Approximating CVP to within Almost-Polynomial Factors
is NP-hard

[. Dinur * G. Kindler * R. Raz | S. Safra*

Abstract

This paper shows the problem of finding the closest vector in an n-dimensional lattice to
be NP-hard to approximate to within factor n¢/1°818" for some constant ¢ > 0.

1 Introduction

An n-dimensional lattice L = L(vy,..,v,), for linearly independent vectors vy, ..,v, € RF is the
additive group generated by the vectors, i.e. the set L = {3 a;v; | a; € Z}. Given L and an
arbitrary vector y, the Closest Vector Problem (CVP) is to find a vector in L closest to y in
a certain norm. The Shortest Vector Problem (SVP) is a homogeneous analog of CVP, and is
defined to be the problem of finding the shortest non-zero vector in L.

These lattice problems have been introduced in the 19th century, and have been studied since.
Minkowsky and Dirichlet tried, with little success, to come up with approximation algorithms for
these problems. It was much later that the lattice reduction algorithm was presented by Lenstra,
Lenstra and Lovész [IL82] , achieving a polynomial-time algorithm approximating the Shortest
Lattice Vector to within the exponential factor 2"2, where n is the dimension of the lattice.
Babai [Bab86] applied IH.’s methods to present an algorithm that approximates CVP to within a
similar factor. Schnorr [Sch85] improved on IM.’s technique, reducing the factor of approximation
to (14)", for both CVP and SVP, where the polynomial running time depends on 1 in the
exponent. These positive approximation results are quite weak, achieving only extremely large
(exponential) factors. The question naturally arises: What are the factors of approximation to
within which these problems can be approximated in polynomial time?

Interest in lattice problems has been renewed due to a result of Ajtai [Ajt96], showing a reduc-
tion, from a version of SVP, to the average-case of the same problem.

CVP was shown to be NP-hard for any /, norm in [vEB81], where it was also conjectured that
SVP is NP-hard. Arora et al. [ABSS93] utilized the PCP characterization of NP to show that
CVP is NP-hard to approximate to within any constant, and quasi-NP-hard to approximate to
within 20°6™)"™° for any constant ¢ > 0 (i.e. an approximation algorithm for such factors would
imply NP C DTIME(2pelytosn),

*Tel-Aviv University
TWeizmann Institute of Science

As for SVP, it is NP-hard to approximate to within [Ajt98, Mic98] some constant factor (see
also [CN98]). The proof in [Mic98] relies on the PCP characterization of NP and is carried out
via a reduction from gap-CVP (shown NP-hard for any constant gap in [ABSS93]). Using gap-
CVP allows, in addition to the significant improvement in the hardness-of-approximation factor,
a major simplification of the main technical lemma from [Ajt98]. Better hardness results for
gap-CVP may result in improved approximation hardness results for SVP.

So far there is still a huge gap between the positive results, showing approximations for these
problems with exponential factors, and the above hardness results. Nevertheless, some other
results provide a discouraging indication for improving the hardness result beyond a certain factor.
[LLS90] showed that approximating CVP to within n! is in co-NP, and later [GG98] showed that
approximating both SVP and CVP to within y/n is in NPN co-AM. Hence it is unlikely for any
of these problems to be NP-hard.

The strongest NP-hardness result likely to be true for these problems, hence, is that they are
NP-hard to approximate to within a constant power of the dimension.

Our Results. We improve on [ABSS93] in two ways. First, we go beyond the factor of 2008m)" "

for any constant € > 0, which was the previous hardness-of-approximation factor known for CVP.
logn 1
Instead, we achieve a factor of OToglosn = pTogtosn . Furthermore, we show approximating CVP is

NP-hard for these large factors, compared to the previously known quasi NP-hardness.

The known PCP characterizations of NP seem inadequate in order to show hardness of approx-
imating CVP to within large factors. The proof of [ABSS93] utilizes amplification techniques, in
which the dimension of the instance grows faster than the factor for which approximation hardness
is obtained. It is therefore unlikely that using this technique, even if allowing a super-polynomial
blow-up, one can obtain such strong results. It seems that with this method it will always be
the case that the factor for which hardness of approximation is proven never reaches beyond the
barrier of 20°8™'™° for any constant £ > 0.

We introduce a new NP-hard gap-problem, Super-SAT (SSAT for short), that we use to prove
our result. The SSAT problem is a gap version of SAT, minimizing a new, appropriately defined,
objective function. Although the SSAT characterization differs from the PCP characterizations,
its proof relies on similar techniques.

Let SAT[F] be the following problem: An instance of SAT[F] is a set of local-constraints
(Boolean functions) called tests, on variables from a common set, each variable ranging over
a finite set F'. Each test is represented by a list of assignments for its variables, which are said to
satisfy the test. The goal is to attach to each test one of the assignments that satisfies it, such
that consistency is maintained among the assignments, that is, each variable is given the same
value by the assignments of all tests that depend on it. If this is possible, the instance is accepted,
and otherwise it is rejected.

Our gap version of this problem, SSAT, is as follows: SSAT is the same as SAT[F] except
not all non-satisfiable instances must be rejected. We generalize the notion of assignment to
that of super-assignment — formal linear combinations of assignments with integer coefficients —
and modify the acceptance condition accordingly: Previously accepted instances must still be
accepted. An instance must be rejected only if there is no super-assignment to the tests, whose
norm (see Definition 2) is smaller than g, and which is ”everywhere consistent” (in a sense similar
to that described above). If the instance is somewhere in-between (i.e. minimizing the norm of

its consistent super-assignments gives a value greater than 1 but less than g), then that instance
is not necessarily rejected (any outcome is ok).

We show (Theorem 1) that solving this problem is NP-hard for g = n'/!°81°¢6™ (denotes, as
usual, the size of the instance). We then reduce this problem to CVP, preserving the approximation
factor. Improving the hardness of approximation factor of SSAT to a constant power of n, namely
where g = n® for some constant & (Conjecture 2), would directly imply CVP to be NP-hard to
approximate to within a constant power of the dimension.

For simplicity, our proof works with /; norm, however it can be extended to [, norm for any
1 < p < 0o as shown in Subsection 6.3.

Outline. We begin, in Section 2, by presenting the new NP-hard gap-problem, SSAT. We
first formally define SSAT and then state Theorem 1 asserting it is NP-hard to approximate to
within large factors of approximation (n'/1°81°6m) Section 3 gives some definitions and techniques
which are the basis of the construction. The NP-hardness of SSAT, that is the most technical
part of this work, is established in two parts. In Section 4, we describe the reduction from a low
error-probability PCP characterization of NP, to SSAT. We proceed to prove the correctness of
the reduction (Theorem 1) in Section 5. In Finally, in Section 6 we show a simple reduction from

SSAT to CVP.

2 Super-SAT - SSAT

In this section we introduce a new NP-hard problem, SSAT. Let us begin by defining SAT[F],
which is actually SAT over non-Boolean variables, presented from a different point of view. An
instance of SAT[F]

= U= {1, s}, V= {v1, s 0m} , {Rus -, Ry 1)

is a set W of tests (Boolean functions) over a common set V' of variables that take values in a field
F. In what follows |F|, m, and |R,,| will always be bounded by a polynomial in n = |¥|. Each
test ¢ € ¥ has associated with it a list R, of assignments to its variables, called the satisfying
assignments or the range of the test 1. Having both ¢ and R, is convenient yet somewhat
redundant since the list R, actually specifies all there is to know about the test .

An assignment for an instance maps to each test, a satisfying assignment from its range. An
instance is accepted iff there is an assignment to the tests that is everywhere consistent, that is,
each variable is given the same value by the assignments to all tests that depend on it. It is easy
to see that SAT[F] is NP-complete.

SSAT is a gap variant of this problem, obtained by setting a new measure on the non-
satisfiability of an instance. While in PCP we measured the fraction of tests, satisfiable by a
single assignment, in SSAT we will define a measure of a different nature - we will introduce
a notion of super-assignments to the tests, that is, formal linear combinations of assignments.
We will then measure the ’length’ of a super-assignment, and ask how ’short’ it may get while
maintaining ’consistency’.

Definition 1 (Super-Assignment to Tests) A super-assignment is a function S mapping each
Y €V to a value from Z™¢. S(vp) is a vector of integer coefficients, one for each value r € Ry
Denote by S(1))[r] the " coordinate of S(v).

If S(¢)[r] # 0, we say that the value r appearsin S(¢). A natural super-assignment assigns each
Y € ¥ a unit vector e; € Z™¥ with a 1 in a single coordinate i corresponding to an assignment
for that test in the usual sense (i.e. an assignment which maps r € Ry, to ¢ corresponds to the
natural super-assignment S(t) such that S(¢)[r] = 1 and S(¢)[r'] = 0 for all " # r). We use the
average over the [y norms of the vectors S(v), ||S(¢)]|, to measure the closeness of S to a natural
super-assignment,

Definition 2 (Norm of a Super-Assignment) The norm of a super-assignment S is the av-
erage norm of its individual assignments ||S|| = “},—lzwe\p 1S(¥)|], where [|S()|| denotes the I,

norm of the vector S(1)).

The norm of a natural super-assignment is 1. The gap of SSAT will be formulated in terms
of the norm of the minimal super-assignment that maintains consistency. A natural assignment
r € Ry to a test ¢ induces an assignment to each variable z, denoted r|,. In the SAT[F] problem
an assignment is called consistent if for every pair of tests with a common variable, the assignments
to the tests, restricted to the variable, are equal. We extend this notion of consistency to super-
assignments by defining the projection of a super-assignment S(¢)) onto each of 1’s variables.
Consistency between tests will amount to equality of projections on common variables.

Definition 3 (Projection) Let S: ¥ — U, Z™ be a super-assignment to the tests. We define
the projection of S(1) on a variable x of ¥, m,(S(¥)) € Z7, as follows:

Vae F: mSW)dY S S@)]

r€Ry, rlz=a

Namely, we partition the assignments in R, according to their value a € F on the variable x
(we associate with a € F all assignments r € R, for which r|, = a). For each value a € F, we
then add the coefficients S(1)[r] of the assignments associated with it, and this is the value of the
coefficient 7, (S(¢))[a].

We shall now proceed to define the notion of consistency between tests. If the projections
of two tests on each common variable x are equal (in other words, they both give x the same
super-assignment), we say that the super-assignments of the tests are consistent.

Definition 4 (Consistency) Let S be a super-assignment to the tests in W. S is consistent if
for every pair of tests ¢; and 1; with a common variable x,

o (S(1hi)) = m2(S(¥5))

S is said to be non-trivial if every variable x € V there is at least one test ¢ € ¥ that isn’t
‘cancelled’ on z: 7,(S(1)) # 0. For a variable 2 we think of all the values a € F receiving
non-zero coefficients in 7, (S(¢)) (i.e. values for which 7,(S(¢))[a] # 0)) as being simultaneously
"assigned’ to x by ¢. The non-triviality requirement means that each variable must be assigned
at least one value.

We can now define the SSAT problem.

Definition 5 (g-SSAT) An instance of SSAT with parameter g

= (U= {di, b}, V= {01, 0m} {Ryys - Ry 1)

consists of a set ¥ of tests over a common set V of variables that take values in a field F. The
parameters m and |F| and |Ry| are always bounded by some polynomial in n. Each test ¢ € ¥
has associated with it a list Ry of assignments to its variables, called the satisfying assignments
or the range of the test 1». The problem is to distinguish between the following two cases,

Yes: There is a consistent natural super-assignment for V.

No: Every non-trivial consistent super-assignment for W has norm > g.

Theorem 1 (SSAT Theorem) There is some constant ¢ > 0, such that SSAT is NP-hard for
_ ,¢/loglogn
g=n .

The SSAT theorem (Theorem 1) can be viewed as an extension of Cook’s theorem [Coo71,
Lev73] in the following way. An algorithm solving SSAT is required to accept if the test system
is satisfiable. However, the algorithm is allowed to accept non-satisfiable instances that have
a consistent super-assignment of norm < g¢. It must only reject when every consistent super-
assignment for ¥ has norm > ¢g. We are, in fact, adding slackness between the acceptance and
rejection cases.

We suggest a stronger conjecture which, if true, would imply that CVP is NP-hard to approxi-
mate to within a constant power of the lattice-dimension.

Conjecture 2 SSAT is NP-hard for g = n® for some constant ¢ > 0.

It is unlikely that the conjecture remain true for ¢ > % due to the result of [GG98] showing that
approximating CVP to within y/n is in NPN co-AM. Our reduction from SSAT to CVP is linear,
and hence it follows that approximating SSAT to within \/n is in NPN co-AM as well.

3 Tools and Definitions

3.1 Preliminaries

Let F denote a finite field F = Z, for some prime number p > 1.

Definition 6 (Low Degree Function) A function f : F¢ — F is said to have degree r if its
values are the point evaluation of a polynomial on F® with degree < r in each variable. In this
case we say that f is an [r,d]-LDF, or f € LDF, 4.

Sometimes we omit the parameters and refer simply to an LDF. The total degree of a function is
the total degree of the corresponding polynomial, i.e. the maximum over its monomials, of the
sum of degrees of each variable in the monomial. Every [r, d]-LDF has total degree at most rd.

For an LDF P : F¢ — F, we define its restriction and re-parameterization P|c : FP — F to
the D dimensional cube (affine subspace) C = &y + span(Zy, .., Zp) (where Z, .., Zp € F9), in the
natural way. Namely,

D
Y(ti,..,tp) € FP, Pe(ty, . tp) = P(Zo + Y t;7;)
=1

Observe that the total degree of P|c is at most that of P, namely < rd.

Definition 7 (Low Degree Extension) Let m,d > 0 be natural numbers, and let H C F such
that |H|* = m. A vector (ag, .., am-1) € F™ can be naturally identified with a function A: H* — F
by looking at points in H® as representing numbers in base |H|.

Let A: F — F be defined by

~

Az, .., xq) = Z H (24 _Z) . H (22 _Z) H ($d_1:) - A(hy, .., hy)

(hlv"vhd)e,Hd ,4

Ais a (|H| —1,d)-LDF called the |H| — 1 degree extension of A in F.

Let V' = {vg,..,un_1} be a set of variables, and identify every assignment A : V' — F with
the vector (ag,..,a,_1) € F™ where a; = A(v;). One can extend A to a larger set of variables
V o V via the low-degree-extension of (ay, .., ay,—1). Namely, we identify the variables V' with the
points in H?, and add new variables for the rest of the points in F¢. The new set of variables V/
correspond each to a point in F%. A is thus viewed as an assignment to V O V that (1) extends
A, and (2) is a point-evaluation of an [|H| — 1, d]-LDF.

Similar to the definition of super-assignments, we define a super-LDF G : LDF — Z to be a
formal integer linear combination of LDFs, and denote by G[P], the integer coefficient assigned
to the LDF P. We say that the LDF P appears in G iff G[P] # 0. This definition arises naturally
from the fact that the tests in our final construction will range over LDFs. We further define
the norm of a super-LDF to be the norm of the corresponding coefficient vector (same as with
super-assignments). We say that a super-LDF has total degree r if every LDF appearing in it has
total degree < r.

Given a super-[r, d]-LDF G, we define its restriction 7¢(G) to a D-dimensional cube C, (which
is a super-LDF of dimension D and degree rd) in the natural way. Namely,

VP €LDFup m@P1Y ¥ 6@
QELDF, 4, Qlc=P

We say that a point z is ambiguous for a super-LDF G if there are two LDF's appearing in G,
that agree on x. The following (simple) property of super-LDFs will be very important.

Proposition 1 (Low Ambiguity) Let G be an [r,d]-super-LDF of norm < g. The fraction of

ambiguous points for G is < amb(r,d, g) e (g)%

rd
|7
g

any super-LDF of norm < g, and so there are no more than (2) pairs. []

Proof: Two distinct [r, d]-LDFs agree on at most of their points. At most ¢ LDFs appear in

Two LDFs can coincide on only a small fraction of cubes,

Proposition 2 Let P,Q be two [r,d|-LDFs. The fraction of cubes C (affine subspaces of dimen-

sion D < d) on which Plc = Q|c is < %.

This follows from the fact that two distinct [r, d]-LDF's agree on at most % of their domain,

and by the fact that selecting a random point in a random cube gives a uniform distribution on
the entire domain, which implies that the restriction of an LDF to a random cube, is even less
likely to avoid all points for which P(x) # Q(x).

3.2 Embedding Extension

An important technique utilized herein is adapted from [DFK*99], and shows how to represent
an LDF over a low-dimensional domain C = F! by a lower-degree LDF over a domain of higher
dimension D = F**. The points in the domain C are embedded in the domain D by taking each
'axis’ in F! and replacing it by k new ones (thus the extended domain F** has dimension k - t) so
that an LDF of degree r (in each variable) on the original domain F* is transformed to an LDF
of degree /r (in each variable) on the extended domain F*!,

Definition 8 (embedding extension) Let b > 2, k > 1 and t be natural numbers. We define
the embedding extension mapping Ej, : F* — F'* as follows. E, maps any point v = (£1,..,&) €
ft to (/AS ft.k; Y= Eb(x) = (7717 ~'7nt-k) by

Ey(6, 060 (6060 (€)%, (€)7o 60 (6% (€07 (@)

Hence Ey(F') C F* is a manifold (multi-dimensional curve) in F*. Each of F*’s axes corre-
sponds to some preset power of an axis of F!, and Ej(F") consists of exactly the points in which
those axes indeed match.

The following proposition shows that any LDF on F! can be represented by an LDF on F©*
with significantly lower degree:

Proposition 3 Let f : F' — F be a [b* — 1,t]-LDF, for integerst > 0,b > 1,k > 1. There is a
[b—1,t-k]-LDF fo : Ft* — F such that

Vo € Fli f(x) = foxi(Ey(1))
Proof: We rewrite f as an LDF fo : F* — F by replacing each power (&) of &,

0<i<t 0<p<?¥ (&P — (mio)® - (01)" - (migp—1)

where (8of1...0k—1) is the base b representation of p, and we 're-index’ 7; ; def Ni—1)k+j+1- Lhe
degree in each variable of fe is b — 1, and the dimension is tlog, b* = t - k. The restriction of fey

to the manifold Ey(F"), will give f, as seen from substituting the manifold equations 7; ; = (ni,o)bj
into each of the monomials). [

Note that an arbitrary [r, tk]-LDF f on the larger domain F** can be viewed, when restricted
to the manifold, as a [F,#]-LDF f with # =7 - (1 +b+ 0%+ ...+ b)) < r- (b* —1). This LDF
is the re-parameterization of the LDF obtained by substituting in the manifold equations. Note
that if the total degree of f is s, then the total degree of f is < s-bF~1.

4 Reducing PCP to SSAT

In this section, we present a reduction from a low error-probability PCP characterization of NP,
to SSAT. Starting with a PCP instance, we show how to construct an instance of SSAT. The
correctness of the reduction is proven in the next section.

Let ® = {p1,..,0,} be a system of tests over Boolean variables Vo = {v1,..,v,}, (assume
m = n° for some constant ¢ > 0) such that each test depends on D = O(1) variables. The
following theorem is a direct corollary of [AS98, ALM™98]:

Theorem 3 It is NP-hard to distinguish between the following two cases:
Yes: There is an assignment to Vg such that all @1, ..., v, are satisfied.
No: No assignment can satisfy more than 1/2 of the tests in P.

Starting from ®, we will construct an SSAT test-system W over variables Vi D V. Our new
variables Vg will range over a larger, non-Boolean, range, namely a field F. An assignment to Vy
can be interpreted as an assignment to Vg by identifying the value 0 € F with the Boolean value
true and every non-zero value a € F with the Boolean value false.

4.1 Constructing the CR-Forest

We construct ¥ from ® by replacing each ¢ € ® with a set of new tests 1. These tests essentially
test that ¢ is satisfied, and that some set of variables (that encode ¢’s variables) are an LDF. The
construction relies on strong ’error-correcting’ properties of LDFs (in a similar manner to proofs
of PCP theorems) to eventually 'decode’ any consistent low-norm super-assignment for ¥ into a
satisfying assignment for the original test-system ®. The idea is to embed ®’s variables into a
geometric domain and then recursively encode this domain by multiple new domains, adding new
variables along the way.

We describe the construction via an underlying tree structure, one tree per test ¢ € ®. Each
node in the tree is associated with a set of variables such that the variables of all of the offspring
of a node encode that node’s variables. For each leaf of the tree, ¥ will have one test that depends
on the variables associated with that leaf.

The key to the construction lies in understanding how the variables associated with different
nodes relate to each other This is described in Subsection 4.2. The variables of the root node
contain ¢’s variables, plus some additional ones that together represent the points of a domain
Fdo_ In fact, every node in the tree will associated with a domain F¢, and each offspring of that

node will be associated with a cube C C F? in that domain. This is roughly how the points of the
parent domain are distributed among its offspring. The variables of each offspring will consist of
some of the parent’s variables but also some new ”extension” variables, together corresponding
to points in a new domain F¢ where the parent ”cube” variables are mapped via the embedding
extension mapping into the new domain.

The idea is that a consistent super-assignment to the tests of W, essentially assigning a super-
LDF to each leaf node, can be inductively decoded into super-LDFs on domains of nodes residing
higher up in the tree, reaching all the way up to the root. For this decoding to work, certain
points in a domain, containing more 'information’ than others, need to have a larger proportion of
offspring representing them. This is established (in Subsection 4.3) by defining for each domain a
set of 'distinguished points’. Then, a mechanism of labels serves to obtain the correct proportion
of offspring encoding the distinguished and the non-distinguished points.

Let us begin by defining the composition-recursion forest (CR-forest), which holds the under-
lying structure of W.

Let F be a field of size |F| = [Ve|®/10818™ — per/loglogn for some constant ¢; > ¢ (recall we
denoted |Va| = n°). Let dy = [loglogn], recall that D denotes the number of variables each test
in ® depends on, and set d = 4D +8. Let L = [czloglogn|, (the constant ¢, > 0 will be specified
later).

Let B(F? t,,t3) denote the number of different affine-subspaces of dimension ¢; (in a domain
F%) that contain a certain affine subspace of dimension 0 < t, < t;. It is easy to see that
B(Fd 1), t,) < |F|4 =),

Definition 9 (F,(®)) The composition-recursion forest (CR-forest) F,(®) = {T,| ¢ € ®} is
a set containing one depth-L tree Ty, for every test ¢ € ®. The root node (level-0) of T, has
B(Fd% D +2,D—1) =n°W offspring, and all nodes in levels i = 1,...,L — 1 have 2 |F|°*.
B(FW+8 D 4+20) = |F|°Y offspring. Note that although the forest F,(®) depends on many
parameters (L, D, dy) which can all be derived from ®, we single out the parameter n according to
which the size of the generated instance is measured.

The forest F,,(®) will be the base upon which ¥’s variables and tests will be defined as follows.
With each node v € T, (¢ € @), we associate a distinct geometric domain, denoted dom,. For

the root root, of every tree, dom,,y, def Fdo while for non-root nodes v, dom, el Fd For a
node v, we associate with each point in dom, a distinct variable from Vi, by defining an injection
var, : dom, — Vy. Points from domains of distinct nodes may be mapped to the same variable.
In particular, the variables that ¢ depends on will belong to var,(dom,) for many of the leaves
in the tree T,.

We can already at this point define the tests of W,

Definition 10 (tests) ¥ will have one test 1, for each leaf v in the forest. 1, will depend on
the variables in var,(dom,). An assignment A for 1,’s variables is considered satisfying if and
only if the following two conditions hold:

1. A is an [rp,d]-LDF on var,(dom,) (where r;, < 2(D +2) = O(1) will be defined below).

2. Ifve T, for p € ® and all of ¢’s variables appear in var,(dom,), then A must satisfy .

8

The instance of SSAT that we construct, must have a list of satisfying assignments for each
test. Note that the size of this list is bounded by the number of [ry,, d]-LDFs which is |F|°®, i.e.
polynomial in n. Having defined the tests in ¥ and the satisfying assignments for each test, it
now only remains to specify the variables that each test accesses, i.e. define for each node v, the
mapping var, : dom, — Vy.

4.2 Variables

We begin by defining the variable mappings for the root nodes of the trees in the forest. Recall
that for the root node root,, of each tree T, we set dom,gy;, = Fdo_ Let Va D Va be the variables
representing the low-degree-extension (Definition 7, with parameters m = |Vg|, do = [loglogn],
and H C F such that! |H|% = [Vs|) of Vs, i.e. Vi is a set of | F|® variables each representing a
distinct point in F%. We define the mapping var,,y, as follows,

Definition 11 (var,.,) The bijection var,,,, : dom,.., — Vo maps the points of domy,,,, =
F to Vi in the following manner. Take H «f {0,..,h — 1} C F such that |H|™ = hi = |Vy|
(i.e. |[H| = |V¢|% = poldo = pe/loglogn gnd since |F| = ne/1818n we have | M| = |F|). We
define var oo, to be a bijection independent of ¢, taking the points of Hl C Fh to Vy, and the
remaining points F \ H® to Vy \ Va.

Note that for every ¢ € ® the points of dom,,,;, were mapped to the same variables, hence each
of the | F|™ variables in Vi has |®| pre-images (so far).

For simplicity we assume that for each ¢ € ®, the points mapped to ¢’s variables are in general
position (i.e. they span a (D — 1)-dimensional affine-subspace of F%), otherwise, we choose an
arbitrary (D — 1)-dimensional affine subspace containing these points.

Before we continue to define the mappings var, for non-root nodes, let us examine the purpose
of these mappings. Picture a super-assignment to the tests of W, as a labeling of each leaf in
the forest by a super-LDF. We will prove (see Lemma 6) that such an assignment, if consistent
and of low-norm, ’induces’ a low-norm super-LDF for the domain of each internal node, and in
particular — a low-norm super-LDF G for the 'root-domain’, F%. We now use the fact that the
variables representing this root-domain are common to the roots of all T,’s, to interpret G as a
global assignment for the variables in Vg. Namely, we will show that any LDF that appears in G
with a non-zero coefficient assigns Vg values that satisfy most of the tests in ®.

The idea behind the CR-forest is that the domain dom, of a node u is ’represented’ by its
offspring” domains. u’s domain’s points are distributed among the domains of each of u’s offspring.
The aforementioned Lemma 6 will show how to join the LDF's of u’s offspring into one LDF for w.
The advantage we gain by representing one LDF over «’s domain by many LDF's over u’s offspring’
domains is that we can enforce the degree of the LDF's in the leaves to be very low, compared to
the degree of the LDF on the root that they represent (the dimension of the LDFs is maintained
low as well). Therefore the list of satisfying assignments for the tests in ¥ (corresponding to LDF's
on the leaves’ domains) is not too long. We can afford to list all LDFs (i.e. satisfying assignments)
only when the degree (and dimension) of the LDFs is small enough, because for a higher degree
the length of the list would not be polynomial in n.

'TIf 4/m is not an integer, we add dummy variables to V.

The key to understanding the construction is to see how a node u is represented’ by its offspring.
Pictorially, u’s domain’s points are distributed among the domains of u’s offspring, each offspring
v receives a slice of u’s domain. Some of v’s points correspond to v’s slice of u’s variables. The
rest of v’s points are some (low-degree) encoding or extension of these points.

Consider a non-root node v, and denote its parent by u. Assuming var, is already defined,
we now specify the mapping var, : dom, — Vy. Some (exactly |F]”™?) of the points in dom,
'represent’ points from dom,,, and will thus be mapped to u’s variables (var,(dom,)). The rest
of the points in dom, will be mapped to fresh new variables V, C Vi (|V,| = |F|* — |F[°T?)
associated with the node v. Only points in domains of nodes in v’s sub-tree may be mapped to

V. For uniformity of notation, we define Vi, = Vq>, for every root root,, again stressing the
fact that the roots of all of the trees share the same variables. Altogether

ve v = U v,
v€T<p
ped

u’s variables are distributed among its offspring by letting each offspring v of u ’represent’ an
affine sub-space C, C dom, of dimension D + 2 (a (D + 2)-cube). More formally, we label (as
specified later in Subsection 4.3) each offspring v of u by a (D4 2)-cube C, C dom,,. We represent
a cube C, by D + 3 points xy, .., £p42 such that C, = x¢ + span(xy, .., 2py2) (this yields a natural
way of viewing C, as FP*2).

We embed all points of the cube C, C dom,, into the domain dom, by the embedding extension
mapping, defined above in Subsection 3.2, E,. : C, — dom, (the parameter b; depends on the
level 7 > 1 of the node v, and is specified shortly below). Via this mapping, we can transform
LDFs on the cube C, to lower-degree LDF's on the domain dom,. This will allow us to represent
a satisfying assignment to ® by [r;, d]-LDFs on the domains dom, of level-i nodes (the degree
r; will be defined below). The construction is aimed to lower the degree r; of the LDF's, from
ro M| a2 nt/1oslogn o, = O(1).

We think of the point y = Ej,(z) € dom, as 'representing’ the point = € C, C dom,, and
define var, : dom, — V4 as follows,

Definition 12 (var,, for a non-root node v) Let v be a non-root node, let u be v’s parent, and
let C, C dom,, be the label attached to v (the label of a node is defined below, Definitions 13,14).

For each point y € Ey,(C,) C dom, define var,(y) el var,(E; ' (y)), i.e. points that ‘originated’
from C, are mapped to the previous-level variables, that their pre-images under E, in C, were
mapped to. For each 'new’ point y € dom, \ Ey, (C,) we define var,(y) to be a distinct variable
from V.

The parameters used for the embedding extension mappings Ey, are t = D + 2, k = d/t. We set
ro = [H| = |F|* and risq and biyy (i > 0) are defined by the following recursive formulas:

bi—l—l = [4TZ(D+2)+1—|

Tiy1 = biy1—1

10

(we will show in Subsection 5.1 that b;, r; decrease until for some L < loglogn, r; < 2(D + 2) =
O(1)).

In order to complete the description of the test-system, we now only need to describe the cube-
labeling of all of the offspring of each node. This will describe how the representation of a node
u is distributed among its offspring.

4.3 Labeling Nodes

We define the offspring-labels of a node u, thereby completing the description of the construction.
As described above, each offspring of the node u ’'represents’ an affine subspace in the domain
dom,,, i.e. the variables of u’s offspring represent an encoding of u’s variables. This representation
has some error. To control this error, we proportion the offspring so that more important variables
are represented by more offspring. Roughly speaking, the ’importance’ of a variable z € V is
determined by how high up (towards the root) in the tree this variable appears. The closer the
variable is to the root, the more information it represents about ®’s original variables, V.

We will use a mechanism of ’'distinguished-points’ to promote the importance of certain points
more than others. This mechanism works by having a higher proportion of descendants of v
‘represent’ the distinguished points of v.

Let us begin by defining the labels of the offspring of a root node root,. The tests at the leaves
of the tree T, represent the test ¢ € ®. Therefore, the variables that ¢ depends on are ’very
important’ to represent and their corresponding points are the distinguished points of each root
node,

Definition 13 (offspring-labels for a root node) Let

dst(root,,) de] {x € domyy;,,

@ depends on Var g, (:U)}

be a set of distinguished points for root,, (recall our assumption that dst(root,) is a set of exactly
D points in general position). We label each offspring of root, by a distinct cube from the following
set: def . . .

labels(root,) = {C is a (D + 2)-cube in F*|C D dst(roozhp)}

The number of labels [labels(root,,)| = B(F%, D + 2, D — 1) is the number of (D + 2)-cubes con-
taining the (D — 1)-cube spanned by the points mapped to ¢’s variables (assuming, as mentioned
above, that these points are in general position).

For a general non-root node v € T, we consider two levels of 'important’ variables: (1) variables
that belong to some ancestor (direct and indirect) of v (there are | F|”*? such variables, all mapped
from v’s parent) and (2) variables mapped from the distinguished points of v (there will always
be exactly one or D such variables). The node v will correspondingly have two equal-weight sets
of offspring,

Definition 14 (offspring-labels for non-root nodes) Let v be a non-root node. We define
two multi-sets of offspring-labels for v. For each variable x € var,(dom,) \ V,, i.e. x that belongs
to some ancestor of v, we define

labels, (v) wf {C C dom, is a (D + 2)-cube| x € var,(C) }

11

we then take labels;(v) to be the multi-set

labels; (v) %/ U labels, (v)

x€var, (dom,)\V,

For every offspring w of v, labelled by a cube from labelsy(v), we define dst(w) to be the singleton
set consisting of the point in dom,, that is mapped to x, i.e. dst(w) el {var,~'(x)} C dom,,.

The second multi-set (actually set) of offspring-labels is devoted to representing the distinguished
points of v. We simply take

labels,(v) % {C C dom, is a (D + 2)-cube| C O dst(v)}

For each offspring w of v labelled by a cube from labelsy(v), we set dst(w) wf Ey, (dst(v)) (where
i is w’s level in the tree), i.e. w distinguishes the same set of points as v after embedding via Ej,.

The final multi-set labels(v) is the union of labels;(v) and | M| copies of labelsy(v), where
the number M = |F|”*? B(F% D+ 2,0)/B(F% D+ 2, |dst(v)| — 1) is chosen so that at least half
of the labels are from labels;, and at least a third of the labels are from labelss.

4.4 Construction Size

Recall that we defined do </ [loglogn] and d “ 4D + 8. We also set 1y = | = |F| =

ne/1slosn “and defined by = [/(D + 2)r; + 1] and 7,1 = b, — 1 for every i > 0.
We claim that indeed r;, = O(1) for some L < loglogn. For this purpose we prove by simple

induction that r; < max([ré/ QZT ,2(D + 2)). For ry this indeed holds, and assuming it true for r;
we have that if r; > 2(D + 2) and b;; > 2, then

revt < b = (YD + 2+ 11 < [{2ri(D + 2)] < [()71] < [V < [(r0)2],

We set L to be the first index for which r, < 2(D+2) = O(1). Obviously, until that point r;, b;
decrease monotonically, and since ro = 2¢lgn/loglogn [, < |log(clogn/loglogn)| 4+ 1 < loglogn
(assuming n is large enough). Clearly b; > 2 for all 0 < i < L, and the induction is complete.

The size of the SSAT instance (Recall Definition 5) also depends on the range of the tests,
which is the parameter we are about to bound.

IN

The Range of the Tests. The tests of the test-system range over [ry, d]-LDFs. The number
of monomials of degree r;, < 2(D + 2) = O(1), and dimension d = 4D + 8 = O(1) is bounded by
(r;, +1)? = O(1). The number of [r;, d]-LDFs is hence bounded by |F|°" < O(n) and therefore
the range of the tests is polynomial in n.

The Number of Tests and Variables. It is only left to verify that the size of the forest

is polynomial. We have |®| = n trees, so let’s verify that the number of nodes in each tree is
polynomially-bounded.

12

Consider a tree T = T, € F,(®). root, has B(F%, D +2,D —1) < |F|*® = n°0 offspring
and each node in level i (0 < i < L) has 2|F|”™. B(F4, D +2,0) = | F|°" offspring. Altogether
the number of nodes in T is bounded by

L
nPM . H |‘7:|O(1) — 00, |f|O(L) — 00, (210gn/loglogn)o(loglogn) — 00
=1
Hence the number of tests in ¥ is polynomial, and the number of variables is < | F|*- W] = n°®).

5 Correctness of the Reduction

In this section we prove the completeness and soundness of the reduction presented in the previous
section.

5.1 Completeness

Lemma 4 (Completeness) If there is an assignment A : Vo — {true,false} satisfying all of
the tests in @, then there is a natural assignment Ay : Vo — F satisfying all of the tests in V.

Of course, this assignment Ay is equivalent to a consistent natural super-assignment. We extend
A following the rationale of the construction, by taking its low-degree-extension to the variables
Vq:., and then repeatedly taking the embedding extension of the previous-level variables, until
we’ve assigned all of the variables in the system. More formally,

Proof: We construct an assignment Ay : Vo — F. We first set (for every ¢ € @) Py, :
dom,,,;, — F to be the [rg,do]-LDF that is the low degree extension (see Definition 7) of A
(we think of A as assigning each variable a value in {0,1} C F rather than {true,false},
see discussion in the beginning of Section 4). We proceed to inductively obtain [r;, d]-LDFs
P, : dom, — F for every level-i (i > 0) node v of every tree in the CR-forest, as follows. Assume
we've defined an [r;, d]-LDF (an [r;, dy]-LDF in case i = 0) P, consistently for all level-i nodes,
and let v be an offspring of u, labelled by C,. The restriction f = P,|c, of P, to the cube C, is a

[r:(D + 2), D + 2]-LDF. f can be written as a [[{/r;(D +2) + 1| — 1, 4D + 8]-LDF fey over the
larger domain F¢, as promised by Proposition 3 taking k¥ = 4. We define P, = f.,; to be that
[7i41,d]-LDF (recall that d = 4D + 8 and r;1y = b1 — 1 = [{/ri(D +2) + 1] —1).

Finally, for a variable x € var,, x = var,(z), we set Ay(x) “I'p, (x). The construction implies
that there are no collisions, i.e. x' = var, (z') = var,(z) = x implies P,(z) = P, (2'). [
5.2 Soundness

In this subsection we show that a 'no’ instance of PCP is always mapped to a 'no’ instance of
SSAT. We assume that the constructed SSAT instance has a consistent super-assignment of
norm < g, and show that & — the PCP test system we started with — is satisfiable.

13

Lemma 5 (Soundness) Let g wf | F| where ¢, > 0 is some small enough constant, say ¢, =

1/1000. If there exists a non-trivial consistent super-assignment of norm < g for ¥, then ® is
satisfiable.

Let us first sketch a brief outline of the proof. The proof follows the structure of the trees
underlying the construction. Since the tree structure is different for the first level nodes and for
all other levels, we divide the proof accordingly.

We begin with a few definitions preparing for the proof itself. We then state Lemma 6 that
encapsulates the inductive part, handling all internal nodes in levels > 1 of the tree, and proving
that a non-trivial consistent super-assignment at the leaves can be decoded into ”consistent”
super-LDFs on "most” internal nodes. Relying on this lemma, we proceed to prove the soundness
lemma (Lemma 5). The heart of the proof is a consistency lemma (Lemma 7) that allows us to
combine ”consistent” super-LDFs on domains of offspring of a node into one super-LDF on the
domain of that node. We use this lemma to combine the super-LDF's on the root’s offspring (i.e.
level-1 nodes) into one global super-LDF on the common domain F%, and from it deduce an
assignment satisfying the original PCP test-system ®.

We then return to the inductive proof of Lemma 6 again relying on the same consistency lemma
(Lemma 7) for the inductive step.

The proof of the consistency lemma (Lemma 7) itself follows in Subsection 5.3.

Proof: Let SA be a non-trivial consistent super-assignment for ¥, of norm [|SA| < g. It
induces (by projection) a super-assignment to the variables

m: Ve — 2V

i.e. for every variable x € Vi, m assigns a vector m(S.A(¢))) of integer coefficients, one per value
in F where 1) is some test depending on x. Since SA is consistent, m is well defined (independent
of the choice of test). Alternatively, we view m as a labeling of the points U,cr, eF, (#) dom, by
a ’'super-value’ — a formal linear combination of values from F. The label of the point z € dom,
for some v € T, € F,,(®), is simply m(var,(x)), and with a slight abuse of notation, is sometimes
denoted m(z). m is used as the “underlying point super-assignment” for the rest of the proof,
and will serve as an anchor by which we test consistency. Since SA is non-trivial, m(z) # 0 for
every .

For a node u, we denote by Avg(u) the average of ||SA(v,)]| over the leaves v in u’s sub-tree.
We will show that whenever Avg(u) is not too high for a node u, then u’s subtree is, in a sense,
consistent. We thus define a ’'good’ node as one having a low average norm on its subtree’s leaves:

Definition 15 (Good Nodes) Fiz C' > 0 large enough, e.g. C = 301. A node u in level i in
the CR-forest is said to be good if

Avg(u) < g g- O,
We denote by nodes; the set of good nodes in level i.

For any node v, denote by ofsp(v) the set of v’s direct offspring. It is easy to see that most
offspring of a good node are themselves good:

14

Proposition 4 If u € nodes], then

Pr (v €nodes;) >1-1/C
veofsp(u)
Proof: All subtrees rooted at offspring of u have the same number of offspring. u is good, thus by
definition Avg(u) < g;. Had u more than 1/C bad offspring, then the total average of S.A(1,) on
its sub-tree would be > g;1 - % = g;. []

The central task of our proof is to show that a consistent low-norm super-assignment to the
tests at the leaves induces a low-norm super-LDF on the root domain. The key step in this proof
is the inductive step showing that if, for a node v, almost all of its offspring have a low-norm
super-LDF that is consistent with m, then we can deduce such a super-LDF G, over dom,,.

It turns out that for a general node u we cannot always deduce a super-LDF agreeing with m
on every point in dom, (a counter-example can be constructed). Instead, for good nodes u we
show that there exists a super-LDF G, over dom,, that agrees with almost all of the super-LDF's
on u’s offspring. By ’agrees’ we mean that if v is an offspring of u that is labelled by C,, then the
parent super-LDF G, projected on the points of C, equals G, projected on the manifold points
Ey, (Cy) (see Definition 16 below).

The consistency with m will then follow inductively from the fact that the offspring’ super-LDFs
were consistent with m. The importance of consistency with m is not the same for all points. For
certain points (e.g. those mapped to variables from V) we cannot allow any inconsistency, while
for others we can allow some small error. For every node v we consider, as mentioned before in
the construction, two types of special points: The distinguished points dst(v), and the manifold
points,

Definition 16 (Manifold Points) For a non-root node v labelled by C,, we define the manifold

points manf (v) wf Ey, (Cy), where i is v’s level in the tree.

These are the points that originate from all of v’s ancestors.

We rely on the manner in which the offspring were proportioned to deduce a high level of
consistency for these special points. We can now state the key inductive lemma (Lemma 6)
showing how consistency follows from having a low-norm super-assignment. This lemma relies
heavily on the precise structure of the forest, and shows that for every good node u, there is a
super-LDF on u’s domain that is ’almost’ consistent with ”the anchor” m. The lemma is proved
inductively, constructing u’s super-LDF from the super-LDFs of u’s good offspring. We will later
want to construct from these super-LDF's an assignment that satisfies more than half of the tests
in ®. For this purpose, we need the super-LDF's along the way to be legal,

Definition 17 (Legal) An LDF P is called legal for a node v € T, (for some ¢ € ®), if it
satisfies ¢ in the sense that if ©’s variables have pre-images under var, x,,..,xp € dom,, then
P(zy),.., P(xp) satisfy ¢. A super-LDF G is called legal for v € T, if for every LDF P appearing
in G, P is legal for v e T,.

Lemma 6 Let u € nodes’ for some i > 1, and set a = 3/C and A = 4- (D + 2)* = O(1).

There exists a legal super-LDF G, over dom,, of degree at most 7; Wl qr-i. (r; +1) and of norm
< 271 Avg(u) that agrees with m on dst(u) and on 1 — « fraction of the points in manf (u), i.e.

Vo € dst(u) 7,(Gy) = m(x)

15

and
Pr (m(Gu) =m(z)) > 1 -«
r€manf(u)
This lemma is the key to our construction. Its proof shows how consistent LDFs on offspring
nodes induce an LDF on the parent. Before we prove this lemma, which is somewhat technical,
let us first use it to complete the proof of Lemma 5.

Applying Lemma 6 for level-1 nodes, we deduce that SA induces a legal super-LDF G, of degree
71 and with ||G,|| < 2E71Avg(v), for every node v in nodes]. We now join these super-LDFs into
one legal super-LDF over the root domain F%, and then deduce a satisfying assignment to the
tests in @ from this super-LDF. Let v € nodes] be an offspring of root, for some ¢ € ®, and
let C, C domy,yy, be the cube labeling v. We would like to view G, as a super-LDF over C,, by
restricting the LDFs in G, to the manifold manf(v) C dom, that represents C,. For every [r, d]-
LDF P : dom, — F, define P as the [dF - (b)?, D + 2]-LDF which is defined as P’s restriction
to the manifold manf(v):

Vi €C, Cdomy,, : Plz) Y P(B, (x))

(Note that since P’s total degree is < 7 - d, the total degree of P is < 7, - d - (b;)® because the
degree of Ej, is (b))*™' = (b1)?). For every LDF P : dom, — F, G, assigns an integer value
G,[P]. We define the super-LDF (jv to be the same formal linear combination as G,, replacing
each LDF P with P: o
gv[Q] = Z i gv[P}
P: P=Q

In other words, the super-LDF G, is simply the restriction (and re-parameterization) of G, to the
manifold manf (v), as discussed in Subsection 3.2. The total degree of G, is 7,d - (b;)>.

Let root, be a good root node. Since the average norm of all the tests is < g, and a good root
node is by definition one with Avg(root,) < g-C, there are at least 1 —1/C = 1 —«/3 such nodes.
For every good offspring v of root,, Lemma 6 guarantees that Pr,cc, (WI(QU) = m(x)) >1-—a,

and that for every z € dst(v), m,(G,) = m(z). Given this assignment of super-LDF G, per label
C, C domy,y, = F b we would like to use the fact that these super-LDFs are consistent with m
to deduce the existence of some global super-LDF on F% (that is also consistent with m). The
following consistency lemma, when applied for u = root,,, will imply just that.

Lemma 7 (Consistency Lemma) Let u € nodes; for some 0 < i < L. Define §* to be the
multi-set of ‘good’ cubes: i.e. cubes that label good offspring of wu:

s+ {Cv € labels(u) ' v € nodes] }

If for every good offspring v of u there is a super-LDF G, over Cy, of total degree < r =7;/(D+2)
and norm ||G,|| < 2L . Avg(v), such that

Pr(m(G) =m() > 1-a

then there is a super-LDF G, over dom, of total degree 7; = r(D + 2) and norm ||G,|| < 2L7%.
Avg(u) that obeys

Pr (1, (6.)=G,) > 1-a/6

16

We defer the proof of this lemma to the next subsection, and continue with the proof of Lemma 5.
As previously mentioned, the super-LDFs G, obtained for the C,s were of total degree 7 - d(b;)?,
hence the degree is:

Frod(b)? = AFNr 4+ 1)-d(b)? = A d - (b))t =
= A1 4(D+2) - (ro(D+2) +1)
< AV 4D+ 2% (rg+1) = AM(ro + 1) /(D + 2) = 7 /(D + 2)

using the definitions A = 4(D +2)%, 7; = AL (r; + 1), bis1 = /ri(D +2) + 1 and r;yy = by — 1.
Hence we obtain from the consistency lemma a global super-LDF G, of degree 7y over F% that
agrees with G, for 1 — «/6 of the good offspring v of u = root,,.

We next show that G, = G, for every ¢ # ¢’ whose corresponding nodes root, and root
are both good. Choose a random offspring v of root,, (by choosing a random label C, €g
labels(root,,)), and a random point z € C, C F%. We claim that Pr, ¢, (7,(G,) = m(z)) > 1—2a.
By Proposition 4 the probability that v is not good is < «/3. If v is good, the above Lemma 7
tells us that with probability at most a/6, m¢, (G,) # G, (altogether we have that with probability
>1—a/3—a/6>1—aover the cubes in labels(root,), mc, (G,) = G,). Now, by Lemma 6, for
any good v, Pryec, (7,:(Gy) # m(x)) < a. For all otherwise chosen points, we have 7,(G,,) = m(x),
and the claim is proven.

These points constitute roughly 2 a 1 — 2« fraction of F%. Hence G, and G, agree with m on
the same > 1 — 4a > 1/2 fraction of the points. Thus, the super-LDF G, — G (subtraction is
defined as subtraction of the coefficient vectors) is zero when projected on more than half of the
points.

Now, utilizing the fact that |G, — G|l < [|Goll + |G || < 25T1g, and by the low-ambiguity
property (see Proposition 1) the fraction of ambiguous points (the only candidates on which the
projection can be zero) is bounded by

rod,
amb(7o, do, 2-+1g) < 22(L+1)g27r)7r < 22LAN) L AL g, |}—|2cQ+c/c1—1 <1/2

Thus, we deduce that G, = G.». In addition, G, must be non-trivial since m(z) # 0 for every z.

We choose an arbitrary LDF P that appears in G et Gy # 0 for some good root,s, and define an
assignment Ap : Vo — {true, false} for the variables of ® as follows. For each v € Vg, we define

Ap(v) “ true iff P(z) = 0 on the corresponding point z = var,,,, ~'(v) (see Definition 11), and

Ap(v) “J false otherwise.

The fraction of tests ¢ € ® for which root, is good is at least 1 —1/C > 1/2 (because the total
average of Avg(root,) over all ¢ € @ is g, and a good root node root,, is defined as a node with
Avg(root,) < C-g).

We will show that Ap satisfies ¢ for every good node root,, and thus ® is totally satisfiable.
Let ¢ € ® be such that root, is a good node. By the above consistency lemma, we know that
for 1 — a/6 of the good offspring v of root,, m¢,(G) = G,, and unless P is cancelled on C,, Ple,

2This procedure is almost equivalent to choosing a point uniformly at random, however there is a small (negli-
gible) bias in favor of points in the span of dst(root,,)

17

appears in G,. P will be cancelled on C, only if there is another LDF @ appearing in G whose
restriction to C, equals P’s restriction. For each @ the probability for this is bounded by (see

Proposition 2) TIC}]ZIO Since there are no more than 2¥¢ possible LDFs) that appear in G, P is

cancelled with probability < % 2Kg < 1)/2.

Thus there exists at least one good offspring v of root,, for which 7¢,(G) = G, and P|¢, appears
in G,. Recall that the distinguished points of each offspring v of a root node root,, dst(v), are
mapped to ¢’s variables. In addition, since v is good, Lemma 6 ensures that G, is legal, i.e. for
every @ appearing in G,, Q’s restriction to ¢’s variables satisfies ¢. It follows that ¢ is satisfied
by Ap. |
This completes the proof of soundness, Lemma 5.

We now fill in the proof of Lemma 6.

Proof: (of Lemma 6) We prove this statement by induction on L —i. We ascend from the
leaves to the top level, obtaining a super-LDF for each good node from the super-LDF's of its
good offspring.

For obtaining the base of the induction (i = L), recall that for every leaf u € nodes], the test
1y, is assigned a super-LDF SA(v,). The definition of nodes} implies ||SA(¢,)|| < gr. Since
SA is a consistent super-assignment, S.A(v,) agrees with m on all of dom,, (in particular with
all of manf(u) and dst(u)), and thus the base of the induction is established.

To see the inductive step (1 <i < L), let u € nodes] be a good level-i node. By the inductive
hypothesis for L — ¢ — 1, every good offspring v of u has a legal super-LDF G, (of degree 7;,1)
with norm < 2F7=1. Avg(v) such that G, agrees with m on dst(v) and on 1 — « of the points in
manf(v).

Let v be a good offspring of u. We define G,, as in the proof of Lemma 5, to be the same linear

combination as G,, taking LDF's P instead of P, where P : C, — F is defined by Vz € C, P(x) def

P(Ey,,, (x)). It follows from definition 8 and from the inductive hypothesis that G, is a super-LDF
of total degree d7;,1 - (bi;1)® as before. As before, this is bounded by < 7;/(D + 2).

For any good node v labelled by C,, let € C,, and let y = E,,,(r) € manf(v) C dom,.
Recall that we abbreviated m(xz) to mean m(var,(z)). Furthermore, we defined var,(y) =
var, (B, ., (z)) = var,(z), thus m(y) = m(z). Note also that by definition of G,, 7,(G,) = 7,(G,)-
By the inductive hypothesis, and since Ej,,, bijects C, to manf(v), we have that the equality:

7TﬂC(gv) = 7Ty(gv) = m(y) = m(x)

holds both (1) for 1 — « of the points x € C,, and (2) for every point x € C, such that y =
Ey,,. (x) € dst(v) .

By (1), and applying the consistency lemma (Lemma 7), we deduce a global super-LDF G, over
dom, of norm ||G,|| < 257%- Avg(u) and of degree 7; such that for 1 — a//6 of the cubes in S*,

e, (gu) - gv (*)

This constitutes at least 1 — /6 — 1/C' = 1 — «/2 of all the cubes in labels(u) (there are no
more than 1/C cubes outside S*, see Proposition 4). Now recall from the construction of the
offspring-labels (see Definition 14) that at least one half of the offspring v of u are labelled by
cubes in labels;(u). We deduce that 1 — 2 - «/2 = 1 — « of these cubes obey (x). Similarly,

18

labels,(u) make up at least one third of the total number of labels, thus (%) holds for ~ 1 — 2a
of them (and in particular for at least one cube in labelsy(u), which is all we’ll need).

Recall from the construction of the offspring-labels that the cubes C, € labelsy(u) have
dst(v) = E,,,,(dst(u)). By Definition 12, these points are mapped to the exact same vari-
ables: var,(dst(u)) = var,(dst(v)). As long as there exists one good offspring v of u, we’ll have
for every = € dst(u), y = Ey,,, (z) € dst(v), and by (2), 7,(G,) = m(z). We have shown,

Vo € dst(u) m,(G,) = m(z).

We have left to show that
Pr (7m:(Gu) =m(z)) >1—«

z€manf(u)

Consider the second half of u’s offspring, labelled by a label from

labels; (u) = U labels, (u)

x€vary (domy)\ Vy,

These offspring are actually divided into |manf(u)| parts, one per each point x € manf(u)
(with the correspondence var,(z) = x). By definition, the offspring v in 2’s sub-part have
dst(v) wf {Ebiﬂ(x)}. We have shown (recall (2) from before) that 7,(G,) = m(z) holds for any =
such that y = Ej,,, () € dst(v). Hence for every € manf(u), if there is a good node v labelled
C, € labelsyay, ()(u), then nx(g}) = m(z).

As shown above, 1 — « of u’s offspring labelled by cubes in labels; (u) are both good, and obey

e, (Gu) = G,. Hence for 1 —a of the points z € manf(u) there must be a good offspring v labelled
by C, € labelsyay, () (u) for which 7¢, (G,) = G,. In this case,

T2(Gu) = T2(7e, (Gu)) = 72(Gy) = m(z)

This establishes,
Pr)(m(gu) =m(z)) >1—«

z€manf(u

5.3 The Consistency Lemma

In this subsection we prove the consistency lemma, that allows us to deduce one global super-LDF
for any good node, assuming ”consistent” LDFs on its good offspring.

Lemma 7 (Consistency Lemma) Let u € nodes; for some 0 < i < L. Define 8* to be the

multi-set of cubes that label good offspring of u, S* o} {Cv € labels(u) ' v € nodes; } If for

every good offspring v of u there is a super-LDF G, over Cy, of total degree < r = 7i/(D+2) and
norm ||G,|| < 281 . Avg(v), such that

Pt (m,(G0) = m(z)) 21~ a

19

then there is a super-LDF G, over dom,, of total degree 7; = r(D + 2) and norm ||G,|| < 287" -
Avg(u) that obeys

Pr (1, (6.)=G,) > 1-a/6

Proof: Throughout the following proof, we make no effort to minimize the constants, but rather
to shorten the mathematical expressions in which they appear.

Unless otherwise mentioned, C, will denote the cube labeling the node v.

For simplicity, assume dom,, = F¢ (F% in case i = 0).

An [r,d]-LDF P : F¢ — F is called permissible with coefficient cp if cp # 0 and for at least 2/3
of the cubes C, € S*, Gy[P|c,] = cp. In this case we sometimes say that P appears with coefficient
cp in the cube C,. Obviously, an LDF P can be permissible with at most one coefficient cp. We
define the global super-LDF G, by

cp P is permissible with cp
VP € LDF,4: GJP| Y
0 P isn’t permissible

We claim that G, is the desired global super-LDF. We first claim that ||G,|| < 2-2F7"'Avg(u).
Proposition 5 The norm of G, is bounded by 2 - 2X""'Avg(u) = 217" Avg(u).

Proof: Denote by P, .., P, the permissible LDFs (if a = 0 we’re done), and denote ¢; def Gul P
Let us consider the average N of the norms ||G,||,

> 2k Avg(v) < 287 Avg(u)
C,eSs*

N Y :
7 2 16 < 5

CyES*
< 2L11g 2L11gcz—|—1<|]:|cg CL<< /

where the second inequality in the first line is true since averaging the norm over all of the offspring
is at least as large as the average of the good offspring.

We will lower bound N as follows. P; appears with ¢; in the super-LDFs of > 2/3 of the good
offspring, which means N > 2/3 - |¢;|. P, appears with ¢y in the super-LDFs of > 2/3 of the
good offspring, however some of its appearances can coincide with those of P;. Denote by v the
maximal fraction of cubes in §* on which possibly Pi|c = Ps|c. We know from Proposition 4 that
S* make up more than half of all cubes, and by Proposition 2 Pj|c = P»|c on no more than < &l fl

of all of the cubes, thus v < |2"‘|1 Hence N > 2/3-|ci|+(2/3—7)-|ca|. Continuing in this manner,

P3 adds at least (2/3 — 2v) - |e3| and we obtain

1/6 i
Ifa>g > P we get N > 2/ (% %7) “leil > g5 -5 - 1> \/|F|, a contradiction. Thus

a < 1/6v, and
° /2
N2 3 (5-=10) lal > 53 Il = 5G]
=1

20

and indeed ||G,|| < 2N < 2-2F7"1Avg(u) = 287" Avg(u). L]

We have left to show that for almost all of the cubes C, € 8*, ¢, (Gu) = G,.

Let us define, for every good node v, the remainder super-LDF: R, G, — 7e, (Gu) (the
definition of G, implies that every LDF P appearing in it has degree < r; subtraction is defined
as usual subtraction of two vectors in Z“PFP+2) Assume, for contradiction, that for at least an
a/6 fraction of the good nodes, R, # 0. We will derive a contradiction by finding an LDF P
such that P|c, appears with the same coefficient ¢p # 0 in R, in at least 2/3 + 7||G,|| fraction
of the good nodes v. This LDF P can agree with another LDF in G, on at most 7||G,|| fraction

of the good cubes. Hence on at least 2/3 of the good cubes, ¢ g, [Plc,] = ¢p + Gu[P], which
implies that P is permissible with coefficient ¢/, so by definition G,[P] = ¢, hence ¢p = 0, a
contradiction.

For every x € F4, define mg(z) % m(z) — mx(Gy). Obviously mg(x) = m,(R,) if and only if
m(z) = 74(Gy,). (This happens for at least 1 — v of the points z € C, for every C, € S*, by the
conditions of the lemma).

Proposition 6 Let R, G, - 7e,(Gu) be as before. There exists an [r,D + 2]-LDF P and a
coefficient cp # 0 such that
Lr (Ro[Ple]=cp) >0
where § = () ((%)9) and s & 2= Avg(u).
Proof: Consider the following random procedure:

1. For every cube C, € labels(u) choose a random LDF from the set
{Q € LDF, pis| Ry[Q] #0}. If C, & S* or this set is empty, choose nothing.

2. For every point € dom, choose a random value from the set {a € F | mg(z)[a] #0}. If
this set is empty, choose nothing.

3. Choose a random cube C, € labels(u) and a random point = € C,. If no value is chosen for
either the point or the cube, the procedure fails.

We are interested in pairs of good cube and point on it, on which the procedure doesn’t fail, and
that have relatively few possible values to choose from, and that are consistent. We eliminate
'bad’ pairs as follows.

For a cube C, € labels(u) define F1(C,) to be the predicate that evaluates to true iff C, € S*
and the set {Q € LDF, pio| R,[Q] # 0} is non-empty. Pre, crabetsw)(E£1(Cy)) > (1 —1/C) - /6
because 1 — 1/C of the cubes are in S* (since u is good), and we assumed for contradiction that
for /6 of these cubes R, is non-trivial.

For a cube C, € labels(u) define E5(C,) to be the predicate that evaluates to true iff E;(C,)
is true and also ||G,|| < 2- saoi7ey where s = 2"""Avg(u) bounds the average of |G, || taken over

nodes v € §*. We note that the average norm ||G,|| taken over cubes for which E; is true does

not exceed %. The standard Markov argument shows

a(l-

Pr (Ey(C))>=- Pr (Ei(C))>(1-1/C)- a/12

1
Cy€labels(u) 2 Cy€labels(u)

21

By the triangle inequality, | R, || = |G — 7c, (Gu)|l < 1G]l + [|Gull < ||yl + s hence the cubes C,
for which E5(C,) = true have |R,|| < 12s/a(l — 1/C) + s < 13s/a.

For a cube C, € labels(u), and a point = € C,, define E3(C,,z) to be the predicate that
evaluates to true iff F5(C,) = true and also = € C, and x obeys mg(z) = 7,(R,) and R, is not
ambiguous on x. We say, in this case, that the point z and the cube C, agree non-ambiguously.
Since for every good cube C, no more than « fraction of its points have mg(z) # 7,(R,), and no
more than amb(r, D + 2,||R,||) are ambiguous, it follows that

Pr (B3(Cp2)) = Pr(Ey(C))- (1 —a—amb(r,D+2,|[R,[))

Cy€labels(u)
TECy

> (1-1/0)-a/12-(1 — a — |F|7?)
> /100

(the second inequality follows from amb(r, D + 2, [|R,||) < w IRL? < |}'|_%).

The pairs of point x and cube C, for which E3(C,, z) = true are pairs that agree non-ambiguously,
and for which || R,|| < 13s/a.

For a cube C, € labels(u), a point x € C,, an [r, D + 2]-LDF @ (viewed as an LDF over C,)
and a value a € F, define E4(C,, z, @, a) to be the predicate that evaluates to true iff E3(C,,x) =
true and also Q(z) = a. We will lower bound the probability Pre, ;.0..(E1(Cy, z,Q, a)) where
C, € labels(u), x € C,, and @ and a are chosen according to the random procedure described in
the beginning of the proof (i.e. @ is chosen uniformly from the set {Q € LDF, p.2| R,[Q] # 0},
and a uniformly from the set {a € F|mg(z)[a] #0}. Note that when Ej is true, there are
no more than % LDFs that appear in R,. Since E4(C,,x,Q,a) = true implies by definition
E3(Cy,z) = true we know that mg(x) = 7,(R,), hence any value a randomly chosen for x has
a “matching value” in the set {Q € LDF, pi2| R,[Q] # 0}. This value is the chosen one with
probability at least ;3. Thus,

Pr(Ey(Cy, 2, Q, a)) = Pr(Es(Cy, x)) - %

Finally, note that if F4(C,,x, Q,a) = true, then R,[Q] = mg(x)[a] because the cube and point
agree non-ambiguously. Also, since in this case ||R,|| < 13s/a, the coefficient R,[Q] can be any

value from the set B % {#£1,...,£13s/a}, 26s/« values in all. Denote by E.(C,,z,Q,a) the
predicate that is the same as E; except that it evaluates to true only if in addition, R,[Q] =
mg(x)[a] = ¢. There must be at least one value ¢y € B for which

« a? «

« «
> . > — . — >
Pr(EC()(CIMx?Q?a)) - 268 Pr(E4(CU7x7Q7a’)) — 268 138 Pr(E?)(CU?x)) —_

We now apply the following corollary of [RS97],

«
L =Q(=)3
33852 100 (S)

Lemma 8 Let p = (%4)° for some constant ¢ > 0, and let S = labels(u) for labels(u) as above.
Let A: S — LDF, pyy be an assignment of [r, D + 2]-LDF per cube, and let Ay : F* — F be an
assignment of value per point. If

Pr_ (AlCl(z) = Ao[z]) = p

CerS,xeRC -

then there is an [r,d]-LDF P for which Precs(Ple = A[C]) > p3.

22

We omit the proof of this lemma, and note that a very similar cube vs. point version appears in
[DFK*99]. We apply this lemma as follows. We take & = labels(u). For every cube C, whose
selected value @ has R,[Q] = o, assign A[C,] = @, otherwise let A[C,] be a totally random value.
For each point z € F%, we define Aq[z] to be the value selected for it in the random procedure.
Again, if no value was selected, we assign a totally random value. We have
o (AIC)(2) = Aola]) 2 Pr(Ee (C, 2, AC), Adli)
The probability on the right hand side is taken over a random choice of cube C € § and point
xz € C, and over the random choices made when defining A[C] and Ao[z]. It follows easily that
this probability is at least > Pr(E,,). Thus we obtain using Lemma 8 an LDF' P that agrees with
> (Pr(E,))® > Q ((%)9) fraction of the cubes and their chosen values. Of the randomly assigned
cubes, P is expected to appear in less than 1/|F|. Thus at least half of the cubes in which P
appears also obey R,[P|c,] = ¢o. These cubes make up at least 6 = 3 - (Pr(E,,))* = Q ((%)9) of
the good cubes. []
We have found a polynomial P that appears (with the same coefficient ¢y # 0) in a non-
negligible fraction of the cubes (i.e. R,[P|c,] = ¢o for a non-negligible > ¢ fraction of the good
offspring v of u). We now show that P, in fact, appears in most of the points with coefficient ¢,

Proposition 7 For at least half of the points © € dom,,, mg(z)[P(z)] = ¢.

Proof: Let N = {x € dom,, | mp(z)[P(x)] # ¢o } be the set of points where P does not appear
with coefficient ¢y. We shall prove that u 4f d'(ﬂu| < % We now state a hitting lemma that
shows that if N is not too small, then almost all of the cubes must hit a non-negligible fraction

of the points in .

Lemma 9 (Hitting Lemma) Let 0 < 8 < 1 and let D = F¢. Let N C D be a set of points,
|IN| > 5 |D|. Most (1) cubes in labels(u) (for u as above) have at least g of their points in
N.

_ 8
BIF]

The proof of this lemma is easily obtained using the pairwise independence of points in a random
cube, and is omitted (special care should be given to the fact that the points in these cubes are
distributed only almost uniformly: certain points — e.g. span(dst(u)) — appear more often than
others).

We now know that 1 — ﬁ of the cubes in labels(u) (1 — % fraction of &*, since |S*| >
1 [labels(u)|) have £ of their points from N. Consider only cubes C, whose norm isn’t too large
— |Ry]| < 2s/(6/2) (the average of |R,|| over all nodes v € §* is < s+ s = 2s, hence we are
ignoring a §/2 fraction). If § > a4+amb(r, D+2,2s/(0/2)) then every such cube must agree non-
ambiguously with at least one point from /N. This implies that P does not appear in these cubes
(that constitute at least 1 — % —0/2 fraction of §*) with coefficient ¢y, and hence, 6 < % +4/2.
Altogether we have that

p < max (2(amb(r, D +2,25/(6/2)) +), %) < %

[]
Having P appearing in most points, we now show that P appears in most cubes with coefficient
Cop.

23

Proposition 8 For at least 3/4 of the cubes C, € 8*, Ry[P|c,] = ¢o-

Proof: Let N = {z € dom, | mg(x)[P(x)] = ¢ }. N has, by Proposition 7, most of the points in
Fd. According to the hitting lemma, all except % of the cubes in labels(u) (% of 8*), have ;
of their points from N.

By the Markov inequality, at most 1/10 of the cubes in &* have norm [|R,|| < 10-2s = 20s,
and thus no more than 20s LDFs appearing in them. Therefore 1 —1/10 — % > 3/4 of the cubes
in §* have % of their points from N, and are assigned no more than 20s LDFs. Denote these
cubes §*(P). We will show that for every cube C, € §*(P), Ry[P|c,] = co-

Let C, be a cube in S*(P). The fraction of points of C, on which mp agrees with R, non-
ambiguously and the point belongs to N is at least § — o — amb(r,D + 2,20s) > 1 (recall
a < 1/100). For each such point = € C,, there is an LDF @, Q(z) = P(z) with R,[Q] = ¢y. For
every such point there are no more than 20s candidates, hence there is at least one LDF () with

R,[Q] = ¢o that is equal to P on at least

1 1 r(D+2)
5 20s | F|

of C,’s points. This LDF is therefore equal to Pl¢, (two distinct [r, D + 2]-LDFs can agree on at

most “242 fraction of their domain).

17
We have shown that R,[P|c,]| = ¢ for all cubes C, € §*(P), which make up at least 3/4 of the
cubes in S*. []

We unveiled an LDF P that appears with the same coefficient ¢y # 0 in R, for at least
3/4 > 2/3 + v]|Gu.]| of the good nodes v. Hence P appears with the same (¢ = ¢y + G,[P])
coefficient in G, for at least 2/3 of the good nodes v. Thus, P is permissible with coefficient ¢,
and by our definition of G,, G,[P] = ¢’. Thus ¢y = 0, a contradiction. [|

6 g¢-CVP is NP-hard

We begin by defining the Closest Vector Problem (CVP), and its gap version g-CVP. We then
define an intermediate problem called Shortest Integer Solution (SIS), and show a reduction from
g-SIS to g-CVP. We then show the simple reduction from ¢-SSAT to ¢-SIS and therefore to
g-CVP. We restrict ourselves to [; norm, although the results can be easily translated to any [,
norm, 1 < p < oo.

A lattice L = L(vy, .., v,), for linearly independent vectors vy, .., v, € RF is the set of all integral
linear combinations of vy, .., v,, L = {X a;v; | a; € Z }.
The closest-vector problem is defined as follows:

CVP. Given (L,y) where L = L(vy,..,v,) is a lattice and y € R*, find a lattice vector closest
to y (i.e. a lattice vector v € L that minimizes ||v — y||.

Approximating CVP to within factor ¢ = g(n) means finding a lattice vector v whose distance
from vy, ||v — y||, is no more than ¢ times the minimal distance. The gap version of CVP is a
decision problem as follows,

24

g-CVP. Given (L,y,d) for a lattice L, a vector y € R¥, and a number d, distinguish between
the following two cases:

Yes: There exists a lattice vector v € L for which ||v — y|| < d.
No: For every lattice vector v € L, ||lv —y|| > ¢ - d.

Proving that ¢g-CVP is NP-hard means that having an approximation algorithm to within factor
g would imply P = NP.

6.1 Shortest Integer Solution - SIS
Definition of SIS and ¢-SIS

We define a variant of CVP named Shortest Integer Solution (SIS) and its gap version, g-SIS. We
then show a simple reduction from g¢-SIS to g-CVP.

SIS: Given (B,t) for an integer matrix B with columns by,..,b, and a target vector ¢ €
L(by,...,by), such that there exists (ai,..,a,) with ¥ a;b; = ¢, find such a vector (ay, .., a,)
that minimizes Y |a;|. In other words, find the shortest integer solution for the linear system
B-x=t.

The gap version of SIS is as follows,

g-SIS: Given (B, t,d) with B and ¢ as before, and a number d, distinguish between the following
two cases:

Yes: The shortest integer solution has length d or less.

No: The shortest integer solution has length > ¢ - d.

Reducing ¢-SIS to ¢g-CVP

Given an instance of ¢-SIS, (B, t, d), we efficiently construct a lattice L and a target vector y such
that ’yes’ instances of ¢-SIS are translated into ’yes’ instances of g-CVP and 'no’ instances are
translated into 'no’ instances. The lattice L is constructed by multiplying the matrix B by a very
large number w, and adding a distinct 1-coordinate to each column. The vector y (that we are
to approximate from within the lattice) will be ¢ multiplied by w with zeros in the n additional
coordinates:

wB wt
0 1 0

To see that ’yes’ instances map into ’yes’ instances just note that any solution a to the system
Bz = t, gives a lattice vector L - a such that ||L-a — y|| = ||a]|. Let w be such that the entries in
the upper half of the matrix are all integer multiples of g - d + 1. The next lemma will show that

25

'no’ instances of g-SIS (where the shortest solution has length > ¢ - d) map into 'no’ instances of
g-CVP.

Lemma 10 If there is a lattice vector, L - a, such that r e IL-a—y|l <g-d, then there is an

integer solution to (B,t) of length r.

Proof: r < gd means that L - a = y in all but the lower n coordinates, otherwise the distance
r would be at least g - d + 1. In other words, a is a solution to the ¢g-SIS instance. The lower n
coordinates of L - a are exactly equal to a, and therefore ||a|| = r. [

6.2 From ¢g-SSAT to ¢g-SIS

We shall prove that ¢-SIS is NP hard for ¢ = n®'°81°8" (for some constant ¢ > 0) by reducing
g-SSAT to it.

We begin with a g-SSAT test system [= (U = {¢1,.., 0.}, V ={v1, .., vm}, {Ryys s Ry })
where W is a set of tests over variables V', and for each ¢ € ¥, R, is the set of satisfying
assignments for). We (efficiently) construct from it an instance of ¢-SIS, (B, t,d). We then show
that the 'yes’ instances of g-SSAT are mapped to ’yes’ instanceof g-SIS and 'no’ instances to 'no’
instances.

We show that a consistent natural super-assignment to ¥ translates to a short (i.e. of /; norm
|¥|) solution for (B,t). On the other hand we show that any solution that is shorter than g - [¥|,
translates to a consistent super-assignment of norm < g for W.

The General Construction. The matrix B will have a column for every pair of test ¢ € ¥
and a satisfying assignment r € R, for it. The upper rows of B will take care of consistency, and
the lower rows will take care of non-triviality.

Non-Triviality Rows. There will be a row designated to each test. In the row of v all of the
columns associated with 1 will have a 1, and all other columns will have zero.

Consistency Rows. We shall have |F| rows for each pair of tests ¢; and ¢; and common
variable x (there will be a - |F| rows if ¢ and 1; share a variables). These rows contain a
consistency-ensuring gadget and only the columns associated with v; and 1; will have non-zero
values in these rows. The gadget will ensure that the super-assignments to 1; and 1; are consistent
on their common variable x.

The target vector ¢t will be an all-1 vector. We set d wf |P].

We now turn to describe the structure of the gadget itself. This will complete the description of
the ¢-SIS instance.

The Gadget. Let’s concentrate on the gadget for the pair of tests v; and v; with common
variable z. This is a pair of matrices G of dimension (|F| x |Ry,|) and Go of dimension (|F| x
‘R%). The matrices G; and G5 have |F| rows, each corresponding to a possible assignment for
the variable z. The r-th column in G is the 'characteristic function’ of r|,, i.e. zeros everywhere
except for a 1 in the r|,-th coordinate. Similarly, the column in G5 corresponding to r’ is the

26

Consistency Gadget for 9;,v¢;,

Gy / i ¥; G>
R Tk / STL T2 TR
A f / \\ / \ /J \
eacflo‘\yalgz = 00 0 \ ‘J‘/ \\\ 11 1
of I ol I AR
r1]s’s row 1 0 % - I T 1 ’
LR e e RN
| . . . I
A IR
00 o T
\ / | | \ ’c/
| \ 0.0 0.0 |
Consistency Rows | 1.1 i

Non-Triviality Rows

Figure 1: The SIS matrix B

negation of the characteristic function of r'|,, i.e. 1 everywhere except for one 0 in the r'[,-th
coordinate (see Figure 1).

Proving Correctness. Let us now show that ’'yes’ instances of the ¢g-SSAT map to ’yes’
instances of the g¢-SIS.

Lemma 11 If there is a consistent natural super-assignment to the g-SSAT test system W, then
there is a solution of Iy norm |V| to the above g-SIS instance.

Proof: We take the consistent natural super-assignment S and construct from it a solution to
the g-SIS. We will concatenate the vectors S(¢)S(¢2)... (turning n |Ry, |-coordinate vectors into
one long vector with Y, |Ry,| coordinates) to obtain our alleged solution to ¢-SIS. The target
vector is reached in the non-triviality rows because S is natural i.e. it assigns a +1 coefficient to
exactly one column of every test.

To show that the target vector is reached in the consistency rows, consider the set of | F| rows be-
longing to an arbitrary pair of tests 1; and v; with common variable z. Suppose S(¢;)[r1], S(¢;)[r2]

are the single 1’s in S(¢;), S(¢;) respectively (S is natural). S is consistent so ry|, = r2|,. By the
construction of B we see that

(& T2
1/0 1/1 1
| o 1 1
1
T1|J,‘ 1 + T2|l‘ 0 = 1
71\ 0 |FI\ 1 1

and the target vector is reached in these rows.

27

The length of the solution is the sum of the lengths of the S(z)’s, and since ||S|| = 1, it is
exactly || [

We will now show that 'no’ instances of the ¢-SSAT map to 'no’ instances of the ¢-SIS by
showing that if we ended up with an instance that isn’t a 'no’ instance, then we must have started
with a non-'no’ instance.

Lemma 12 Let s be a solution to the above g-SIS instance, ||s|| < g |¥|. There exists a non-trivial
consistent super-assignment S of norm < g for the g-SSAT instance.

Proof: We show how to construct S from s: we "break’ s into |¥| pieces of length |R,|, one for
each test ¢» € W. We obtain a super-assignment S whose norm is Il%,—|||s||

For any arbitrary ¢ € ¥, the target vector is reached in the 1-th row of the non-triviality rows.
This implies that

> S =1 ®
TERy
and in particular S is non-trivial (the sum of the coordinates in S(¢)) remains the same under
projection to any single variable).
Let t¢;,1; € ¥ be arbitrary tests with a common variable . We shall show that 7,(S(¢;)) =
7.(S(1;)). Consider the |F| rows that correspond to v, ;, z. In each of these rows the sum of
the vectors is 1, in other words, for any f € F,

> SWalrl+ X SWylrl=1 (2)

rirle=f rrla#f
Subtracting (1) for ¢; from (2) gives,

Y. SWlrl= > SEylr]
rirle=f rirle=f
which, by definition of the projection means 7, (S(¢;)) = m,(S(¢);)). We hence have a consistent
super-assignment of norm ||| < g.
[
The two above lemmas complete the reduction of g-SSAT to ¢-SIS.

6.3 Other [, norms

Our result actually holds for CVP with any [, norm for 1 < p < oo, as seen by the following
reduction.

Let us begin by observing that in our reduction from g-SSAT to CVP via g-SIS, a ’yes’ instance
(a test-system with a consistent natural super-assignment), was transformed to a g-SIS instance
having a solution of length |¥|, which was transformed to a CVP instance (L, y, dist = |¥|) such
that there is a lattice vector v € L with ||v — y||l1 = |¥|, and such that the vector v — y is a

zero-one vector, thus [[v —y|l, = {/|lv —ylli = {/[¥].

28

Now take the same lattice L and target vector y as a CVP,, instance with distance parameter
/¥, (L,y,dist, = {¢/|¥|). The above observation simply says that a 'yes’ instance has a solution

whose distance is {/|¥|.
On the other hand, if (L, y,|¥|) is a 'no’ CVP; instance, then every lattice vector v € L, has

lv —yll1 > g [¥]. Since ||z||, > ¢/||z||; for any integer-vector z, we have ||v — y||, > ¢/g - |¥| =
VAR

This establishes that it is NP-hard to approximate CVP,, to within a factor of ¢/g = nc/loslen
for some constant ¢, > 0.

7 Discussion

Our result for the Closest Vector Problem was obtained via g-SS AT using recursive composition,
that alternates between two types of algebraic encodings: the embedding extension, and the low-
degree extension. This technique was adapted from the proof of a low error-probability PCP
characterization of NP [DFK*99], and proved to be useful in this setting as well.

Two interesting open problems remain. The first is the Shortest Vector Problem, the homoge-
neous counterpart of CVP. This problem is easier to approximate than CVP, as an approximation
algorithm for CVP yields an approximation for SVP [GMSS99], yet currently the best approxima-
tion algorithms for it give no better factors than those for CVP. However, where hardness results
go, the SVP lags behind, with known hardness of approximation for a factor no larger than some
constant.

The hardness of approximating SVP is of special interest in cryptography, where the hardness
of this problem serves as the basic assumption of a crypto-system of Ajtai and Dwork, see [AD97].

The second open problem is to achieve hardness of approximation factors for CVP that are
polynomial in n, say n° for some ¢ > 0. Our technique seems incapable of doing this, as the
recursive structure requires super-constant depth, limiting the blow-up allowable at each level.

29

References

[ABSS93]

[AD97]

[Ajt96]

[Ajt98]

[ALM*98]

[AS98]

[Bab86]

[CNOS]

[CooTl]

[DFK*+99]

[GGIS]

[GMSS99]

[LevT73]

S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima
in lattices, codes and linear equations. In Proc. 3/th IEEE Symp. on Foundations of
Computer Science, pages 724-733, 1993.

Mikl6s Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-
case equivalence. In Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, pages 284-293, El Paso, Texas, 4-6 May 1997.

M. Ajtai. Generating hard instances of lattice problems. In Proc. 28th ACM Symp.
on Theory of Computing, pages 99-108, 1996.

Miklés Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions.
In Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC-
98), pages 10-19, New York, May 23-26 1998. ACM Press.

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM,
45(3):501-555, May 1998.

Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characteri-
zation of NP. Journal of the ACM, 45(1):70-122, January 1998.

L. Babai. On Lovasz’s lattice reduction and the nearest lattice point problem. Com-
binatorica, 6:1-14, 1986.

J.Y. Cai and A. Nerurkar. Approximating the SVP to within a factor (1 + 1/dim®) is
NP-hard under randomized reductions. In Proc. of the 15th Annual IEEE Conference
on Computational Complezity, pages 46-55. 1998.

S. Cook. The complexity of theorem-proving procedures. In Proc. 8rd ACM Symp. on
Theory of Computing, pages 151-158, 1971.

I. Dinur, E. Fischer, G. Kindler, R. Raz, and S. Safra. PCP characterizations of NP:
Towards a polynomially-small error-probability. In Proc. 31st ACM Symp. on Theory
of Computing, 1999.

O. Goldreich and S. Goldwasser. On the limits of non-approximability of lattice prob-
lems. In Proc. 30th ACM Symp. on Theory of Computing, pages 1-9, 1998.

O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating shortest lattice
vectors is not harder than approximating closest lattice vectors. Inform. Process. Lett.,
71(2):55-61, 1999.

L. Levin. Universal’nyie perebornyie zadachi (universal search problems : in Russian).
Problemy Peredachi Informatsii, 9(3):265-266, 1973.

30

[LLL82]

[LLS90]

[Mic98]

[RS97]

[Sch85]

[VEBS81]

AK. Lenstra, H-W. Lenstra, and L. Lovasz. Factoring polynomials with rational
coefficients. Math. Ann., 261:513-534, 1982.

J. Lagarias, H.-W. Lenstra, and C.P. Schnorr. Korkine-Zolotarev bases and successive
minima of a lattice and its reciprocal lattice. Combinatorica, 10:333-348, 1990.

D. Micciancio. The shortest vector in a lattice is hard to approximate to within some
constant. In Proc. 39th IEEE Symp. on Foundations of Computer Science, 1998.

R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proc. 29th ACM Symp. on
Theory of Computing, pages 475484, 1997.

C.P. Schnorr. A hierarchy of polynomial-time basis reduction algorithms. In Proceed-
ings of Conference on Algorithms, Pécs (Hungary), pages 375-386. North-Holland,
1985.

P. van Emde Boas. Another NP-complete problem and the complexity of computing
short vectors in a lattice. Technical Report 81-04, Math. Inst. Univ. Amsterdam, 1981.

31

