b = a] · 2η

ρ
≤ 2η

ρ
.

Let b′ be a block that is disjoint to b, denote µ̃b′ = Ex∈Xb,b′f(x), we can use Lemma 2.2 in
order to get that:

Pr
b′ : b′∩b=∅

[µ̃b′ >
2η

ρ
+

k
3
√

`− k
] ≤ Pr[|µ̃b′ − µ| ≥ k

3
√

`− 2k
] ≤ k

3
√

`− 2k
.

The function f indicates whether for a tuple x both F (x)b = ab and F (x)
1−ρ≈ ~g(x). However we

want to compute the probability over x ∈ Xb,b′ F (x)
1−ρ≈ ~g(x) conditioned on F (x)b = a. In order

to do it we compute the probability over x ∈ Xb,b′ that F (x)b = a, and then use Bayes’ Rule. We
know that since a is good answer for b, and in particular a live answer, so Prx∈Xb

[F (x)b = a] ≥ ε.
Using the same calculation we have just performed for µ̃b′ , we get that at most k

3√`−k
fraction

of the blocks b′ such that b′ ∩ b = ∅ also have:

Pr
x∈Xb,b′

[F (x)b = a] < ε− k
3
√

`− k
. (9)

Now let us choose block b′ satisfying both µ̃b′ < 2η
ρ

+ k
3√`−k

and (9), (which occurs with
probability at least 1− 2k

3√`−k
) then we get:

Pr
x∈Xb,b′

[
F (x)

1−ρ≈ ~g(x) | F (x)b = ab

]
≥ 1− µ̃b′

Prx∈Xb,b′ [F (x)b = a]
> 1−

2η
ρ

+ k
3√`−k

ε/2

4 From T to T ′

In this section we prove Theorem 1.2 that shows that if F passes the test T ′ then it noticeably
agrees not just with g : X × [`] → Σ (as in Theorem 1.1) but rather with f ` for f : X → Σ.
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Theorem 1.2 Let F : X → Σ` be a function that the test T ′ accepts with probability 5ε ,
(ε ≥ 2`−1/75), then there exists a function f : X → Σ such that, for ε6/256 fraction of the tu-
ples x ∈ X it holds:

F (x)i

1−23ρ≈ ~f(x).

Let us begin with some notations: Let s : [`] → [`] be a permutation. For a vector v we denote
s(v) to be the vector defined by (s(v))i = vs(i). We partition the space X into equivalence classes
such that each class is the set of all permutations of a given x:

C(x) = {s(x) | s is a permutation } .

A function G : X → Σ` is called ‘folded’ if it is consistent on every equivalence class, i.e. for all
x, s: G(s(x)) = s(G(x)).

The proof goes by reduction from T to T ′. Namely, we randomly reduce F to a ‘folded’
function G. We then apply Theorem 1.1 on G and get a function g : X × [`] → Σ that agrees on a
non-negligible part of the domain of G, and with a little more work we get a function g : X → Σ.
For each G we get a (possibly) different g, so it is not immediate to deduce that F too agrees with
g on a non-negligible part of the domain. Instead, we first show that the only way F can pass
the test with good probability is if it is already somewhat “folded”. In other words, on a random
equivalence class there are relatively few different values that are supported by at least ε fraction
of the class. It is then possible to relate the support of G to the support of F and deduce that F
agrees with ~g noticeably.

Erasing Bad Tuples Let C be an equivalence class. Two tuples x, s(x) ∈ C are said to agree
if s(F (x)) = F (s(x)). Similarly, x, s(x) agree on a block b if F (x)b = s−1(F (s(x)))b (note the
order of x, s(x) is important). For a block b we say that an answer a is rare in C if the fraction of
permutations s for which s−1(F (s(x)))b = a is at most ε.

A tuple x is called bad if F (x)b is rare in C(x) for at least 1− ε of the blocks b.

• Consider T1 that selects a random x, b ⊂ x and already rejects if F (x)b is rare for b in the
class C(x′), otherwise continues like T ′. Then Pr[T ′ accepts F ]− ε ≤ Pr[T1 accepts F ].

Consider T2 that always rejects if it sees a bad tuple, otherwise continues like T1. Then
Pr[T1 accepts F ]− ε ≤ Pr[T2 accepts F ].

Now define F1 as follows: For all bad x, let F1(x) be a random value in Σ`. Otherwise, let
F1(x) = F (x). Then Pr[T2 accepts F ] ≤ Pr[T ′ accepts F1]. We conclude so far that

Pr[T ′ accepts F1] ≥ Pr[T ′ accepts F ]− 2ε > 3ε.

• Assume x is not bad. We next argue that F (x)
1−ρ≈ s−1(F (s(x))) for at least ε/2 of the

permutations s. Indeed by definition, on at least ε of the blocks its answer F (x) agrees with
at least ε members of y ∈ C(x). Call these blocks B∗. Then the expectation choosing a
random b ∈ B∗ and a random y ∈ C(x) that x agrees with y on b is at least ε. Therefore, x
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agrees with at least ε/2 of the tuples y ∈ C on at least ε/2 of the blocks in B∗ which are at
least ε2/2 of the blocks in total. All in all

Pr
s

[x agrees with s(x) on at least ε2/2 of the blocks] ≥ ε/2.

Our claim is complete once we prove,

Claim 4.1 Let x, s(x) be tuples such that x agrees with s(x) on at least ε2/2 of the blocks,
then:

F (x)
1−ρ≈ s−1(F (s(x))).

Proof: Let I = {i | F (x)i 6= s−1(F (s(x)))i}. Assume for contradiction that |I| > ρ`. The
probability that over the choices of the blocks b ⊂ x, that b does not include even single

coordinate from I is: (`−ρ`
m )

( `
m)

< (1 − m
l
)ρ` = ((1 − m

l
)

`
m )ρm < e−ρm ¿ ε2/2, so we get a

contradiction.

Applying Theorem 1.1 Next, we define G from F1 by choosing a random element x from each
equivalence class C and setting G(y) = F1(x) for all y ∈ C(x). Clearly

EG[T accepts G] = Pr[T ′ accepts F1] ≥ 3ε.

Therefore there exists G that passes the test T with probability at least 3ε. By Theorem 1.1 we get
a function g : X × [`] → Σ for which

Pr
x

[G(x)
1−7ρ≈ ~g(x)] ≥ ε5/16

Lemma 4.2 There exists i ∈ [`] such that for f : X → Σ defined by f(x)
def
= g(x, i), we have

Pr
x

[G(x)
1−22ρ≈ ~f(x)] ≥ ε5/64

Proof: We first apply a simple Markov argument implies that since ~g(x)
1−7ρ≈ G(x) on ε5/16 of the

tuples x, we deduce that for at least ε5/32 of the equivalence classes, Prs[G(s(x))
1−7ρ≈ ~g(s(x))] ≥

ε5/32.

Next, fix such an equivalence class C, and assume that x ∈ C is such that G(x)
1−7ρ≈ ~g(x).

Define for each i ∈ [`] the set Bi = {j | gi(xj) 6= gj(xj)}. We claim that

Pr
i
[|Bi| < 3 · 7ρ · `] > 1

2
. (10)

Assuming (10), for a random i ∈ [`], we will have ~gi(x)
1−21ρ≈ ~g(x) with probability at least a 1

2
.

This holds separately for each good equivalence class, so altogether there must be an i for which

Prx[G(x)
1−22ρ≈ ~gi(x)] ≥ ε5/64 which is what we wanted to prove.
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It remains to prove (10). Assuming that it is false, we will show that for nearly all of the
permutations s, y = s(x) hits many Bi’s in the sense that gj(yj) 6= gi(yj) and so ~g(s(x)) must
disagree a lot with G(s(x)) (= s(G(x)) since G is folded). This contradicts the choice of C as a

class in which Prs[G(s(x))
1−7ρ≈ ~g(s(x))] ≥ ε5/32.

For a random permutation s : [`] → [`] define an indicator variable IBi
(s) to equal 1 iff

s(i) ∈ Bi, and define also the random variable IB =
∑

i IBi
. Clearly E[IBi

] := βi = |Bi|
`

and
E[IB] =

∑
i βi. If (10) fails then

β :=
1

`
Es[IB(s)] ≥ 1

2
· 21ρ.

If s is such that G(s(x))
1−7ρ≈ ~g(s(x)) then IB(s) deviates by more than 21

2
ρ`− 7ρ` = 7

2
ρ` from its

expectation, which we show has very small probability. In particular, it cannot hold for ε5/32 of
the permutations. We will show that Var[IB] < 2β`, and plugging in Chebyshev’s inequality as in
Lemma 2.4 we get that:

Pr[IB(s) ≤ 7ρ`] ≤ Pr[|IB − EIB| < 7/2ρ`] ≤ Var(IB)

(7/2ρ`)2
< 2(ρ`)−1 ¿ ε5/32

so we reach a contradiction.
It remains to upper bound Var[IB] = E[I2

B] − E2[IB]. Observe that for i 6= j E[IBi
IBj

] ≤
|Bi||Bj |
`(`−1)

= βiβj
`

`−1
. Now

Var[IB] = E[I2
B]− E2[IB] =

∑

i6=j

βiβj(
`

`− 1
− 1) +

∑
i

βi − β2
i

≤
∑

i6=j

βiβj
1

`− 1
+ `β(1− β)

≤ 1

`− 1
max

j
βj ·

∑

i,j,i6=j

βi + β`

≤ 1

`− 1
· 1 · (`− 1)`β + β` = 2β`

In order to prove Theorem 1.2 we now claim that

Pr
x

[F (x)
1−23ρ≈ ~f(x)] ≥ ε6

256

We split the analysis to bad and non-bad tuples x for which G(x)
1−22ρ≈ ~f(x).

• If G(x) was defined based on a tuple that is not bad, then there are at least ε/2 permutations

s for which s−1(F (s(x)))
1−ρ≈ F (x). For these s’s, F (s(x))

1−23ρ≈ ~f(y).
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• If G(x) was defined based on a bad tuple then it is a completely random value. For any
fixed ~f the fraction of such tuples x is expected to be negligible (

∑22ρ`
i=0

(
`
i

) |Σ|−(`−i)) , so

Prx[G(x)
1−22ρ≈ ~f(x) and G(x) defined based on a non-bad tuple] ≥ ε5/128.

We conclude that

Pr
x

[F (x)
1−23ρ≈ ~f(x)] ≥ ε

2
·Pr

x
[G(x)

1−22ρ≈ ~f(x) and G(x) defined based on a non-bad tuple] =
ε6

256
.

5 The Structural Theorem
We have already seen (in Theorem 1.2) that if T ′ accepts the function F with probability ε, then

there exists a function f : X → Σ such that F (x)
1−O(ρ)≈ ~f(x) for Ω(ε6) fraction of the tuples

x ∈ X. In this section we fully characterize the structure of all functions F on which T ′ accepts
with probability ε. Consider the following “generic” example for such a function F : Choose
functions f1, . . . , ft : X → Σ. For each function, fix a set Si ⊆ X of tuples and set F (x) := ~fi(x)
for all x ∈ Si. Outside ∪Si fix F randomly. Assume that the Si’s are pairwise disjoint. It is then
easy to check that

∑
i

Pr[x,x′ ∈ Si] ≥ ε =⇒ Pr[T ′ accepts F ] ≥ ε.

(neglecting an additive `−Ω(1) term).
Our structural characterization can be viewed as an “inverse theorem” in that for any given F

it finds functions fi and supports Si ⊆ X (on which F (x) ≈ ~fi(x)) such that essentially the only
way T ′ will accept on a pair x,x′, is if they both belong to Si for some i, namely:

∑
i

Pr[x,x′ ∈ Si] ≥ ε ⇐= Pr[T ′ accepts F ] ≥ ε.

(again, neglecting an additive `−Ω(1) term). In fact, we prove a stronger statement: whenever T ′

accepts on x,x′ then (i) there is an i for which x,x′ ∈ Si and (ii) for all j s.t. x 6∈ Sj also x′ 6∈ Sj .
This implies the following consistency behavior: if we condition on x ∈ Si for a fixed i, then T ′

will whp only accept pairs x,x′ for which also x′ ∈ Si. Two subtle issues need to be addressed:

1. The number of fi’s that agree with F on a non-negligible fraction of X can be huge, if we
allow fi’s that are too close to each other. One would like to “cluster” the similar fi’s and
place one representative from each cluster in the final list. This is tricky but possible, as one
needs to ensure that the different clusters are “well separated” so that whenever x supports
the cluster of fi and x′ does not, T ′ will reject whp.

2. The next subtlety lies with the possible overlap between the Si’s. Even after clustering has
been performed, it may happen that Si and Sj will have a large intersection. In that case the
events x,x′ ∈ Si are not disjoint for different i’s, and possibly even

∑
i Pr[x,x′ ∈ Si] À 1.
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A finer statement is obtained by considering all possible intersections

RJ = (∩j∈JSj) ∩ (∩j 6∈JSj) J ⊆ [t]

noting that the RJ ’s are disjoint. We show that whp if T ′ accepts on a pair x,x′ then they
both belong to exactly the same RJ , and J 6= ∅.

For f : X → Σ and γ ∈ (0, 1) we denote suppγ(f)
def
= {x ∈ X | F (x)

1−γ≈ ~f(x)} and say
that x γ-supports f if x ∈ suppγ(f). Throughout this section we use the following parameters:
ρ0 = 23ρ, δ = ρ8

0 and ε0 = 2`−1/75.

Theorem 5.1 (Formal Version of Theorem 1.3) Let F : X → Σ` be a function that the test
T ′ accepts with probability α > `−1/150. Then there exist functions f1, . . . , ft : X → Σ (with
t < `O(1)) and radii ρ1, . . . , ρt ∈ [ρ0, 2ρ0] such that the following holds. Let Sj = suppρj

(fj), and
for each J ⊆ [t], let RJ = (∩j∈JSj) ∩ (∩j 6∈JSj). Then

1. 1 ≥ ∑
J 6=∅ Prx,x′ [x,x′ ∈ RJ | T ′ accepts on x,x′] ≥ 1−O(ρ0 + ε0)/α = 1− `−Ω(1).

2. Set εJ = |RJ | /|X|. Then Prx,x′ [x,x′ ∈ RJ ] ≈ (εJ)2, and
∑

J 6=∅(εJ)2 ≥ α(1 − `−Ω(1)). In
particular, there is some J 6= ∅ for which εJ ≥ α(1− `−Ω(1)).

Let us make a few remarks.

• Item 1 implies that conditioned on T ′ accepting, the queried inputs x,x′ must whp come
from the support of the same non-empty collection of functions {fj}j∈J . Since both sides of
the inequality are roughly 1 this fully explains the success probability of T ′.

Item 2 further claims that the probability that both x and x′ are chosen in a set RJ is as if
they were independent samples, and deduces a nearly tight quantitative lower bound on the
possible sizes of the sets RJ .

• We remark that in the informal version we only claimed that
∑

i

Pr
x,x′

[x,x′ ∈ Si | T ′ accepts on x,x′] ≥ 1−O(ρ0) = 1− `−Ω(1).

Since ∪Si = ∪RJ this follows from the above. However, it is possibly weaker as discussed
above, and this would not enable finding any i for which approximately |Si| ≥ α |X|.

We now turn to explain the proof of this theorem. We begin by describing a straightforward way
to prove this theorem and where it fails. Suppose one carries out the following iterative algorithm.
Choose a function g1 that is ρ0-supported by the largest fraction of tuples, and let S1 be the set of
tuples ρ0-supporting it. By Theorem 1.2, S1 consists of Ω(α6) of the tuples. We can now “erase” F
on S1 (simply by replacing F ’s value on those tuples by random values) and repeat. If T ′ accepts
the new F with high enough probability (above some threshold, say ε0), we find g2 and S2 and
continue. Since the Si’s are essentially disjoint we will halt after at most 1/ε6

0 steps. At this time,
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if T ′ accepts on x and x′ then each of them must support some gi (except with small probability)
since the iterative procedure terminated. We now need to rule out the case where x supports g1 and
say x′ does not support g1 (but supports say, g2).

However, this need not hold. It is possible to have a large portion of the tuples support exactly
one of g1, g2 while nearly supporting the other one (say the distance between F (x) and ~g1(x) is r
which falls within the support threshold, and between F (x) and ~g2(x) is r + 1 which falls outside
the support threshold). Two such tuples x,x′ might easily cause T ′ to accept.

The essence of the problem is that contrary to the “usual scenario” in locally testing of codes,
the direct product encoding does not have a large enough distance between distinct legal codewords
(f `, g` may be close for f 6= g).

In our solution we manage to gather the functions gi into clusters, such that each cluster has
a representative fj and a radius ρ0 ≤ ρj ≤ 2ρ0, and we set Sj = suppρj

(fj). The Sj’s enjoy the
property that their boundaries are nearly empty, where the boundary is the set of tuples x for which
F (x) disagrees with ~fj(x) on u ∈ (ρj`, ρj` + δ`) coordinates. This eliminates the aforementioned
obstacle and allows us to complete the proof. The proof of the second item relies on the fact that the
transition matrix underlying our test has a large spectral gap to show that Pr[x,x′ ∈ RJ ] ≈ (εJ)2.

5.1 The iterative Construction of fi’s
We use the following iterative procedure. Since we will be considering functions F and G, let us

denote suppG
γ (f) =

{
x ∈ X

∣∣∣∣ G(x)
1−γ≈ ~f

}
. We also use suppγ(f) to implicitly mean suppF

γ (f).

1. Set i = 1. Let G = F .

2. As long as T ′ accepts G with probability at least ε0:

3. Choose fi : X → Σ that maximizes
∣∣suppG

ρ0
(fi)

∣∣.

4. Find the smallest radius ρi, ρi = ρ0 + nδ (n ∈ N), such that,
∣∣suppF

ρi+δ(fi) \ suppF
ρi

(fi)
∣∣ <

ρ7 |X|.
5. Randomize each x ∈ suppG

ρi
(fi) by setting G(x) to a random value in Σ`.

6. Set i = i + 1 and return to step 2.

5.2 Proof of Item 1 of Theorem 5.1
Before we proceed with the proofs we would like to point out some of the properties that are
obtained by the construction:

• Now, since
∣∣suppF

γ (f)
∣∣ of any function is bounded by |X|, then in 1/ρ7

0 steps of increasing ρi

by δ we must have that for at least one step r
∣∣suppF

r+δ(fi) \ suppF
r (fi)

∣∣ < ρ7
0 |X|. Moreover,

since δ = ρ8
0 we get that for each i, ρi is in the range [ρ0, 2ρ0].
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• Note that in each iteration i we can apply Theorem 1.2 and get that
∣∣suppG

ρi
(fi)

∣∣ ≥
∣∣suppG

ρ0
(fi)

∣∣ ≥ ε6
0 |X| /256.

• In each iteration we “randomize” a fraction of Ω(ε6
0) of the domain of G. It is easy to see

that the fraction of tuples that were randomized and are randomized again is negligible. So
the number of iterations is bounded by t = O(1/ε6

0).

Lemma 5.2 Assume T ′ accepts on querying x,x′, then with probability at least 1 − 2ρ7
0 if x ∈

suppρi
(fi) then x′ ∈ suppρi

(fi).

Proof: If x ∈ suppρi
(fi) then we know F (x)

1−ρi≈ ~fi(x). We argue that except with probability
exp(−(Θ(δ2m))) over the choices of a random b ⊂ x, F (x)b has at most (ρi + δ/3)m coordinates
~ιj on which F (x)~ιj 6= fi(x~ιj). In order to prove it we would like to use Chernoff bounds. How-
ever, there is a dependence between choosing each coordinate of b. Therefore, we consider two
experiments. In the first experiment we choose the block b coordinate by coordinate, and denote
the random variable bj to equal 1 if on the j-th coordinate ~ιj of b F (x)~ιj 6= fi(x~ιj). In the second
experiment we flip a biased coin m times, where the probability for 1 is ρi + m/(`−m) (which is
larger than the probability for bj equal 1 even conditioned that all the rest are 0) and denote by aj

the random variable indicating whether in the j-th flip we get a 1. Then we argue:

Pr

[
1

m

∑
bi > ρi + δ/3

]
≤ Pr

[
1

m

∑
ai > ρi + δ/3

]

≤ Pr

[
1

m

∣∣∣
∑

ai − E
∑

ai

∣∣∣ > δ/3−m/(`−m) > δ/4

]

< exp(−(Θ(δ2m)))

where the last equality follows from a Chernoff bound as in Lemma 2.3.
If x′ /∈ suppρi

(fi) then one of the following cases occurs:

• x′ /∈ suppρi+δ(fi): Using a similar calculation we have just performed regarding x, we get,
that except with probability exp(−Θ(mδ2)), F (x′)b has at least (ρi + δ− δ/3)m coordinates
j on which F (x′)j 6= fi(x

′
j). But then T ′ rejects since there are at least bδ`/3c > 0 values in

b on which F (x) and F (x′) disagree.

• x′ ∈ suppρi+δ(fi): By construction the fraction of such tuples is at most ρ7
0.

As a conclusion we get that except with probability < 2 exp(−Θ(mδ2)) + ρ7
0 ≤ 2ρ7

0 if x ∈
suppρi

(fi), then so is x′.

We now prove the first item in the theorem. The event T ′ accepts on x,x′ can be partitioned into
three cases: (1) x,x′ ∈ R∅, (2) x ∈ RJ ,x′ ∈ RJ ′ for J 6= J ′ and (3) x,x′ ∈ RJ for J 6= ∅. Denote
these events by E1, E2, and E3 respectively.
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1. Both x,x′ ∈ R∅. Recall that R∅ consists of those tuples that did not belong to suppρi
(fi)

throughout the algorithm. By the stopping condition of our iterated algorithm we know that
having randomized all tuples outside R∅, T ′ accepts with probability ≤ ε0. Therefore,

Pr[T ′ accepts on x,x′ and x,x′ ∈ R∅] ≤ Pr[T ′ accepts on x,x′ in final iteration] ≤ ε0.

2. There are some J 6= J ′ such that x ∈ RJ and x′ ∈ RJ ′ (recall RJ , RJ ′ are disjoint). We
claim that this probability is at most O(ρ0). Indeed note that in this situation there must exist
some i for which x ∈ suppρi

(fi) while x′ 6∈ suppρi
(fi) or vice versa. Lemma 5.2 implies

that for each fixed value of i this occurs with probability at most 2ρ7
0. Taking a union bound

over all possible i’s (and switching roles of x,x′) the probability that there exists i for which
the above holds is at most 4tρ7

0 = O(ρ7
0/ε

6
0) ≤ O(ρ0).

3. There is some J 6= ∅ for which x,x′ ∈ RJ .

Denote by A the event that T ′ accepts on x,x′. Then by the above

Pr[A] = Pr[A ∧ E1] + Pr[A ∧ E2] + Pr[A ∧ E3] ≤ ε0 + O(ρ0) + Pr[A ∧ E3]

So

∑

J 6=∅
Pr
x,x′

[x,x′ ∈ RJ | T ′ accepts on x,x′] = Pr[E3 | A] =
Pr[A ∧ E3]

Pr[A]
≥ 1− O(ε0 + ρ0)

α
.

and this completes the proof of item 1.

5.3 Proof of Item 2 of Theorem 5.1
By item 1, the probability that T ′ accepts x,x′ but there is no J 6= ∅ such that x,x′ ∈ RJ is at
most O(ρ0) + ε0.

We now consider the weighted matrix AT ′ of dimension |X| × |X| defined by

AT ′(x,x′) = Pr[T ′ selects x′ as the second tuple |T ′ selects x as the first tuple].

If ex is the vector with 1 in coordinate x and zeros elsewhere then AT ′ex is the vector describing
the probability that T ′ chooses x′ having already chosen x. Let λ denote the second largest (in
absolute value) eigenvalue of AT ′ .

By an application of the Expander Mixing Lemma as in [HLW06, Theorem 3.6] we get that for
any RJ Pr[x,x′ ∈ RJ ] ≤ (εJ)2 + λεJ . Summing over all J we get

∑

J 6=∅
Pr[x,x′ ∈ RJ ] ≤

∑

J 6=∅
(εJ)2 + λ
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By item 1

α = Pr[T ′ accepts] ≤
∑

J 6=∅
Pr[x,x′ ∈ RJ ] + O(ρ0) + ε0 ≤

∑

J 6=∅
(εJ)2 + λ + O(ρ0) + ε0.

The following lemma allows us to bound 1
α
· (λ + α(O(ρ0) + ε0)) ≤ 2m

α`
+ O(ρ0) + ε0 = `−Ω(1).

Therefore:
∑

J 6=∅ ε2
J ≥ α(1− `−Ω(1)).

Given a matrix A denote by λ(A) the second largest (in absolute value) eigenvalue of A.

Lemma 5.3 λ(AT ′) < 2m
`

.

Proof: Let us bound the second eigenvalue of the matrix AT (corresponding to the test T rather
than T ′). We then obtain the lemma since AT ′ = AT B for a certain stochastic matrix B, and using
the second item in the following claim:

Claim 5.4 Let G1, G2 be d1, d2 regular graphs, and let A1, A2 be the corresponding adjacency
matrices, then:

1. λ(A1 + A2) ≤ λ(A1) + λ(A2).

2. Let Ã1 = 1
d1

A1, and let B be a symmetric stochastic matrix, then:

λ(B · Ã1) ≤ λ(Ã1)

In order to bound λ(AT ) we rely on the fact that the adjacency matrices of what is known as the
Hamming scheme with parameters n = `, q = |X| (see [vLW93, Chapter 30]), are closely related
to AT . Let A0, . . . , A` be |X| × |X| matrices such that for vectors x,y ∈ X, Ai(x,y) = 1 iff
x,y disagree on exactly i coordinates. The following lemma is a summary of what we need from
[vLW93, Chapter 30].

Lemma 5.5 Each Ai has exactly `+1 distinct eigenvalues and the j− th eigenvalue of Ai equals:

i∑
α=0

(− |X|)α(|X| − 1)i−α

(
`− α

i− α

)(
j

α

)

Moreover, the eigen-space of the j-th eigenvalue is the same for all Ai.

Ai is an adjacency matrix of a di-regular graph with an edge between x,x′ if they agree on
exactly `− i coordinates (so di =

∑
x′∈X Ai(x,x′) =

(
`
i

)
(|X| − 1)i). Hence we can write AT as a

convex combination of the stochastic matrices 1
di

Ai:

AT =
`−m∑
i=0

αi

(
1

di

Ai

)
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where αi is given by αi = βi/(
∑

βi) for

βi =

(
`− i

m

)
di

since if x,x′ agree on m′ > m coordinates then there are
(

m′
m

)
possibilities to reach x′ from x. By

item 1 of Claim 5.4,

λ(AT ) ≤
`−m∑
i=0

αiλ

(
1

di

Ai

)
(11)

In order to use this formula we seem to need the eigenvalues of all of the matrices A0, · · · , A`−m.
However, we really need only focus on the matrix A`−m since for all i ≥ 1

β`−m−i ≤ β`−m−1 =
`−m

|X| − 1
· β`−m <

1

`2
β`−m

where the last inequality follows since |X| > `3. Therefore bounding λ(Ai/di) ≤ 1 for i < `−m
we get from (11):

λ(AT ) ≤ α`−mλ

(
1

d`−m

A`−m

)
+

`−m

`2
≤ α`−mλ

(
1

d`−m

A`−m

)
+

1

`
(12)

We compute λ(A`−m) by Lemma 5.5:

λ0(A`−m) = d`−m

λ1(A`−m) = d`−m(1− |X|
|X| − 1

· `−m

`
) ≤ d`−m · m

`

λ`(A`−m) = d`−m

`−m∑
α=0

(
− |X|
|X| − 1

)α (
`−m

α

)
= d`−m ·

( −1

|X| − 1

)`−m

So clearly the second largest eigenvalue of A`−m is |λ1(A`−m)|, and λ( 1
d`−m

A`−m) ≤ m
`

. Overall
we get that λ(AT ) is bounded by (m + 1)/` ≤ 2m/`.

We now argue that λ = λ(AT ′) ≤ λ(AT ) and by that Lemma 5.3 is done.
We express AT ′ as a multiplication of stochastic matrix B with AT . Let us define a matrix B′

by B′(x,x′) = 1 ⇐⇒ there exists a permutation s : [`] → [`] such that x′ = s(x). Let B
be the matrix obtained by dividing each row x of B′ by

∑
x′∈X B′

x,x′ . Clearly, B is a symmetric
stochastic matrix, and AT ′ = B · AT . Using item 2 of Claim 5.4 we get λ(AT ′) ≤ λ(AT )

6 Tightness of Parameters
We would like to claim that our main Theorem 5.1 is tight in the sense that with stronger parame-
ters the theorem does not hold.
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Lemma 6.1 There exists a function F : X → Σ` which T ′ accepts with probability Ω(m/`) and

such that for any f : X → Σ the fraction of tuples x on which F (x)
31/32≈ ~f(x) is at most `/ |X|.

In particular this implies the following constraints on the parameters of Theorem 5.1:

• Since m ≥ 1, (otherwise the test T ′ is meaningless), then any variant of Theorem 5.1 does
not hold if ε = O(1/`). In particular, one cannot hope for an exponentially small ε.

• If m = Θ(`), then Theorem 5.1 cannot hold with arbitrarily small ε, since the acceptance
probability of T ′ on F is Ω(1) with this choice of m. We comment that [IJKW08] raised
the question of whether passing the consistency test with non-negligible probability imply
non-negligible correlation with a direct-product function. This example shows that in their
specific parameter setting (m = `/2) both our test and their test fail to test such a correlation.

Proof: We define F as follows.

• Select X0 ⊂ X such that |X0| = |X| /`,

• Select a series of functions f̃ = f1, · · · , f|X|/` : X → Σ such that for every pair of functions
fi, fj Prx∈X [fi(x) 6= fj(x)] > 1/8. (We can choose at least 2|X|

2|X|H(1/8) > |X|
`

such functions).

• For each x ∈ X0 let fx be a distinct such function.

• For each tuple x select F (x) as follows: If |x ∩X0| 6= 1 pick F (x) randomly. Otherwise
let x0 = x ∩X0 and set F (x) = (fx0(x1), · · · , fx0(x`)), in this case we say that x0 sets the
value of F (x).

We would like to analyze the distance of F from the ` direct product code. Let f, f ′ : x → Σ,
we denote Prx∈X [f(x) 6= f(x′)] by d(f, f ′).

Let f : X → Σ`, we argue that f ` agrees with F on at most `/ |X| fraction of the tuples. First,
we argue that for any f there exists at most one x ∈ X0 holding d(f, fx) < 1/16.

Second, we argue that if d(f, f ′) > 1/16, then with probability at most exp−(Θ(`)) over x,
~f(x)

31/32≈ f ′(x).
Since the values of x are either random or fixed according to some x ∈ X0, and there is no

function f : X → Σ that agrees with more than a single function in f̃ , then the only candidates
functions f that their encoding f ` is close to F , are the functions fx (x ∈ X0). Therefore, in order
to analyze the distance of F from the ` direct product code we have to analyze the distance of F
from fx (x ∈ X0). Each tuple x that holds F (x) = ~fx(x) must have also x ∈ x. Therefore there
are at most 1− (1− 1/ |X|)` < `/ |X| fraction of tuples on which F (x) = ~fx(x).

Let us compute the acceptance probability of T ′ applied to F :
We calim that the probability that T ′ chooses x,x′ such that F (x) = ~f(x) and also F (x′) =

~f(x′) is Ω(m/`). If that is the situation, then obviously T ′ accpets.
The probability that F (x) is not a random value is the probability that |x ∩X0| = 1 which

equals: ` · |X0|
|X| · ( |X|−|X0|

|X| )`−1 = ` · 1
`
· (1 − 1

`
)`−1. For large enough ` this is greater than some
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constant c1. If there is a unique x0 ∈ x ∩X0 then F (x) = ~fx0(x). Conditioned on x0 = x ∩X0,
what is the probability that also x′ ∩ X0 equals x0? This would lead T ′ to accept, since then
F (x′) = ~fx0(x

′).
The desired probability is the probability that x0 ∈ x′ times the probability that any new

coordinate in x′ was picked outside X0. The probability that x0 ∈ x′ equals m/`. The probability

that all the new coordinates of x′ are drawn outside X0 equals |X|−|X0|
|X|

`−m
which is also greater

than some constant c2.
And overall we get that the probability that the test accepts F is at least c1 ·m/` · c2 = Ω(m/`)

as claimed.
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A The Feige-Kilian Dichotomy Lemma
Lemma 2.9 Let F : X → Σ`, and let ε ≥ 2`−1/75, then exactly one of following cases holds:

1. (Case 1) The probability that a random k-block is alive is at most ε.

2. (Case 2) The probability that a random live k-block is good is at least 1− ε.

The proof we present is roughly the same as the original proof, (following more closely the
presentation in [OG05]), but using our notations Ak,Ak1,k2 .

Proof of lemma 2.9: We would like to use the agreement term in order to prove Lemma 2.9. We
consider a “thought experiment” regarding F . We imagine picking a random tuple x ∈ X as filling
the ` coordinates with a value from X at random, one by one. I.e., in the r − th step we pick a
value ir at random from the remaining coordinates and also xr ∈ X and set xir to xr. On each step
r, we get a block of size r denoted by br. We would like to examine the change in the agreement
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during the steps: m/2, .., m. In order to do it we now look at the following sequence:

(m
2
) Am/2(bm/2)

(m
2
′) Am/2,1(bm/2, (im/2+1, xm/2+1))

(m
2

+ 1) Am/2+1(bm/2+1)

(m
2

+ 1′) Am/2+1,1(bm/2+1, (im/2+2, xm/2+2))

...
(m− 1′) Am−1,1(bm−1, (im, xm))

(m) Am(bm)

In this process we are examining how the agreement varies in accordance to the following two
variants:

1. Pick a new random coordinate to x, on the transition between steps (i) and (i’).

2. Require agreement on this coordinate, on the transition between steps (i’) and (i+1) (This
makes agreement go down).

We would like to argue that there is a “special block size” r in which the expected agreement
between the r-th level and the r + 1 doesn’t change a lot, formally:

Proposition A.1 There exists “some special block size” m/2 ≤ r ≤ m such that the following
holds:

Ebr∗+1 [Ar∗(br∗)−Ar∗+1(br∗+1)] ≤ O(1)/m.

This special “special block size” r imposes the dichotomy Lemma as it would be explained
later.

Proof: Due to Lemma 2.12 for every step i the expected value of the difference of the quantities
(i′) and (i) is at most 1/(` −m) ≤ 2/`. Since all these quantities are in the range (0, 1], the total
increase between the i′ and i′ + 1 from beginning to end is at most m/2 · 2/` < 1. Therefore the
total decrease between the i′ and i+1 from beginning to end is at most 2. Thus, there exists at least
one step m/2 ≤ r ≤ m, where the decrease in the expected agreement is at most 2/(m/2) = 4/m
(And going from (r∗) makes this the decrease only less).

Now we turn back to the proof of Lemma 2.9:
The idea of the proof is by contradiction: We show that if the special block size violates the

dichotomy in Lemma 2.9, then the agreement would decrease too much- a contradiction to Propo-
sition A.1.

And, indeed assume that neither case 1 holds nor case 2 holds. We get that while picking
a random block b, with probability at least ε2 it is alive but not good. This means that there is
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some particular live answer a such that, conditioned on F (x)b = a, at least η fraction of future
coordinates (x, i) are not (1− η) determined by (a, b).

This is almost enough to reach a contradiction, besides the fact that live answers a for b that
were alive, might become much less probable once the coordinate (x, i) was added. We now
show that this event is very rare: Fix a live block b and any corresponding live answer a, so we
have Prx∈Xb

[F (x)b = a] ≥ ε. Lemma 2.2 tells as Prx∈Xb,(x,i)
[F (x)b = a] ≥ ε − 1/ 3

√
`−m ≥

ε/2 except with probability at most 1/ 3
√

`−m. Using union bound over all live answers a ∈
Σk, we get that for a random choice of r∗ block b and a random coordinate (x, i), except with
probability 1/ε · 1/ 3

√
`−m≤ ε24 < ηε2/2 = ε9/2 every answer a that is alive for b still satisfies

Prx∈Xb,(x,i)
[F (x)b = a] ≥ ε/2. Let us summarize our knowledge:

Proposition A.2 Assuming the dichotomy doesn’t hold, let b be a random r∗ block and let (x, i)
be an additional coordinate. Then with probability ≥ ηε2/2 we get:

1. For all σ ∈ Σ, Prx∈Xb,(x,i)
[F (x)b = a and F (x)i = σ] ≤ (1− η)Prx∈Xb,(x,i)

[F (x)b = a].

2. Prx∈Xb,(x,i)
[F (x)b = a] ≥ ε/2.

Assuming item 1 holds, note that in order to maximize:
∑

σ∈Σ Prx∈Xb,(x,i)
[F (x)i = σ and F (x)b =

a]2 there should be two answers: σ, σ′ such that one contributes 1− η to the above probability, the
other η and all the rest contribute 0, therefore we get:

∑
σ∈Σ

Prx∈Xb,(x,i)
[F (x)i = σ and F (x)b = a]2 ≤ (1− 2η + 2η2)Prx∈Xb,(x,i)

[F (x)b = a]2

≤ (1− η)Prx∈Xb,(x,i)
[F (x)b = a]2

Therefore, by using item 2 in Proposition A.2:

Prx∈Xb,(x,i)
[F (x)b = a]2 −

∑
σ∈Σ

Prx∈Xb,(x,i)
[F (x)b = a and F (x)i = σ]2

≥ Prx∈Xb,(x,i)
[F (x)b = a]2 − (1− η)Prx∈Xb,(x,i)

[F (x)b = a]2

= η · Prx∈Xb,(x,i)
[F (x)b = a]2

≥ η(ε/2)2

We can conclude that whenever the events in Proposition A.2 occur, at least η(ε/2)2 is con-
tributed to:

Ebr∗+1 [Ar∗(br∗)−Ar∗+1(br∗+1)]

And therefore the total loss in the expected agreement is at least (ηε2/2) ·η(ε/2)2 = η2ε4/8. Since
4/m = 4ε19 ≤ η2ε4/8 = ε18/8 we get a contradiction.
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