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Introduction

Computational Complexity Theory is the study of the complexity of computational prob-
lems, measured in terms of the amount of resources required for solving them.

A computational problem is a function, from the input to the output. Solving a com-
putational problem means devising a systematic method, i.e. an algorithm, that finds the
right output for every given input.

Optimization Problems

In an optimization problem, for each input there are many possible outputs, each assigned
some numeric value by an objective function. An algorithm is said to solve an optimiza-
tion problem if it finds, for any given input, an output of optimum value (minimum or
maximum). Consider, for example, the Minimum-Vertex-Cover problem.

• Input: An undirected graph, G = (V,E).

• Output: A subset S ⊆ V touching all edges, that is, ∀e ∈ E, e ∩ S 6= φ.

• Objective: Minimize |S|.

The first question one asks, when faced with a computational problem, is whether or
not there can be an efficient algorithm for it, i.e. is it tractable. As it turns out, many
computational problems that arise naturally, including Vertex-Cover problem, are NP-hard.
Thus, unless P = NP , there is no efficient algorithm for any of these problems.

Approximation Problems

For NP-hard optimization problems, the next best thing to finding the optimal solution
would be to find an approximate solution that is, for example, at most twice the minimum
(in case of a minimization problem). We say that an algorithm approximates the optimum
to within a factor g, if it finds a solution that is provably no more than g times the optimum,
in case of a minimization problem, or, in a maximization problem, at least the optimum
divided by g.
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For example, the following simple algorithm achieves a factor-2 approximation for the
Minimum-Vertex-Cover problem. The algorithm constructs the set of vertices greedily, by
adding at each step, both vertices of an edge that is not yet covered.

Great effort has been directed at finding approximation algorithms for problems that
are NP-hard in their exact version. Some problems turn out to be approximable, while
others are NP-hard even to approximate. Many times a problem yields itself to some loose
approximation, yet remains NP-hard to approximate to within tighter (closer to 1) factors.

Gap Problems

The infeasibility of approximating a given optimization problem, is usually established by
proving NP-hardness for the corresponding decision-like version of it, called the gap version.
A gap-problem is a promise problem, with two parameters g1 < g2, such that the inputs are
promised to be such that their optimal value is either greater than g2 or smaller than g1. An
algorithm solving such a problem has to decide whether (assume a minimization problem)
the minimum is smaller than g1 (hence the instance is a ’yes’ instance), or, whether the
optimum is greater even than g2 (and the instance is a ’no’ instance). On instances whose
minimum falls within the gap (g2, g1), the algorithm is allowed to return an arbitrary result;
attributing the use of the term gap.

An algorithm approximating the optimum to within g1
g2

could distinguish ’yes’ instances
from ’no’, according to whether or not its result exceeds g2. Clearly, if the optimum is
smaller than g1, then the approximation algorithm could not have replied with a value
larger than g2. Thus, NP-hardness for the gap-version of a given problem, rules out the
existence of an efficient approximation algorithm for it, unless P = NP .

PCP - Probabilistically Checkable Proofs

The complexity of many approximation problems is by now settled and a tight bound on
the approximation ratio that can be efficiently achieved for them has been obtained. That
is, it has been shown for these problems, that the approximation factor of the best known
polynomial-time algorithm cannot be even marginally improved, unless P=NP. Hardness
results for approximation problems, almost without exception, rely on the PCP character-
ization of NP as a starting point. The fundamental insight of the PCP characterization of
NP is that it is NP-hard to distinguish between SAT formulas that are completely satisfied,
and those that are extremely non-satisfiable, or, in other words, that gap-SAT is NP-hard.
A SAT instance is a set of variables, and a set of local-constraints over them, each depend-
ing on the value of only a constant number of variables. The aim is to assign values to the
variables that satisfy as many local-constraints as possible.

The PCP theorem was originally stated and proved in terms of proof systems. Imag-
ine a verifier trying to verify correctness of some very long written proof. Rather than
reading the entire proof, the verifier tosses some coins, and then probes the proof in a few
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places. Based on the values read from the proof, the verifier accepts or rejects the proof.
The error probability of the verifier is the probability that the verifier accepts an incorrect
proof, or rejects a correct one. [FGL+91] discovered a connection between probabilistically
checkable proofs, and approximation problems (specifically, Max-Clique). The PCP theo-
rem [AS92, ALM+92], quite surprisingly, showed that the class NP has such proofs, where
the verifier reads only a constant number of bits and has constant error-probability. This
was a breakthrough in the study of approximation problems, which brought about a flood
of hardness of approximation results [ALM+92, LY94, BGLR93, BGS98, H̊as99, H̊as97], to
mention a few.

The formulation of the PCP theorem as the NP-hardness of gap-SAT is immediate, by
taking one variable for each bit of the proof, and translating every test performed by the
verifier to one local-constraint, imposed on variables corresponding to the verifier’s probes,
allowing only values that would make the verifier accept.

PCP characterizations of NP have served very well in resolving the complexity of ap-
proximation problems, leaving only a handful of classical optimization problems with the
complexity of their approximation unsettled.

In this work we study the hardness of two combinatorial optimization problems, Minimum-
Vertex-Cover and Closest-Vector, showing them NP-hard to approximate to within larger
factors than previously known.

The Minimum Vertex Cover Problem

The Minimum Vertex Cover can be easily approximated to within a factor of 2, as de-
scribed above. This can be only slightly improved, as the best known approximation algo-
rithm [Hal00, BYE85, MS83] yields a factor only slightly smaller than 2. As to hardness
results, the scheme of [BGS98, H̊as99, H̊as97], quite successful in achieving tight bounds
for problems such as Max-3-Sat, Max-Linear-Equations, Max-Clique, was able to show
Minimum-Vertex-Cover NP-hard to approximate to within a factor no larger than 7

6
, leav-

ing open the gap between 7
6

and 2.

The general scheme can be summarized as follows. Start with a gap-SAT instance, and
replace each of the variables, with a set of variables representing its encoding, and each
local-constraint with new constraints – whose form varies according to the problem at hand
– that both verify the consistency of the encoding, and that the variables’ encoded values
satisfy the original local-constraints.

The encoding utilized in that scheme, as proposed in [BGS98], is the long-code, the
most extensive binary code, whose bits correspond to all possible Boolean functions over
the code’s domain.

The p-biased–long-code. We introduce a generalization of the long-code, which we refer
to as the p-biased–long-code, namely, a long-code on whose bits a probability distribution is
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superimposed. Considering non-uniform distributions, opens the door to new techniques for
analyzing the long-code, clarifying some of its initially complicated structure. We describe
a new connection between analyzing the long-code and the study of influences of variables
on Boolean functions. This connection enables the use of known results from that field, in
particular a very useful theorem of Friedgut [Fri98], for decoding the p-biased–long-code,
extracting from it a few permissible values.

Composition. To utilize the p-biased–long-code, however, requires a redesign of the
manner by which the Composition technique is applied. This new composition scheme
starts with a phase in which the initial gap-SAT is preprocessed, coming up with a new set
of symmetric variables whose consistency constraints are more suited for our purpose. An
important feature of these variables, is that setting the value of one variable leaves at most
two possible values for certain ’neighboring’ variables. We then construct a graph, whose
vertices correspond to encodings with the p-biased–long-code, of the assignments to these
new variables.

Our proof must show that a small vertex-cover in this graph corresponds to a satisfying
assignment to the initial gap-SAT instance. A difficulty arises from the fact that highlight-
ing a small set of permissible values for our new variables, is not enough, and we must
be able to distinguish one value for a significant portion of the variables, such that these
distinguished values are consistent with each other.

This is achieved, with the aid of some lemmas from extremal set theory, that bound
the size of intersecting families. This translates to show that if the minimum-vertex-cover
in our graph is small enough, then it must distinguish one value for a significant portion of
the variables. Based on these distinguished values we can derive global consistency, noting
that as the initial consistency constraints between the new variables are rather loose, this
only works provided p < 3−

√
5

2
≈ 0.382.

The Closest-Vector Problem

An n-dimensional lattice L = L(v1, .., vn), for linearly independent vectors v1, .., vn ∈ Rk

is the additive group generated by the vectors, i.e. the set L = {
∑
aivi | ai ∈ ZZ}. Given

L and an arbitrary vector y, the Closest Vector Problem (CVP) is to find a vector in L
closest to y in a certain norm.

The best known polynomial-time algorithm approximating CVP, is an extension of the
famous [LLL82] lattice-reduction due to [Sch85, Bab86], that approximates CVP to within
(1 + ε)n, for any constant ε > 0. As for hardness of approximation results, CVP is known
to be NP-hard to approximate to within any constant, and quasi-NP-hard to approximate
to within 2log(1−ε) n for any constant ε > 0 [ABSS93]. Still, there is quite a large gap
between the smallest factor achievable by an algorithm and the largest factor for which
hardness is known. Moreover, a third type of results [LLS90, GG98] provide indication
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that approximating these problems to within certain polynomial factors, is not NP-hard,
unless the polynomial-time hierarchy collapses.

The proof of [ABSS93] utilizes amplification techniques, in which the dimension of the
instance grows faster than the factor for which hardness of approximation is obtained. It is
therefore unlikely that using this technique, even if allowing a super-polynomial blow-up,
one can obtain hardness for factors larger than 2(logn)1−ε for any constant ε > 0.

We improve on [ABSS93] in two ways. First, we go beyond the factor of 2(logn)1−ε for any
constant ε > 0, which was the previous hardness-of-approximation factor known for CVP.

Instead, we achieve a factor of 2
logn

log logn = n1/log logn. Furthermore, we show approximating
CVP is NP-hard for these large factors, compared to the previously known quasi NP-
hardness.

As the known PCP characterizations of NP seem inadequate for showing hardness of
approximating CVP to within large factors, we introduce a new NP-hard gap problem,
S-SAT. This problem is also a gap version of SAT, one with a different objective function.
The main part of our proof is to establish the NP-hardness of S-SAT, and is carried out
via similar techniques to the ones used for proving the PCP theorem. We apply a recursive
composition, employing two alternate types of algebraic extensions, to achieve a gap of
nc/ log logn.

This work is divided into two parts. Part I, devoted to the study of Minimum-Vertex-
Cover, is based on [DS01]. Part II of this work, dealing with the Closest Vector Problem,
is based on [DKS98, DKRS99].
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Part I

Vertex Cover





Chapter 1

Introduction

A combinatorial optimization problem, that maybe most captures the limitations of current
technique for proving hardness of approximation, is Minimum-Vertex-Cover: the problem of
finding a smallest set of vertices that cover (touch) all edges in a given graph. The comple-
ment of a vertex cover must be an independent set, a set of vertices with no edges between
them. Thus, finding the Minimum-Vertex-Cover is equivalent to finding the Maximum-
Independent-Set. Where approximation is concerned, however, since the minimum vertex-
cover may be much larger than the maximum independent set, a good approximation of
the former does not carry on to the later. In fact, it has been proven to be hard to ap-
proximate the maximum independent set to within |V |1−o(1) [H̊as99, EH00, Kho01], yet
easy to approximate the minimum vertex cover to within a factor slightly smaller than
2 [Hal00, BYE85, MS83].

In what follows, we extend current technique, to show it is hard to approximate Minimum-
Vertex-Cover to within a factor larger than the previously known 7

6
[H̊as97]. More specifi-

cally, a corollary of our analysis is the following:
Corollary 4.2 Given a graph G, it is NP-hard to approximate the size of the smallest
Vertex-Cover to within a factor of 1.361.

Background. Let us now briefly describe the background related to PCP, hardness of
approximation, and reductions utilizing one to obtain the other.

Minimum Vertex Cover belongs to the class APX-complete, defined in [PY91], of prob-
lems whose hardness of approximation is interrelated. The PCP theorem [AS92, ALM+92]
implies that it is NP-hard to approximate, to within some constant factor, every problem
in this class. This, however, is far from providing a tight bound for these approximation
problems, as the constant factor of approximation whose hardness is thus obtained is usu-
ally quite far from the known upper-bound. For tight bounds one is required to work a
little harder, and sometimes devise ingenious reductions and elaborate analysis.

One of the most successful recipes for such reductions, is the scheme of [BGS98, H̊as97,



10 Introduction

H̊as99], whose rough sketch is as follows.

Given a gap-SAT instance Ψ, first apply the parallel repetition lemma of [Raz98]. This,
for any parameter k, results in a new gap-SAT problem, which we refer to as Par [Ψ, k], over
(non-binary) variables of two types X and Y , and in which each local-constraint depends
on one variable of X and one of Y . Par [Ψ, k] has a satisfying assignment if Ψ has one, and,
otherwise, not even an arbitrarily small (exponentially small in k) fraction of the constrains
can be satisfied.

In the next step, one applies a version of the Composition technique of [AS92], as
proposed in [BGS98], to this specific setting. The composition replaces each of the variables
of X and Y , with a set of variables representing its encoding, and each local-constraint
ϕ(x, y) ∈ Par [Ψ, k] with constraints that both verify the consistency of the encoding of x
and y, and that x and y’s encoded values satisfy ϕ(x, y).

This new set of constraints may take different form according to the problem one intends
to show hard. The next step of the reduction, if necessary, translates those local-constraints
to an instance of the problem at hand, whose solution, even if only approximates the best
solution, implies a satisfying assignment for Par [Ψ, k] and thereby for Ψ as well.

The encoding utilized in that scheme, as proposed in [BGS98], is the long-code, the
most extensive binary code, whose bits correspond to all possible Boolean functions over
the code’s domain. Alternatively, the long-code can be represented as a sequence of subsets
of R, specifying, for each bit, which of the elements of R has 1 on that bit of their encoding.
The long-code is extremely inefficient in size, however, since the range of values variables
in X and Y can take is rather small, this poses no problem. Numerous tight bounds for
approximation problems, such as Max-3-Sat, Linear Equations, Max-Clique, have been thus
obtained. Some of these involve an extensive analysis of consistency tests over long-codes,
using Fourier analysis [H̊as99, H̊as97], showing it suffices, for example, to probe the value
of only three bits of the long-codes of x and y to be assured, with high probability, of the
consistency within the encoding of x and y as well as the consistency between the two.

Vertex Cover. Nevertheless, where other open questions regarding the hardness of ap-
proximation problems rise and fall, Vertex-Cover has stood still, leaving its best hardness
result nowhere higher than the 7

6
factor of [H̊as97], which is still far from the best known

upper bound [Hal00, BYE85, MS83] of a factor slightly smaller than 2.

Our analysis herein amends the [BGS98, H̊as97] scheme in several ways, most notably
by introducing a generalization of the long-code, which we refer to as the biased-long-
code, namely, a long-code on whose bits a probability distribution is superimposed. The
probability attached to each Boolean function (that is, a bit of the code), is determined by
tossing a p-biased coin for each element in the domain, taking true with probability p, and
false with probability 1− p.

Given an assignment A to the bits of a p-biased–long-code, the weight of A, namely, the
fractional size of the set of bits assigned 1 by A, is determined according to this probability
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distribution. The original long-code is a special case of this construct, in which p = 1
2

and
the distribution over the bits is uniform.

To utilize the p-biased–long-code, however, requires a redesign of the manner by which
the Composition technique is applied. This new scheme starts with a phase in which
Par [Ψ, k] is preprocessed, coming up with a set of variables Z whose consistency constraints
are quite loose, nevertheless, whose structure can still be utilized by our analysis to deduce
global consistency assuming local-consistency, which, in this case, translates to a large
independent set.

Overview of the Proof. Starting with a gap-SAT instance Φ = Par [Ψ, k], we first
preprocess it, coming up with a new set of blocks Z whose consistency constraints are more
suited for our purpose. We then construct a graph G[p,p•](Φ), whose vertices correspond
to encodings with the p-biased–long-code, of the assignments to the blocks Z. We next
proceed to show that G[p,p•](Φ) has an independent set whose weight is p−ε if Φ is satisfiable,

or otherwise, that the weight of the largest independent set in G[p,p•](Φ) is at most p•
def
=

max(p2, 4p3 − 3p4) + ε (provided p < 3−
√

5
2

≈ 0.382). While the first (completeness) part
follows directly from the definition of the p-biased–long-code, the soundness part requires
deeper analysis of assignments to the p-biased–long-code, and relies heavily on an extensive
study of the influence of variables on Boolean functions. This study has been carried out for
quite a while, in an impressive sequence of papers [BOL89, BOLS88, KKL88, BK97, FK96,
BKS99], culminating in the result – which we make a good use of herein – of Friedgut [Fri98]
(Theorem 2.3). Friedgut’s lemma essentially asserts that Boolean functions of low average-
sensitivity (namely Boolean functions that infrequently change value when one of their
variables is flipped at random) are almost entirely determined by the values of only a small
set of variables.

We are able to apply Friedgut’s lemma and extract from the biased–long-code of each
variable in Z, a few permissible values. For this we must utilize additional properties of the
graph G[p,p•](Φ), to show that an independent set corresponds to an encoding with biased–
long-code, whose average-sensitivity is low. An independent set in G[p,p•](Φ) identifies a few
permissible values in most blocks, even without being larger than p• + ε. However, these
values yield insufficiently weak consistency between the blocks, such that can be attained
even when Φ is far from satisfiable. For true global consistency, we must venture into the
field of extremal set theory to show that if the independent set in G[p,p•](Φ) is larger than
p• = max(p2, 4p3−3p4)+ε, enough variables in Z each distinguish one value. Finally, based
on these distinguished values, we can derive consistency between variables in Z noting that,
as the initial consistency constraints between Z’s variables are rather loose, this only works
provided p < 3−

√
5

2
≈ 0.382.

Outline. Our presentation of the hardness result for Minimum Vertex Cover stretches
across chapters 2-5. Chapter 2 is devoted to the various mathematical tools, used for
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analyzing the long-code, and for obtaining the necessary combinatorial upper bounds for
deriving global consistency from local-consistency. Chapter 3 presents the reduction from
PCP to Minimum Vertex Cover, namely, we show how to translate any gap-SAT instance
Φ, to a graph G[p,p•](Φ), such that approximating the Minimum Vertex Cover in G[p,p•](Φ)
yields an approximation of the maximum fraction of satisfiable tests in Φ. Chapter 4 is
devoted to the proof of the correctness of the result: the completeness and (mainly) the
soundness of the reduction. We conclude this chapter showing that our analysis of G[p,p•](Φ)
is tight, i.e. that an independent set of weight p• exists even if Φ is not satisfiable.

We conclude with a short discussion of possible extensions of our technique, and applica-
tions to related open problems. In order to make the exposition of all these combinatorial



Chapter 2

The p-Biased Long Code

The long-code over a domain R encodes each element of R by the longest possible (without
repetition) sequence of binary bits, corresponding to all possible Boolean functions over R.
Each bit can be canonically identified with the subset of all elements of R whose encoding is

1 on that bit. Thus, the bits of the long-code become the power set of R, P (R)
def
= {F ⊆ R}.

Notation. As our analysis combines ideas from different fields, we denote, adopting no-
tation from extremal set theory, a family of subsets of R by F ⊆ P (R), and one subset in
it by F ∈ F .

Let us formally define the long-code of R,

Definition 2.1 The long-code of R, denoted LCR, is the most extensive binary code,
namely the code consisting of all subsets of R,

LCR def
= P (R) .

A codeword E : P (R) → {0, 1} of LCR assigning 0 or 1 to each bit of the code, deter-
mines a family of subsets of R, FE = E−1(1) ⊆ P (R). We do not distinguish between the
codeword and the family determined by it. Thus we may say that the codeword encoding
an element e ∈ R, is

Fe = {F ∈ P (R) | F 3 e} .

Background. The long-code was introduced in [BGS98], and utilized for obtaining nu-
merous hardness results (some of which are tight) for approximation problems, such as Max-
Cut, Max-2-Sat, Vertex-Cover, Max-3-Sat, Max-Lin-Eq, Max-Clique, Chromatic-Number.
The scheme of [BGS98, H̊as99, H̊as97], is roughly as follows. Given a gap-SAT instance
Ψ, first apply the parallel repetition lemma of [Raz98]. This, for any parameter k, results
in a new gap-SAT problem, which we refer to as Par [Ψ, k], over (non-binary) variables of
two types X and Y , and in which each local-constraint depends on one variable of X and
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one of Y . Par [Ψ, k] has a satisfying assignment if Ψ has one, and, otherwise, not even an
arbitrarily small (exponentially small in k) fraction of the constrains can be satisfied.

In the next step, one applies a version of the Composition technique of [AS92], as
proposed in [BGS98], to this specific setting, namely replaces each of the variables of
X and Y , with a set of variables representing its long-code, and each local-constraint
ϕ(x, y) ∈ Par [Ψ, k] with constraints that verify (i) inner-consistency, namely that the
encoding of each variable is in some sense not far from a legal codeword (in fact, from
a small list of acceptable codewords), and (ii) outer-consistency, namely that x and y’s
encoded values satisfy ϕ(x, y).

Consider, for example, H̊astad’s linearity test. Given an encoding F ⊂ P (R), consider
the following random process. Choose two random subsets F1, F2 ∈ P (R), and a third
subset H ∈ P (R) by taking each e ∈ R to be in H independently with probability ε. Now,
accept only if an even number (0 or 2) of the three subsets F1, F2, F1∆F2∆H are in F .
If F is the true long-code of an element e ∈ R, this test accepts with probability 1 − ε.
Moreover, one can prove, using extensive Fourier analysis, that if this test accepts with
probability 1

2
+ ε, then F must be close to a true long-code.

The distribution according to which the subsets F1, F2 were chosen is uniform, implicitly
implying that their size is roughly 1

2
· |R|, except for a negligible fraction. The third subset,

H, was chosen according to a distribution that highlights ε-sized subsets. We generalize
these distributions, as follows.

The p-Biased Long-Code. Let us consider distributions that highlight subsets of size
roughly p · |R|. One such natural class of distributions, that highlight subsets whose size is
roughly p · |R|, is the p–product-distribution over P (R), denoted µRp , where, independently
for each element e ∈ R, e is in a set with probability p and out of it with probability 1− p.
More precisely,

Definition 2.2 (Product-Distribution) Let 0 < p < 1. µRp is a distribution over P (R)
according to which, every subset F ∈ P (R) occurs with the following probability:

µRp (F )
def
= p|F | · (1− p)|R|−|F |

In some cases, when the set R is clear from the context, we may omit R and refer to µRp (F )
simply as µp(F ).

For p = 1
2
, µp is simply the uniform distribution. For other values of p, this distribution

highlights sets whose cardinality is roughly p · |R|, and turns out to be useful especially for
p < 1

2
. Let us now introduce the p-biased long-code,

Definition 2.3 (The p-Biased Long-Code) The p-biased long-code over R, denoted
LCRp =

〈
P (R) , µRp

〉
, assigns the distribution µp to LCR.



2.1 A Family’s Core 15

Motivation and Overview. Let us give some brief motivation for the analysis that
follows. Aiming at proving hardness of approximating Minimum Vertex-Cover, we will
construct, in future chapters, a weighted graph, whose vertices are partitioned into blocks,
the vertices in each block corresponding to subsets F ∈ P (R) of the long-code of R. An
independent set in this graph would correspond, in each block, to a family F ⊆ P (R) obey-
ing some combinatorial properties, supposedly encoding an element e ∈ R. In Section 2.1
we proceed to deduce, relying on some theorems from the field of influences of variables on
Boolean functions, that such a family F distinguishes a core, namely, a small set C ⊂ R
of elements of R that are, in a sense, permissible decodings of it. In Section 2.2, we will
show, that if F is also of large weight according to µp, and if it is intersecting, it must then
distinguish, in a specific sense to be defined, one element in its core. This element will be
important for asserting outer-consistency, as it will consequently be shown to be consistent
with the distinguished elements of other encodings.

2.1 A Family’s Core

Let F ⊂ P (R) be a family of subsets of R. We would be interested in finding when this
family is, in a sense, close to an encoding of an element e ∈ R. In fact, we would be satisfied
in finding a small set of permissible elements in R, henceforth referred to as a core, such
that F is roughly a combination of the codewords of these values.

A family of subsets F ⊂ P (R) is said to be determined by C ⊂ R, if a subset F ∈ P (R)
is determined to be in or out of F only according to its intersection with C (no matter
whether other elements are in or out of F ). Formally, F is determined by C if,

{F |F ∩ C ∈ F} = F

Denote by F1 t F2 the family consisting of the pairwise union of all subsets of F1 with all
those of F2,

F1 t F2
def
= {F1 ∪ F2 |F1 ∈ F1, F2 ∈ F2} .

If C ⊂ R determines F , then there is a family FC ⊆ P (C), such that F = FC t P (R \ C).

A given family F , may not be determined by any small set C. However, there might
be another family F ′, that is determined by some small set C, and that approximates F
quite accurately, up to some δ:

Definition 2.4 (Core) A set C ⊆ R is said to be a (δ, p)-core of the family F ⊆ P (R),
if there exists FC ⊆ P (C) such that µp(F 4 (FC t P (R \ C))) < δ (where 4 denotes the
symmetric difference between two families).

As to the family of subsets that best approximates F on its core, it consists of the
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subsets F ∈ P (C) whose extension to R intersects more than half of F ,{
F ∈ P (C)

∣∣∣∣∣ Pr
F ′∈µR\Cp

[F ∪ F ′ ∈ F ] >
1

2

}
.

Consider the Core-Family, defined as the family of all subsets F ∈ P (C), for which 3
4

of
their extension to R, i.e. 3

4
of {F} t P (R \ C), reside in F :

Definition 2.5 (Core-Family) For a set of elements C ⊂ R, define,

〈F〉C
def
=

{
F ∈ P (C)

∣∣∣∣∣ Pr
F ′∈µRp

[F ′ ∈ F |F ′ ∩ C = F ] >
3

4

}
By simple averaging, it turns out that if C is a (δ, p)-core for F , this family approximates
F almost as well as the best family C.

Lemma 2.1 If C is a (δ, p)-core of F , then µCp ( 〈F〉C ) ≥ µRp (F)− 3δ.

Proof: For each subset F ∈ P (C), consider

xF
def
= Pr

F ′∈µp
[F ′ ∈ F |F ′ ∩ C = F ] .

A subset F is in 〈F〉C iff xF > 3
4
. Let FC ⊂ P (C) be the family that best approximates

F on C, namely the family of subsets F ∈ P (C) for which xF >
1
2
. By the definition of a

(δ, p)-core, it follows
µRp (FC t P (R \ C) 4 F) < δ ,

and we will prove that
µRp (〈F〉C t P (R \ C) 4 F) < 3δ .

Replacing FC by 〈F〉C the symmetric difference from F is affected on those subsets F for
which 1

2
< xF ≤ 3

4
, i.e. subsets F ∈ FC \ 〈F〉C . Observe that the relative contribution of

each such subset to the symmetric difference from F increases from (1− xF ) to xF . Since
1
2
< xF ≤ 3

4
, the symmetric difference is tripled at most.

Influence and Sensitivity

Understanding the conditions for family of subsets to have a small core, has been pursued,
from a different perspective, for some years. This has to do with the probability of every
element e ∈ R to take subsets in or out of F when flipped, which is referred to as the
influence of that element. This notion, and its relations with various properties of F , have
been the subject of an extensive analysis [BOL89, KKL88, Fri98]. Let us now introduce
this notion and assert some theorems to be available for good use later.
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Assume a family of subsets F ⊆ P (R). The influence of an element e ∈ R,

influenceep(F)
def
= Pr

F∈µp
[ exactly one of F ∪ {e}, F \ {e} is in F ]

The average sensitivity of F with respect to µp, denoted asp(F), is the sum of the influences
of all elements in R,

asp(F)
def
=
∑
e∈R

influenceep(F)

The name average-sensitivity is derived from the following. The sensitivity of a subset
F ∈ F is the number of elements whose removal from or addition to F takes F in or out
of F :

|{e ∈ R | exactly one of F ∪ {e}, F \ {e} is in F}|

The average sensitivity of F with respect to µp is equal to (hence the name) the average,
according to µp, of the sensitivity of all subsets in P (R):

Proposition 2.2 Let F ⊆ P (R).

asp(F) = |R| · Pr
F∈µp,e∈RR

[ exactly one of F ∪ {e}, F \ {e} is in F ]

Proof: These are just two different ways to sum up the same set of events.
A truly fundamental relation between the average sensitivity of a family F ⊆ P (R)

and the size of its (δ, p)-core is the following theorem of Friedgut [Fri98]:

Theorem 2.3 (Friedgut) Let 0 < p < 1 be some bias, and δ > 0 be any approximation
parameter. Consider any family F ⊂ P (R), and let k = asp(F). There exists a function
h(p, δ, k) ≤ (cp)

k/δ, where cp is a constant1 depending only on p, such that F has a (δ, p)-core
C, with |C| ≤ h(p, δ, k).

Hence, the number of elements that are necessary in order to approximate F up to δ
depends only on δ and the average sensitivity of F . In particular, if a family F has low
(say, constant) average sensitivity, then it has a (δ, p)-core whose size is merely exponential
in 1

δ
, and is independent of |R|.
The next step would be to find sufficient conditions for a family to have low average sen-

sitivity. As it turns out, this is the case with monotone families (defined below), assuming
we allow some slight shifting of p.

Definition 2.6 (Monotone Family) A family of subsets F ⊆ P (R) is monotone if for
every F ∈ F , for all F ′ ⊃ F , F ′ ∈ F .

1It follows directly from Friedgut’s proof that cp can be taken as a continuous function of p.
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Such a family is sometimes called in the literature an ’upset’.
The monotone closure F̄ of a family F is defined to be the family of all subsets containing

a subset from F , F̄ def
= {F ∪ F ′ |F ∈ F}.

Being monotone restricts a family in certain ways, forcing it, for example, to have
relatively more large subsets than it does small subsets. This can be formalized as follows,

Proposition 2.4 For a monotone family F ⊆ P (R), µp(F) is a monotone non-decreasing
function of p.

Proof: Assume R = [n]. For a subset F ∈ P ([n]) denote

F≤i
def
= F ∩ [1, i] and F>i

def
= F ∩ [i+ 1, n]

and consider, for 0 ≤ i ≤ n, the hybrid distribution, where the first i elements are chosen
with bias p and the others are chosen with bias q > p,

µp,i,q(F )
def
= p|F≤i| · (1− p)i−|F≤i| · q|F>i| · (1− q)n−i−|F>i| .

Observe that
∀ 0 ≤ i ≤ n µp,i,q(F) ≥ µp,i+1,q(F)

therefore µq(F) = µp,0,q(F) ≥ µp,n,q = µp(F).
Interestingly, for monotone families, the rate at which µp increases with p, is exactly

equal to the average-sensitivity:

Theorem 2.5 (Russo-Margulis Identity [Mar74, Rus82]) Let F ⊆ P (R) be a mono-
tone family. Then,

dµp(F)

dp
= asp(F)

Proof: For a subset F ∈ P (R) write

µp(F ) =
∏
e∈R

µe
p(F ), for µe

p(F ) =


p e ∈ F

1− p e 6∈ F
(∗)

Observe that

influenceep(F) =
∑
F∈F

(
dµep(F )

dp
·
∏
e′ 6=e

µe
′

p (F )

)
Differentiating (∗) according to p, and summing over all F ∈ F , we get

dµp(F)

dp
=
∑
e∈R

influenceep(F) = asp(F)
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The average sensitivity of a monotone family, depends only on the number of subsets
of every given size,

Proposition 2.6 Let F ⊆ P (R) be monotone, let Fk = {F ∈ F | |F | = k}, n = |R|,

asp(F) =
∑
k

pk(1− p)n−k |Fk| ·
(

1

p
· k − 1

1− p
· (n− k)

)
Proof: For a pair of subsets F, F \ {i} ∈ P (R), if exactly one is in F then by the mono-
tonicity of F , F ∈ F and F \ {i} 6∈ F . By Proposition 2.2,

asp(F) =
∑

i∈F∈F ,F\{i}6∈F

µp(F ) + µp(F \ {i}) .

By writing µp(F ) + µp(F \ {i}) = 1
p
· µp(F ) and regrouping, this becomes,

=
∑
F∈F

 ∑
i∈F, F\{i}6∈F

1

p
· µp(F )

 =
1

p
·
∑
F∈F

µp(F ) |F | −
∑

i∈F, F\{i}∈F

µp(F )


=

1

p
·
∑
F∈F

µp(F ) |F | − 1

p
·

∑
i∈F∈F , F\{i}∈F

µp(F )

Note now that both sums are taken over subsets inside F . Rename in the second sum
F1 = F \ {i}, and note that each subset F1 appears in the second sum exactly |R \ F1|
times. By writing µp(F ) = µp(F1) · p

1−p , the second sum equals
∑

F1∈F
µp(F1) · |R\F1|

1−p and
together

=
∑
F∈F

µp(F ) ·
(
|F |
p
− |R \ F |

1− p

)
.

Summing subsets in F according to their size k, gives the claim.
This identity shows that ’slices’ of F , Fk, with k > p · n, yield a positive contribution

to the average sensitivity, while slices with k < p · n contribute negatively. Hence, the
threshold family, whose positive slices are completely full, and whose negative slices are
completely empty,

F≥p
def
= {F ∈ P (R) | |F | ≥ p · |R|}

has maximal average sensitivity asp(F) = Θ(
√
|R|). One may note that this is still well

below the maximal average sensitivity of any general family (which is |R|, attained by the
parity family) .

An interesting thing to notice for the threshold family F≥p, is that although its average
sensitivity is high, considering this family with a slightly shifted p, say p + ε or p − ε for
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some small but constant ε > 0, makes this family be approximately full µp+ε(F≥p) ≈ 1 or
approximately empty µp−ε(F≥p) ≈ 0, and in both cases the average sensitivity according
to both µp+ε and µp−ε is almost zero.

In fact, a similar argument holds for every monotone family. As we gradually increase
p, the average sensitivity asp(F) of a monotone family F , although possibly remaining
non-zero, cannot be very high for too long:

Proposition 2.7 Let F ⊆ P (R) be a monotone family, and let 0 ≤ p < p+ ε ≤ 1. There
must be some q ∈ (p, p+ ε) such that

asq(F) ≤ 1

ε
Proof: With the above identity, and a standard application of Lagrange’s Mean-Value
Theorem, there exists some q ∈ (p, p+ ε),

asq(F) =
dµq(F)

dq
=
µp+ε(F)− µp(F)

ε
≤ 1

ε

We have now reached the main point of this discussion. A monotone family F , suppos-
edly representing an encoding with the p-biased long code of an element in R, always has
low average sensitivity for some value of q ∈ (p, p + ε). For this q we can apply Friedgut’s
Lemma to deduce a small core C ⊂ R, |C| = O(1), for F , on which it is well-approximated
according to µq. The elements in this core would serve as a set of permissible values, that
are the ’decoding’ of F , in the rest of the proof. That these decoded values indeed represent
F , and that consistency of families F1 and F2 constitute some form of consistency of their
cores C1 and C2, is the task we face in the next chapter.

Let us conclude this section with an easy proposition, to be used later on, showing that,
if T ⊂ R is a set of elements of tiny influence in a monotone family F ⊂ P (R), one has to
remove only a small fraction of F to make it completely independent of T :

Proposition 2.8 Let F ⊂ P (R) be monotone, and let T ⊂ R be such that for all e ∈ T ,
influenceep(F) < η. Let

F ′ = {F ∈ F |F \ T ∈ F}
then,

µR
p (F \ F ′) < |T | · η · p−|T |

Proof: Let
F ′′ = {F ∈ P (R \ T ) | F ∪ T ∈ F but F 6∈ F} .

A set F ∈ F ′′ contributes at least µ
R\T
p (F ) · p|T | to the influence of at least one element

e ∈ T , so µ
R\T
p (F ′′) < |T | · η · p−|T |. The proof is complete noting that,

F \ F ′ ⊆ F ′′ t P (T )
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2.2 Maximal Intersecting Families

We have seen in the previous section, that a monotone family distinguishes a small core of
elements, that almost determine it completely. In this section we will show that a monotone
family that is of large enough weight, and is also intersecting, must exhibit one distinguished
element in its core. This element is a stricter ’decoding’ of the family than is the core, and
will consequently serve for establishing outer-consistency, i.e. consistency between families
encoding distinct variables.

Consider the encoding of an element e ∈ R, according to the p-biased long-code, namely
the family of all subsets containing e, Fe = {F ∈ P (R) |F 3 e}. This family is both
monotone, as defined above, and intersecting, defined next,

Definition 2.7 (t-Intersecting Family) A family F ⊂ P (R) is said to be t-intersecting,
for t ≥ 1, if

∀F1, F2 ∈ F , |F1 ∩ F2| ≥ t .

If t = 1 such a family is referred to simply as intersecting.

The following is a natural generalization for a pair of families,

Definition 2.8 (Cross-Intersecting) Two families F1,F2 ⊆ P (R) are cross-intersecting
if for every F1 ∈ F1 and F2 ∈ F2, F1 ∩ F2 6= φ.

Two families cannot be too large and still remain cross-intersecting,

Proposition 2.9 For any bias parameter p ≤ 1
2
, two families of subsets F1,F2 ⊆ P (R),

for which µp(F1) + µp(F2) > 1 are not cross-intersecting.

Proof: We can assume that F1,F2 are monotone, as their monotone closures must also be
cross-intersecting. Since µp, for a monotone family, is non-decreasing with respect to p, it
is enough to prove the claim for p = 1

2
. If for all F ∈ P (R) contained in both families –

that is, so that F ∈ F1 and F ∈ F2 – it were the case that its complement F c = R \ F
would be contained in none of the families – namely, F c 6∈ F1, F

c 6∈ F2 – the sum of sizes
would be at most 1. There must therefore be one such pair, F and F c, contained one in
F1 and the other in F2.

It is now easy to prove that if F is monotone and intersecting, then the same holds for
the core-family 〈F〉C that is (see Definition 2.5) the threshold approximation of F on its
core C,

Proposition 2.10 Let F ⊆ P (R), and let C be a (δ, p)-core of F .

• If F is monotone then 〈F〉C is monotone.

• If F is intersecting, and p ≤ 1
2
, then 〈F〉C is intersecting.
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Proof: The first assertion is immediate. For the second assertion, assume a pair of non-
intersecting subsets F1, F2 ∈ 〈F〉C and observe that the families

{F ∈ P (R \ C) |F ∪ F1 ∈ F1} and {F ∈ P (R \ C) |F ∪ F2 ∈ F2}

both have weight > 3
4
, and by Proposition 2.9, cannot be cross intersecting.

It can be proven that cross-intersecting families must have intersecting cores, unless the
families are of negligible size. This alone does not provide sufficient consistency for our
construction, as one family can appear to be consistent with other families, by exhibiting
a different element in its core for consistency with different families.

Note however that any family cross-intersecting Fe, must have e ∈ R in its core. Sim-
plistically, we can imitate this property showing that a non-2-intersecting family F , must
have a distinguished element (an element that is the exact intersection of a pair of subsets
in F), and that this element must reside in the cores of families consistent with F .

Definition 2.9 (Distinguished Element) For a monotone and intersecting family F ⊆
P (R), an element e ∈ R is said to be distinguished if there exist F [, F ] ∈ F such that

F [ ∩ F ] = {e}

Clearly, an intersecting family has a distinguished element if and only if it is not 2-
intersecting. We next establish a weight criterion for an intersecting family to have a
distinguished element, summarized as follows:

For each p < 0.4, we define p• to be,

Definition 2.10
∀p < 0.4, p•

def
= max(p2, 4p3 − 3p4)

This maps each p to the size of the maximal 2-intersecting family, according to µp, as
asserted by the following lemma,
Lemma 2.13 If F ⊂ P (R) is monotone and 2-intersecting, then µp(F) ≤ p•, provided
p < 0.4.

For a proof of the above we venture into the field of extremal set theory, where maximal
intersecting families have been studied for some time. This beautiful study began with
a paper of Erdős, Ko, and Rado [EKR61], that has seen various extensions and general-
izations. The lemma above is a generalization to µp of what is known as the Complete
Intersection Theorem for finite sets, that was proven by [AK97].

This section is broken into two subsections. In the first subsection we present the
theorem of Ahlswede and Khachatrian [AK97] (Theorem 2.11), and prove Lemma 2.13. In
the second subsection, we review some known results pertaining to maximal intersecting
families, generalizing some of them for µp, leading up to a proof of the upper bound of p
for the weight of a monotone intersecting family.
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2.2.1 2-Intersecting Families

For the following, assume R = [n]. In the field of extremal set theory, the focus is on
families of subsets of a given size k. Denote the k-th slice of P ([n]) by(

[n]

k

)
def
= {F ∈ P ([n]) | |F | = k} .

The Erdős-Ko-Rado Theorem [EKR61], states that given k, t ≥ 1, then for large enough
n, the maximal t-intersecting family F ⊆

(
[n]
k

)
is obtained by taking all subsets that contain

t fixed elements, thus |F| ≤
(
n−t
k−t

)
.

As the measure µp is concentrated on subsets of size near k = p · n, bounds for t-

intersecting families F ⊂
(
[n]
k

)
, would translate to bounds for the weight – µp(F) – of

monotone t-intersecting families. The Erdős-Ko-Rado Theorem does not suffice, because
as n increases, we need to maintain a constant proportion between n and k. Frankl [Fra78],
investigated the full range of values for n and k, and conjectured that the maximal t-
intersecting family is always one of

Ai,t
def
= {F ∈ P ([n]) | F ∩ [1, t+ 2i] ≥ t+ i}

Partial versions of this conjecture have been proven by [Fra78, FF91, Wil84], and the
complete intersection theorem for finite sets was finally proven by Ahlswede and Khacha-
trian [AK97],

Theorem 2.11 ([AK97]) Let F ⊆
(
[n]
k

)
be t-intersecting. Then,

|F| ≤ max
0≤i≤n−t

2

∣∣Ai,t ∩
([n]
k

)∣∣
Our analysis requires the extension of this statement to families of subsets that are not

restricted to one size k. We restrict our attention to t = 2, and denote Ai
def
= Ai,2.

Lemma 2.12 Let F ⊂ P (R) be monotone and 2-intersecting. For any p < 1
2
,

µp(F) ≤ max
i
{µp(Ai)} .

As a direct corollary of this lemma, we obtain the lemma that was stated in the beginning
of this section.

Lemma 2.13 If F ⊂ P (R) is monotone and 2-intersecting, then µp(F) ≤ p•, provided
p < 0.4.



24 The p-Biased Long Code

Let us first prove the lemma,
Proof: Assume F0 ⊂ P ([n0]) contradicts the claim, denote µ = maxi(µp(Ai)), and

let a = µp(F0) − µ > 0. Now consider F = F0 t P ([n] \ [n0]) for n > n0 large enough, to

be determined below. Clearly, for any n ≥ n0, µ
[n]
p (F) = µ

[n0]
p (F0), and F is 2-intersecting.

Consider the ’slices’ near p · n, (let θ < 1
2
− p)

S
def
= {k ∈ N | |k − p · n| ≤ θ · n}

and for every k ∈ S, denote by Fk = F∩
(
[n]
k

)
. We will show that since most of F ’s weight is

derived from ∪k∈SFk, there must be at least one Fk that contradicts Theorem 2.11. Indeed,

µ+ a = µp(F) =
∑
k∈S

pk(1− p)n−k · |Fk|+ o(1)

Hence there exists k ∈ S for which |Fk|
([n]
k )
≥ µ+ 1

2
a. We have left to see that µ ·

(
n
k

)
is close

enough to maxi(|Ai∩
(
[n]
k

)
|). This follows from usual tail bounds, and is sketched as follows.

Subsets in
(
[n]
k

)
for large enough i (depending only on k

n
but not on k or n), have roughly

k
n
· (2i + 2) elements in the set [1, 2i + 2]. Moreover, the subsets in Ai have at least i + 2

elements in [1, 2i+ 2], thus are very few (compared to
(
n
k

)
), because i+2

2i+2
> 1

2
> p+ θ ≥ k

n
.

In other words, there exists some constant Cp+θ,µ, for which
∣∣∣Ai ∩

(
[n]
k

)∣∣∣ < µ ·
(
n
k

)
for all

i ≥ Cp,µ as long as k
n
≤ p+ θ.

Additionally, for every i < Cp,µ, taking n to be large enough we have

∀k ∈ S,

∣∣∣Ai ∩
(
[n]
k

)∣∣∣(
n
k

) = µ k
n
(Ai) + o(1) = µp(Ai) + o(1) < µ+ o(1)

where the first equality follows from a straightforward computation.
We next proceed to derive Lemma 2.13 from the above,

Proof: Define a sequence p0 < p1 < . . ., where pi
def
= i

2i+1
. We will show that these are

the points where the maximum switches from Ai to Ai+1. More accurately, we will show
for all i ≥ 0,

∀p ∈ (pi, pi+1] max
j
{µp(Aj)} = µp(Ai) (∗)

This, together with Lemma 2.12, will complete our proof, as p < pmax < 0.4 = p2 implies
µp(F) ≤ max(µp(A0), µp(A1)) = max(p2, 4p3 − 3p4) = p•.

So we proceed to prove (∗). A subset F 6∈ Ai must intersect [1, 2i+ 2] on at most i+ 1
elements. If additionally F ∈ Ai+1 it must then contain 2i+ 3, 2i+ 4. Thus,

µp(Ai+1 \ Ai) =

(
2i+ 2

i+ 1

)
· pi+1(1− p)i+1 · p2
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Similarly,

µp(Ai \ Ai+1) =

(
2i+ 2

i+ 2

)
· pi+2(1− p)i · (1− p)2

We write,

µp(Ai+1)− µp(Ai) = µp(Ai+1 \ Ai)− µp(Ai \ Ai+1)

= pi+2(1− p)i+1

(
2i+ 2

i+ 1

)(
p− (1− p)

i+ 1

i+ 2

)
The sign of this difference is determined by p− (1−p) i+1

i+2
. For a fixed i ≥ 0, this expression

goes from positive to negative passing through zero once at p = i+1
2i+3

= pi+1. Thus, the

sequence {µp(Aj)}j is maximized at i for pi < p ≤ pi+1. (It is increasing when i ≤ 1−3p
2p−1

,

and decreasing thereafter).

2.2.2 Intersecting Families

In this subsection we focus on bounding the maximal size of an intersecting family. This
bound can be derived directly from Lemma 2.12 above, however, we present here another
approach, that explains some of the structure of intersecting families. All the results in
this subsection are either well known, or are easily derived from well-known results.

An intersecting family F ⊂ P (R) never contains both F and its complement F c def
=

R \ F . For a monotone family this is a necessary as well as sufficient condition. Thus, for
such F , µ 1

2
(F) ≤ 1

2
. The same argument also implies |F ∩

(
[n]
k

)
| + |F ∩

(
[n]
n−k

)
| ≤

(
n
k

)
, an

observation helpful for proving the following generalization for any p ≤ 1
2
,

Lemma 2.14 Let F be monotone and intersecting, and let p ≤ 1
2
. Then

µp(F) ≤ p .

Thus, the legal encoding of e ∈ R, Fe, is a monotone-intersecting family of maximum
weight. Note that for p > 1

2
, the majority family (the family of all subsets whose size is

more than 1
2
·R) has weight almost 1, much higher than p.

For a proof of the above let us define some notions.

Shadows and the Kruskal-Katona Theorem. Assume R = [n], and let F ⊆ P ([n]).
The (upper) shadow of F , is defined to be

∂F def
= {F ∪ {i} | F ∈ F , i 6∈ F} .

If F ⊆
(
[n]
k

)
, then ∂F ⊆

(
[n]
k+1

)
. Clearly, the class of families containing their own shadow,

is exactly the class of monotone families; and the subsets in F \∂F are the minterms of F .
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The l-th shadow of F is defined inductively to be ∂(l)F def
= ∂(∂(l−1)F), and is simply

the family of subsets that contain some subset of F and any l additional elements.
It is easy to see that a family F ⊆

(
[n]
k

)
is intersecting, if and only if its (n − 2k)-th

shadow does not contain any set that is complementary to a set in F . Bounding the size of
maximal intersecting families gives rise to the following question: Given a family F ⊆

(
[n]
k

)
of certain cardinality, what is the minimal size of its shadow? This question is answered
by the Kruskal-Katona theorem, below.

An interesting and useful order when considering families of subsets (and in particular,
intersecting or monotone families), is the reverse lexicographic order on

(
[n]
k

)
; defined by

reversing the order that comes from interpreting the characteristic vector of each subset as
a binary representation of an integer:

∀F1, F2 ∈
(

[n]

k

)
, F1 < F2 if

∑
i∈F1

2−i >
∑
i∈F2

2−i

According to this order, we define

Definition 2.11 Given F ⊆
(
[n]
k

)
, its alignment L(F) ⊆

(
[n]
k

)
is the family consisting of

the first |F| subsets in the lexicographic order. The alignment of F ⊆ P ([n]), is defined by

aligning each slice F ∩
(
[n]
k

)
separately, L(F)

def
=
⋃
k L(F ∩

(
[n]
k

)
)

It turns out that aligning a family ’compresses’ it, and can only reduce the size of its
shadow:

Theorem 2.15 ([Kru63, Kat68]) For any F ⊆
(
[n]
k

)
, ∂(L(F)) ⊆ L(∂F).

It follows in particular, since |∂F| = |L(∂F)|, that |∂F| ≥ |∂L(F)| thus L(F) has minimal
sized shadow. For a proof of this theorem, and an instructive exposition to this whole topic,
see chapters 5,7,13 in [Bol86]. The following properties hold for L(F),

Proposition 2.16 Let F ⊆ P (R).

1. If F is monotone, then L(F) is monotone.

2. If F is monotone, then asp(F) = asp(L(F)).

3. µp(F) = µp(L(F)).

Proof: F is monotone iff Fk+1 ⊇ ∂(Fk). Aligning these two families, and by theorem 2.15,

L(Fk+1) ⊇ L(∂Fk) ⊇ ∂L(Fk)

Both the average sensitivity asp(F) in case F is monotone (see proposition 2.6), and the
weight µp(F), depend only on the cardinality of each slice of F , hence remain unchanged

by aligning, because
∣∣∣F ∩

(
[n]
k

)∣∣∣ =
∣∣∣L(F) ∩

(
[n]
k

)∣∣∣.



2.2 Maximal Intersecting Families 27

We must note that although for monotone families, asp(F) = asp(L(F)), and although
the average sensitivity is the sum of the influences of the elements, it is certainly not the
case that L(F) leaves the influences of distinct elements unchanged. Finally, we have

Proposition 2.17 If F is intersecting, then L(F) is intersecting.

Proof: If F is intersecting, then its monotone closure, F̄ , is also intersecting, and of course
L(F̄) ⊇ L(F). Hence, it suffices to prove the proposition for F both monotone and
intersecting.

In this case, L(F) is also monotone by Proposition 2.16 above. For L(F) to be inter-
secting, it is enough to show that for every F , not both F and F c = [n] \ F are in L(F).
F is intersecting, so

|L(Fk)|+ |L(Fn−k)| = |Fk|+ |Fn−k| ≤
(
n

k

)
The proof is complete once we observe that the first m subsets in the lexicographic order
on
(
[n]
k

)
, are the complements of the last m subsets in the lexicographic order on

(
[n]
n−k

)
, so

the above inequality prevents two complement sets from being in L(F).
Let us remark that if F is t-intersecting for t > 1, its alignment L(F) is not necessarily

t-intersecting, so these techniques do not carry over for bounding the size of general t-
intersecting families. We now return to prove
Lemma 2.14 Let F be a monotone and intersecting family, and let p ≤ 1

2
. Then

µp(F) ≤ p .

Proof: By propositions 2.16 and 2.17, L(F) is also monotone and intersecting, and
µp(F) = µp(L(F)). Thus we assume w.l.o.g. that F = L(F). Define the following
monotone and intersecting family,

F1 = {F ∈ P ([n]) |F 3 1}

and note that |F1
k |+

∣∣F1
n−k
∣∣ =

(
n−1
k−1

)
+
(

n−1
n−k−1

)
=
(
n
k

)
.

We rely on the easy fact that for any intersecting F , |Fk|+ |Fn−k| ≤
(
n
k

)
, as always only

one of F and F c can be in F . Observe that if µp(F) > p = µp(F1), and since p ≤ 1
2
, there

must be some k < n − k for which |Fk| > |F1
k |. By F = L(F) we deduce that Fk ) F1

k .
By the monotonicity of F , and by the Kruskal-Katona theorem (Theorem 2.15), we deduce
that

Fn−k ⊇ ∂(n−2k)(Fk) ⊇ ∂(n−2k)(F1
k ) = F1

n−k

so |Fk|+ |Fn−k| > |F1
k |+

∣∣F1
n−k
∣∣ =

(
n
k

)
, a contradiction.
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Chapter 3

Reducing PCP to Vertex Cover

The aim of this chapter is to construct a graph, for which it is NP-hard to approximate
the size of the smallest vertex cover. Our construction begins with a gap-SAT instance Φ,
and transforms it into a graph G[c,s](Φ) whose independent set is large α(G[c,s](Φ)) ≥ c, in
case Φ is satisfiable (this is the completeness of the reduction), and small α(G[c,s](Φ)) ≤ s,
in case Φ is far from satisfiable (this is the s oundness of the reduction). The factor of
hardness thus obtained for vertex cover, is 1−s

1−c .

Weighted-Graphs. Our analysis is more naturally presented over weighted graphs, where
the size of a set of vertices is the sum of their weights. Hardness results for these graphs
easily translate to hardness for graphs with equal weight, see Appendix A.

A weighted-graph G = (V,E,Λ) is an undirected graph with vertices V and edges E,
and a probability distribution Λ over the vertices V . In other words, G is a graph with
normalized weights. An independent set in G is a set I ⊆ V such that G restricted to I is
the empty graph. Let us denote by α(G) the maximum, over all independent sets I in G,
of Λ(I). A vertex-cover of G is a set S ⊆ V whose complement V \ S is an independent
set. Let us denote by α(G) the minimum, over all vertex-covers S, of Λ(S).

Our method for constructing G[p,p•](Φ) is very roughly – following the composition frame-
work – to modify the gap-SAT instance Φ, and then apply the p-biased long-code over this
modification. We will prove (in Chapter 4) that if Φ is satisfiable, then α(G[p,p•](Φ)) > p−ε,
and if Φ is far from satisfiable, then α(G[p,p•](Φ)) < p• + ε.

Outline. In Section 3.1, we formally describe how to obtain our starting point – namely
the gap-SAT problem – by applying the parallel repetition lemma of [Raz98] to the PCP
theorem of [AS92, ALM+92]. In Section 3.2 we describe the FGLSS-graph which will be
used as a skeleton for our final construction. We discuss its limitations, and the obstacles
facing a naive attempt of composing this graph with the long-code. In Section 3.3 we employ
rather standard composition structure, and present a reduction from a gap-SAT instance
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Φ to a graph G[ 1
4
, 1
8
](Φ), showing NP-hardness for approximating Minimum-Vertex-Cover to

within 7
6
−ε for any constant ε, the same factor whose hardness was already known [H̊as97],

although via a different construction. This construction exhibits the use of the p-biased
long-code, which we believe is more clearly analyzed, but is a sidetrack and is not relied
upon in the construction of the final graph G[p,p•](Φ). Finally, in Section 3.4, we present a
redesign of the manner by which the Composition technique [AS92] is applied. This new
scheme starts with a phase in which Φ is preprocessed, coming up with a new set of variables
that have a more symmetric structure, and whose consistency constraints are quite loose,
nevertheless, one which can still be utilized by our analysis to deduce global consistency
assuming local-consistency, which, in this case, translates to a small vertex cover. We apply
the p-biased long-code over the new symmetric variables, to obtain G[p,p•](Φ).

3.1 PCP Characterization of NP

PCP characterizations of NP in general state that given some SAT instance, namely a set of
Boolean-functions Φ = {ϕ1, ..., ϕn} over variables X, it is NP-hard to distinguish between
the case where there is an assignment A to X that satisfies all ϕ ∈ Φ, and the case where
any assignment A satisfies at most a small fraction of Φ. The characterization used herein
applies some specific requirements on the structure of Φ, described next.

Let 〈Φ, X, Y 〉 be a SAT instance over two types of variables, referred to as X and Y .
Variables x ∈ X take values in the range RX while variables y ∈ Y take values in RY .
Φ = {ϕ1, ..., ϕn} is a set of constraints (that is, Boolean-functions) over the variables X
and Y , where each ϕ ∈ Φ is a constraint over one variable x ∈ X and one variable y ∈ Y ,
ϕ : RX ×RY → {T,F}.

We say that Φ is two-determined, if for every ϕ(x, y) ∈ Φ and each value a ∈ RX , there
is exactly one value b ∈ RY such that ϕ evaluates to True on x = a and y = b.

For such x, y, we say that x determines y. Consequently, from now on, we would write
ϕ(x, y) as

ϕx→y : RX → RY

We say that Φ is regular, if there exists an integer dX so that each x determines exactly
dX y’s, i.e. all x ∈ X appear in exactly dX constraints ϕx→y ∈ Φ:

∀x ∈ X, |{ϕx→y ∈ Φ}| = dX .

An assignment is a function, assigning a value in RX to each variable x ∈ X, and a
value in RY to each variable y ∈ Y . We therefore use the notation A : (X → RX , Y → RY )
to denote such an assignment, where A(x) is the value assigned to a variable x ∈ X while
A(y) is the value assigned to y.
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Definition 3.1 Let us denote by Υ(Φ) the maximum, over all assignments to Φ’s variables
A : (X → RX , Y → RY ), of the fraction of ϕ ∈ Φ satisfied by A, namely

Υ(Φ) = max
A

Pr
ϕx→y

[ϕx→y(A(x)) = A(y)]

The PCP characterization we use herein is as follows:

Theorem 3.1 Let ε > 0 be any arbitrary constant. Let Φ be regular and two-determined.
It is NP-hard to distinguish between the following two cases:

• Υ(Φ) = 1, i.e. Φ is satisfiable.

• Υ(Φ) < ε, i.e. no assignment A satisfies a non-negligible fraction of Φ.

Furthermore, this is true even when Φ is so that |RY | , |RX | ≤ ε−O(1).

Proof: We prove this theorem by applying the parallel repetition lemma of [Raz98] to
the gap-SAT instance of [AS92, ALM+92]. The basic PCP theorem showing hardness for
gap-SAT states that,

Theorem 3.2 ([AS92, ALM+92]) There exists some constant β > 0 such that given a
set Ψ = {ψ1, .., ψn} of 3-CNF clauses over Boolean variables W (each clause is the OR of
exactly 3 variables), it is NP-hard to distinguish between the two cases:

• Υ(Ψ) = 1

• Υ(Ψ) < 1− β

Let us define the parallel repetition version of Ψ,

Definition 3.2 (Par [Ψ, k]) Let 〈Ψ,W 〉 be a 3-CNF instance, with 3-CNF clauses Ψ over
variables W . For any integer k > 0, let

Par [Ψ, k]
def
= 〈Φ, X, Y 〉

be a SAT instance with Boolean functions Φ over two types of variables: X
def
= Ψk and

Y
def
= W k.
The range of each variable x ∈ X, is RX = [7]k, corresponding (by enumerating the

7 satisfying assignments of each 3-CNF clause ψ ∈ Ψ) to the concatenation of the satis-
fying assignments for Ψ’s clauses in x. The range of each variable y ∈ Y , is RY = [2]k,
corresponding to all possible assignments to W ’s variables in y.
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For y = (w1, .., wk) and x = (ψ1, .., ψk), denote y v x if for all i ∈ [k], wi is a variable
in ψi. The Boolean-functions in Φ are as follows:

Φ =
{
ϕx→y

∣∣ y ∈ W k, x ∈ Ψk, y v x
}

where ϕx→y is T if the assignment to y is the restriction to y of the assignment to x.

Note that Φ is regular, since every x = (ψ1, .., ψk) appears in dX = 3k Boolean functions,
one for each y v x. Moreover, as hinted by the notation ϕx→y, a value for x determines
the one value for y v x that satisfies ϕx→y ∈ Φ.
Clearly, if Υ(Ψ) = 1, then Υ(Φ) = 1. Moreover,

Theorem 3.3 (Parallel Repetition, [Raz98]) For every β > 0 there exists some con-
stant c > 0, such that the following holds. Let 〈Ψ,W 〉 be a SAT-instance with Υ(Ψ) ≤ 1−β,
and for any k > 0 let 〈Φ, X, Y 〉 = Par [Ψ, k]. Then,

Υ(Φ) ≤ Υ(Ψ)c·k ≤ (1− β)c·k

Taking k to be the first for which (1− β)c·k ≤ ε we indeed have |RY | ≤ |RX | = ε−O(1).

For our purposes, this characterization needs to be slightly enhanced. The enhancement
involves the notion of a multi-assignment - assigning a small set of values to Φ’s variables
- and what it means for such an assignment to “semi-satisfy” Φ’s Boolean functions.

For any finite setR, denote the family of all size-h subsets ofR by
(
R
h

) def
= {F ⊂ R | |F | = h}.

An h-assignment A assigns to each variable in X and in Y a subset of h plausible values
A : (X →

(
RX
h

)
, Y →

(
RY
h

)
).

We say ϕx→y is semi-satisfied by an h-assignment A if there exists a ∈ A(x) such that
ϕx→y(a) ∈ A(y).

Let now Υh denote the maximum, over all h-assignments A, of the fraction of ϕ ∈ Φ
semi-satisfied by A:

Υh(Φ) = max
A

Pr
ϕx→y∈Φ

[ϕx→y(A(x)) ∩ A(y) 6= φ]

The PCP characterization of NP above (Theorem 3.1) can be extended to read as
follows:

Corollary 3.4 For any constants h, ε > 0, given a SAT instance Φ that is regular and
two-determined, it is NP-hard to distinguish between the following two cases:

• Υ(Φ) = 1

• Υh(Φ) < ε
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Furthermore, this is true even when Φ is so that |RX | , |RY | ≤ (h
ε
)O(1).

Proof: Let Φ be as in corollary 3.1, so that it is NP-hard to distinguish between the
case where Υ(Φ) = 1 and the case where Υ(Φ) < ε · 1

h2 . If Υ(Φ) = 1 then Υh(Φ) = 1.
Suppose Υh(Φ) > ε and let A be an h-assignment semi-satisfying ε of Φ. Consider the
assignments obtained by choosing randomly one, out of the h, value for each variable. The
expected fraction of local-constraints such a random assignment satisfies is h2 smaller than
the fraction A semi-satisfies, and since at least one assignment must meet the expectation,
Υ(Φ) ≥ Υh(Φ) · 1

h2 > ε · 1
h2 .

3.2 The FGLSS Graph

In this section we present a first attempt to prove the hardness of approximating Minimum-
Vertex-Cover.

Let 〈Φ, X, Y 〉 be a gap-SAT instance as in Corollary 3.4, i.e. with Boolean constraints
Φ over variables X and Y whose ranges are RX and RY , such that either Υ(Φ) = 1 or
Υh(Φ) ≤ εΦ. Recall that Υ(Φ) = 1 implies there is an assignment AΦ : (X → RX ;Y → RY )
satisfying all ϕx→y in Φ.

Let us consider the natural attempt, which is a variation on the FGLSS reduction [FGL+91,
Kar72], for constructing a graph whose independent set is either large or small depending
on which of the two cases Φ is in: let GZ [Φ] be the graph

GZ [Φ] = 〈Z,EZ〉 where Z
def
= (X ×RX)

that is, where GZ [Φ]’s vertices is the set of pairs consisting of a variable x in X and a value
a ∈ RX for x.

For the edge set EZ of GZ [Φ], let us consider all pairs of vertices whose values cannot
possibly correspond to the same satisfying assignment AΦ. Let I[AΦ] ⊆ Z be the derivative
of AΦ, defined to be

I[AΦ] = {(x,AΦ(x)) |x ∈ X}

There are two types of inconsistency between vertices of Z to consider. Two distinct vertices
(x, a1) and (x, a2), where x is common to both, cannot be both in I[AΦ] as AΦ assigns a
single value to x. Furthermore, if for some y, both x1 and x2 determine y, and assigning
a1 to x1 fixes y to a value different to what is determined by x2 assigned a2; these two
vertices cannot both be in I[AΦ]. It turns out though, that the first inconsistency is a
special case of the second, as two distinct values to x imply two distinct values for at least
one y determined by x (assuming two values to x must differ on the value fixed to at least
one y):
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Definition 3.3 (Z-inconsistency) Two vertices in Z, z1 = (x1, a1) and z2 = (x2, a2) are
Z-inconsistent, if there is some variable y ∈ Y with ϕx1→y, ϕx2→y ∈ Φ such that ϕx1→y(a1) 6=
ϕx2→y(a2). Let

EZ
def
= {{z1, z2} | z1, z2 are Z-inconsistent} .

Therefore, an independent set cannot correspond to an inconsistent assignment to Φ.
Note however that the gap between the sizes of the independent set, in case Φ is satisfi-

able and in case Φ is extremely not satisfiable, would not be good enough for our purposes.
The size of the independent set in the first case would be |X| = 1

|RX |
· |Z| compared to εΦ

times that in the second case, translating to a ratio of 1−ε/|RX |
1−1/|RX |

for vertex-cover, which is
significantly smaller than our goal.

Here might be the place to note that H̊astad’s obtained his hardness result for Minimum-
Vertex-Cover by taking the FGLSS graph over his Linear-Equations gap-SAT instance,
which is equivalent (ignoring the imperfect completeness that is irrelevant here) to |RX | = 4

and ε = 1
2
, yielding a hardness factor of

1− 1
2
· 1
4

1− 1
4

= 7
6
.

A Naive Construction. Let us first consider a naive manner by which to apply the
long-code to the graph GZ [Φ]. Denote the set of vertices of GZ [Φ] that correspond to a
variable x ∈ X by:

Z[x]
def
= {(x, a) ∈ Z | a ∈ RX} = {x} ×RX

Since an independent set in GZ [Φ] has at most one representative in Z[x] for each x ∈ X,
and the maximal independent set contains exactly one representative in each Z[x], we could
replace each set of vertices Z[x] with a set of vertices corresponding to the long-code of Z[x],
supposedly encoding Z[x]’s representative in GZ [Φ]’s maximal independent set. Edges in
this graph connect two subsets that cannot possibly be consistent, namely, F1 ∈ P (Z[x1])
is connected to F2 ∈ P (Z[x2]) iff F1 ∪ F2 form a clique in GZ [Φ], in other words, if

∀a1 ∈ F1, a2 ∈ F2, ∃y, ϕx1→y, ϕx2→y ∈ Φ, s.t. ϕx1→y(a1) 6= ϕx2→y(a2)

This ensures that the maximal independent set in this graph would be of large size, in
case Φ is satisfiable. However, it might also be of large size in case Φ is far from satisfiable
as well. To see this, consider for candidates in the independent set, for each x ∈ X, only
subsets F ∈ P (RX) for which ϕx→y(F ) = RY for every ϕx→y ∈ Φ. Such subsets contain,
for every y determined by x and every value b ∈ RY for y, at least one element a ∈ F with
ϕx→y(a) = b. On the one hand, any two such subsets, for two distinct x’s, are consistent.
On the other hand, almost all subsets satisfy this requirement. To see this, note that the
probability that a subset F ∈ P (RX) misses all of ϕ−1

x→y(b) is exponentially small in the
number of a’s mapped to one b; which is negligible even if multiplying by the number of
y’s determined by x. Hence one can construct a large independent set corresponding to
an arbitrary assignment ax to each x, by taking only those subsets that contain ax and, in
addition, satisfy the above requirement.
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3.3 A 7/6 Construction

The naive construction of taking the long-code of each variable in X, failed to enforce
consistency between the encodings of two such x’s. One possible way to go around this,
is by gluing together the encodings of both variables x and y for each ϕx→y ∈ Φ, in
an adaptive manner defined below. Consistency is then easily verified by inserting edges
between inconsistent encodings of each appearance of x or of y. This construction achieves
consistency between tests, yet loses in that the size of the independent in case Φ is satisfiable
is 1

4
rather than 1

2
, compared to 1

8
in case Φ is far from satisfiable. This achieves a hardness

of approximation ratio of roughly
1− 1

8

1− 1
4

= 7
6

for vertex-cover. Before we continue, let us

note that Hastad [H̊as97] proved that vertex-cover is hard to approximate to within 7
6
, by

constructing the FGLSS graph over the Linear-Equations system. The construction we
present here is an alternative to that result.

Again, let 〈Φ, X, Y 〉 be regular and two-determined as in Corollary 3.4, and let ϕx→y ∈
Φ. An assignment to ϕx→y consists of a value in RX and a value in RY , hence the long
code of ϕx→y would be P (RX)×P (RY ) ∼= P (RY ∪RX). We enforce consistency between
x and y by allowing only those subsets F ∈ P (RY ∪RX) for which, denoting FX = F ∩RX

and FY = F ∩RY ,
ϕx→y(FX) ⊆ FY

We assign these sets the distribution obtained by first selecting a random subset FY ∈µp
P (RY ) and then selecting a random subset FX ∈µp P

(
ϕ−1
x→y(FY )

)
.

Definition 3.4 The p-adaptive mutual long-code of ϕx→y is the family of subsets

LCx→y def= {F ∈ P (RX ∪RY ) |FY ⊇ ϕx→y(FX)}

endowed with the distribution

µx→y
p (F )

def
= µRY

p (FY ) · µϕ
−1
x→y(FY )
p (FX) .

Define the graph

G[ 1
4
, 1
8
](Φ)

def
=
〈
V[ 1

4
, 1
8
], E[ 1

4
, 1
8
]

〉
with vertices

V[ 1
4
, 1
8
] =

⋃
ϕx→y∈Φ

LCx→y

(we take LCx→y to be distinct for distinct tests ϕx→y ∈ Φ), whose weights are defined to
be, setting p = 1

2
− ε,

∀F ∈ LCx→y, Λ(F )
def
=

1

|Φ|
· µx→yp (F )
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A pair of subsets F ∈ LCx→y and F ′ ∈ LCx→y′ are connected by an edge if F ∩F ′∩RX = φ
(this applies also to the case where y = y′),

E1
def
=
{

(F, F ′) ∈ LCx→y × LCx→y′
∣∣∣ F ∩ F ′ ∩RX = φ

}
.

For distinct variables x1, x2 ∈ X for which ϕx1→y, ϕx2→y ∈ Φ, a pair of vertices F1 ∈
LCx1→y, F2 ∈ LCx2→y are connected by an edge if ϕx1→y(RX ∩ F1) ∩ ϕx2→y(RX ∩ F2) = φ,

E2
def
= {(F1, F2) ∈ LCx1→y × LCx2→y | ϕx1→y(RX ∩ F1) ∩ ϕx2→y(RX ∩ F2) = φ} .

Altogether,

E[ 1
4
, 1
8
]

def
= E1 ∪ E2 .

Now, in case AΦ : (X → RX ;Y → RY ) is a satisfying assignment for Φ, taking for each
ϕx→y the family of all subsets containing both A(x), A(y) comprises an independent set in
G[ 1

4
, 1
8
](Φ), of weight p2 > 1

4
− 2ε:

Lemma 3.5 (Completeness of G[ 1
4
, 1
8
](Φ)) If AΦ : (X → RX ;Y → RY ) is a satisfying

assignment for Φ, then the following set is an independent set in G[ 1
4
, 1
8
](Φ),

I[AΦ] =
⋃

ϕx→y∈Φ

{F ∈ LCx→y | AΦ(x), AΦ(y) ∈ F}

Note the inherent loss from the composed structure of LCx→y, halving the size of the
independent set twice, once for x and once for y.

For the soundness of this construction, we show that if G[ 1
4
, 1
8
](Φ) has an independent

set whose weight is even slightly more than 1
8
, we can find an h-assignment semi-satisfying

more than ε of Φ, thus Φ is satisfiable:

Lemma 3.6 (Soundness of G[ 1
4
, 1
8
](Φ)) For any SAT instance Φ, if α(G[ 1

4
, 1
8
](Φ)) ≥ 1

8
+8ε,

then Υh(Φ) ≥ ε where h = h(1
2
− ε, ε, 4

ε
) = O(1).

Proof: Let I ⊂ V[ 1
4
, 1
8
] be an independent set whose weight is Λ(I) ≥ 1

8
+ 8ε. The proof

proceeds in three steps:
In the first step, we observe that for every x0, y0 the families

Ix0 =
⋃

y:ϕx0→y∈Φ

{F ∩RX |F ∈ I ∩ LCx0→y} and Iy0 =
⋃

x:ϕx→y0∈Φ

{F ∩RY |F ∈ I ∩ LCx→y0}

are intersecting because of the edges in E1 and E2 respectively. Moreover, assuming w.l.o.g.
that I is maximal, these families are also monotone.
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The second step would be to find a significant portion of the tests in Φ, and for each
of their variables, a small set of permissible values. Let Φ1 ⊆ Φ consist of all ϕx→y ∈ Φ for
which µp(I ∩ LCx→y) > 1

8
+ 6ε, noting |Φ1| ≥ 2ε · |Φ|.

Next, we find a subset Φε ⊆ Φ1 of significant size, |Φε| ≥ ε · |Φ|, and some q ∈ (p, p+ ε)
such that for every ϕx→y ∈ Φε , asq(Iy) + asq(Ix) < 4

ε
. Such a set must exist since

1

|Φ1|
∑

ϕx→y∈Φ1

asp(Ix) + asp(Iy) =
d

dp

 1

|Φ1|
∑

ϕx→y∈Φ1

µp(Ix) + µp(Iy)


and the right hand side, being the derivative of a function that is bounded between 0 and
2, must be smaller than 2

ε
at some point q ∈ (p, p+ ε). At most half of the tests ϕx→y ∈ Φ1

can have asq(Iy)+asq(Ix) > 2 · 2
ε

which is twice the expectation, thus |Φε| ≥ 1
2
· |Φ1| ≥ ε |Φ|.

Denote by Xε (resp. Yε) the X-variables (resp. Y -variables) appearing in the tests of
Φε. For every variable z ∈ Xε ∪ Yε, we now apply the Friedgut-Lemma (Theorem 2.3) to
find a constant sized (ε, q)-core for Iz, Cz, |Cz| ≤ h = h(1

2
− ε, ε, 4

ε
) = O(1), and define

an h-assignment for Φ by setting A(z)
def
= Cz for each z ∈ Xε ∪ Yε and for the remaining

variables, simply A(z)
def
= φ.

The third and final step is to prove that this h-assignment semi-satisfies Φ. This is
done by showing that, for every y, x with ϕx→y ∈ Φε, ϕx→y(A(x)) ∩ A(y) 6= φ. So assume
otherwise and recall from Definition 2.5 the core families of Ix and Iy, denoted 〈Ix〉Cx and
〈Iy〉Cy respectively, and define

CFx =
{
FX ⊂ RX |FX ∩ Cx ∈ 〈Ix〉Cx

}
and CFy =

{
FY ⊂ RY |FY ∩ Cy ∈ 〈Iy〉Cy

}
.

By Definition 3.4, and by Lemma 2.1,

µx→y
p (I ∩ LCx→y) =

∑
F∈I∩LCx→y

µϕ
−1
x→y(F∩RY )
p (F ∩RX) · µRYp (F ∩RY )

≤ 2 · 3ε+
∑

F ∈ I ∩ LCx→y

FX = F ∩ RX ∈ CFx
FY = F ∩ RY ∈ CFy

µϕ
−1
x→y(FY )
p (FX) · µRYp (FY ) .

For every fixed FY ∈ CFy, consider the family

F [FY ]
def
=
{
FX ⊂ ϕ−1

x→y(FY )
∣∣FX ∈ CFx, FY ∪ FX ∈ I ∩ LCx→y} ,

and observe that it is intersecting, therefore µ
ϕ−1
x→y(FY )
p (F [FY ]) ≤ p. Moreover, the above

sum is equal to

= 6ε+
∑

FY ∈CFy

µRY
p (FY ) ·

∑
FX∈F [FY ]

µϕ
−1
x→y(FY )
p (FX) ≤ 6ε+

∑
FY ∈CFy ,F [FY ] 6=φ

µRY
p (FY ) · p
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We complete the proof by showing that µRYp ({FY ∈ CFy | F [FY ] 6= φ}) ≤ p2 < 1
4

con-
tradicting the fact that for any ϕx→y ∈ Φε, µp(I ∩ LCx→y) > 1

8
+ 6ε. Let ϕx→y(CFx) =

{ϕx→y(FX) |FX ∈ CFx}, and observe that this family is monotone and intersecting and
is completely determined (see Section 2.1) by ϕx→y(Cx). Finally, if F [FY ] 6= φ then
FY ∈ ϕx→y(CFx) because ∃FX ∈ F [FY ] ⊂ CFx which means ϕx→y(FX) ⊆ FY and by
monotonicity. Thus, the above comes to

µp({FY ∈ CFy | F [FY ] 6= φ}) ≤ µp(ϕx→y(CFx) ∩ CFy) = µp(ϕx→y(CFx)) · µp(CFy) ≤ p2

where the equality holds due to ϕx→y(Cx)∩Cy = ϕx→y(A(x))∩A(y) = φ and because µp is
a product measure; and the last inequality comes from each of CFy and ϕx→y(CFx) being
an intersecting family which limits their size to p.

We have reached a contradiction, proving that for every ϕx→y ∈ Φε, ϕx→y(A(x))∩A(y) 6=
φ, and so Υh(Φ) ≥ ε.

3.4 The Final Graph, G[p,p•](Φ)

The construction of G[ 1
4
, 1
8
](Φ) is inherently limited by the fact that we glued the long-codes

of x and of y together, twice halving the size of the largest possible independent set, even in
case Φ is satisfiable. It seems that achieving hardness for a factor of approximation larger
than 7

6
, and especially reaching 2− ε, requires encoding each variable separately.

Recall however, the naive attempt (described in Section 3.2), of separately taking the
long-code over the possible values RX for each x ∈ X, and then adding consistency edges
between distinct x’s. This attempt could not enforce consistency between the long-codes of
distinct x’s due to the following. Consider a pair of variables x1, x2 that both determine y.
ϕx1→y (and similarly ϕx2→y) partitions the values a ∈ RX according to ϕx1→y(a), such that
for every b ∈ RY , every value a1 ∈ ϕ−1

x1→y(b) is consistent with every value a2 ∈ ϕ−1
x2→y(b).

The fake consistency stems from the fact that every value b ∈ RY has many possible origins
in RX , each showing up in F ∈µp P (RX) independently with probability p. Thus a typical
subset F ∈ LCRXp , when projected to RY , usually covers all possible values in RY , i.e.

Pr
F∈LCRXp

[ϕx→y(F ) = RY ] ≈ 1

Such subsets are consistent with each other.
Our next attempt, is to construct new variables Z, such that setting a value for one

variable leaves at most two possible values for related variables. Together with the specific
structure of Z, we would be able, taking p to be small enough p < 3−

√
5

2
, to establish

consistency between p-biased long-codes of different variables.
The constructed graph G[p,p•](Φ) will be structured according to the FGLSS graph,

GZ [Φ] = 〈Z,EZ〉, as constructed in Section 3.2; and will implicitly depend on a parameter
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l to be fixed later (see Definition 4.1) so that l ≥ 8 log 2
ε
· |RX |. Consider the family Z of

all sets of size l of Z:

Z =

(
Z

l

)
Let us refer to each B ∈ Z as a block. Recall we denoted by I[AΦ]

def
= {(x,AΦ(x))} the set

of vertices in GZ [Φ] corresponding to an assignment AΦ for Φ. The intersection of I[AΦ]
with any B ∈ Z, I[AΦ] ∩ B, can take 2l distinct forms, namely all subsets of B. Consider
then an assignment AZ to the set of blocks B ∈ Z, in which each block B is assigned a
truth assignment

AZ(B) ∈ {f : B → {T,F}}

supposedly assigning T to exactly all vertices of B that are in the independent set I[AΦ],
that is, where f−1(T) = I[AΦ] ∩ B. For a truth assignment for B, f : B → {T,F}, and
any B̂ ⊆ B, let us denote by f|B̂ : B̂ → {T,F} the restriction of f to B̂, namely, where

∀z ∈ B̂, f|B̂(z) = f(z). Given a pair of blocks B1, B2 that intersect on B̂ = B1 ∩ B2 with

|B̂| = l− 1, every truth-assignment to B1 is consistent with exactly two truth-assignments
to B2.

Now, with little more effort, we can ensure the truth-assignments assigned to the blocks
in Z correspond to a large independent set; this follows from the following observation
regarding the restriction of I[AΦ] to all B ∈ Z. Since |I[AΦ]| = |X| = |Z|

|RX |
, the ex-

pected number of vertices assigned T in the restriction of I[AΦ] to a random B ∈ Z, is
l
|RX |

. Let t = 1
2

l
|RX |

be half of this expectation, and consider the probability that B has

fewer than t vertices in I[AΦ]; by a straightforward application of the Chernoff bound (see
Proposition B.2 in the appendix), for any I[AΦ]

Pr
B∈Z

[|I[AΦ] ∩B| < t] < 2e
− l

8|RX |

It is therefore the case that, disallowing AZ to assign blocks B ∈ Z a truth-assignment over
B, if that assignment assigns T to fewer than t vertices z ∈ B, excludes only a tiny fraction
of the blocks from being assigned the truth-assignment that corresponds to I[AΦ]∩B, and
allows AZ to be consistent almost everywhere. Consequently, let, for each block B,

RB
def
=
{
f : B → {T,F}

∣∣ |f−1(T)| ≥ t
}

and consider AZ that assigns to each B ∈ Z only values in RB, AZ(B) ∈ RB. As proved
below, this restriction ensures a sizeable set in GZ [Φ], and, if consistent, being an indepen-
dent set, must correspond to an assignment A satisfying sizeable fraction of Φ. Let us refer,
from now on, to each member of RB as a block assignment.

So the next attempt would be to apply the FGLSS reduction to the RB’s, and con-
struct a graph GZ [Φ] whose vertices consist of all block-assignments to every block B ∈ Z,
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and whose edges correspond to pairs of such block assignments that cannot possibly be
consistent with an independent-set in GZ [Φ]:

GZ [Φ] =

〈⋃
B∈Z

RB , ./

〉
where the edge relation ./ is defined by stating when two block-assignments are considered
inconsistent:

Definition 3.5 (Inconsistent Block-assignments) Let B1, B2 ∈ Z and denote B̂ =
B1 ∩B2; a pair of block-assignments f1 ∈ RB1 , f2 ∈ RB2 are inconsistent, denoted f1 ./ f2, if
either f1|B̂ 6= f2|B̂, or, if there exist z1 ∈ B1 and z2 ∈ B2 that are Z-inconsistent, and such
that f1(z1) = f2(z2) = T.

The composition technique is now called upon to encode each block-assignment of every
B ∈ Z, applying the biased–long-code to each, and check their consistency. This is still
not an easy task, since the consistency between distinct B’s can be checked only for blocks
that differ only on one element of Z, but these hardships belong to a different section.

The Constructed Graph

It is now time to define our graph G[p,p•](Φ).

Vertices and Weights: G[p,p•](Φ) = 〈V,E,Λ〉 has a block of vertices V [B] for every
B ∈ Z, where vertices in each block B correspond to the p-biased–long-code applied to RB

V [B] = P (RB)

that is, one vertex for each subset F ⊆ RB of B’s block-assignments. V consists of one
such block of vertices for each B ∈ Z

V =
⋃
B∈Z

V [B]

Note that we take the block-assignments to be distinct, hence, subsets of them are distinct,
and V is a disjoint union of V [B] over all B ∈ Z.

Let ΛB, for each block B ∈ Z, be the distribution assigning each vertex F , a probability
according to µp, namely

ΛB(F ) = µRBp (F )

The block of vertices V [B] superimposed with ΛB therefore comprise a p-biased–long-code
over RB (see Definition 2.3).

The probability distribution Λ assigns uniform probability to each block: For any F ∈
V [B]

Λ(F )
def
= |Z|−1 · ΛB(F )
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Edges. Within a block B any two non-intersecting vertices are connected by an edge:

E[B]
def
=
{

(F1, F2) ∈ V [B]2
∣∣F1 ∩ F2 = φ

}
A pair of vertices in distinct blocks, F1 ∈ V [B1] and F2 ∈ V [B2], are connected by an

edge if all their block-assignments are pairwise inconsistent:

E[B1, B2]
def
= {(F1, F2) ∈ V [B1]× V [B2] | ∀f1 ∈ F1, f2 ∈ F2 f1 ./ f2}

Altogether,

E
def
=
⋃
B∈Z

E[B] ∪
⋃

B1,B2∈Z

E[B1, B2]

This completes the construction of the graph G[p,p•](Φ).

Proposition 3.7 The graph G[p,p•](Φ) is polynomial-time constructible given input Φ.
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Chapter 4

Main Theorem

The graph G[p,p•](Φ) constructed in the previous section, has an independent set of size
almost p, in case Φ is satisfiable, as will be proven in Lemma 4.3 below. Furthermore, the
heart of this chapter is to show that if Φ is far from being satisfiable, then α(G[p,p•](Φ))

cannot be even slightly larger than p• = max(p2, 4p3 − 3p4), provided that p < pmax
def
=

3−
√

5
2

≈ 0.382. Thus,

Theorem 4.1 Let p < pmax. For any constant ε > 0, given a weighted graph G, it is NP-
hard to distinguish between the case where α(G) > p−ε, and the case where α(G) < p•+ε.

Throughout the proof one may think of p ≤ 1
3

in which case p• reads p2. In this

special case, the gap in our main theorem approaches 1−p2
1−p = 1 + p, yielding a hardness-of-

approximation factor of 4
3

for Minimum-Vertex-Cover. Before we prove the main theorem,
let us state the corollary for Minimum-Vertex-Cover,

Corollary 4.2 (Minimum Vertex Cover) Given a graph G, it is NP-hard to approxi-
mate α(G) to within a factor of 1.361.

Proof: For p near pmax, p
• = 4p3 − 3p4, thus Theorem 4.1 asserts that it is NP-hard to

distinguish between the case G has a vertex cover of size 1 − p + ε and the case G has a
vertex cover of size at least 1− 4p3 + 3p4− ε for any ε > 0. Minimum Vertex-Cover is thus
shown hard to approximate to within a factor approaching

1− 4(pmax)
3 + 3(pmax)

4

1− pmax
= 1 + pmax + (pmax)

2 − 3(pmax)
3 > 1.361

Proof: (of Theorem 4.1) The proof proceeds by reduction from the NP-complete problem
gap-SAT, as in Corollary 3.4. Given p, ε > 0, we choose h, εΦ, and l (see Definition 4.1
below) and then, given Φ, construct the graph G[p,p•](Φ). The completeness of the reduction,
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asserting that if Υ(Φ) = 1 then α(G[p,p•](Φ)) > p−ε, is shown in Lemma 4.3. The soundness
is established by Lemma 4.4, showing that if Υh(Φ) < εΦ then α(G[p,p•](Φ)) < p• + ε.

We begin by setting the parameters. It is worthwhile to note here that the particular
values chosen for these parameters are not important. They are chosen to satisfy some
properties through the course of the proof, nevertheless, most importantly, aside from l,
they are unrelated to |RX |. Given ε and p, we can select values for h and εΦ that allow us
to translate a large enough independent set into an h-assignment semi-satisfying εΦ of Φ.
The size of RX is affected by this choice, as |RX | = ( εΦ

h
)O(1), therefore it is crucial that h

depend only on ε and p, and not on |RX |.

Definition 4.1 (Parameter Setting) Let us set the parameters as follows.

• Let 0 < γ < pmax − p be such that, (p+ γ)• − p• < 1
4
ε.

• We choose h to accommodate applications of Friedgut’s Lemma, a Sunflower Lemma
and a pigeon-hole principle. Recall that h(p, δ, k) ≤ (cp)

k/δ denoted the bound on the
size of a (δ, p)-core of a family whose average sensitivity is bounded by k. Let

h0 = sup
q∈[p,pmax]

(
h(q, 1

16ε,
2
γ )
)

and let η = 1
16h0

·p8h0, h1 =
⌈

2
γ·η

⌉
+h0, hs = 1+22h0 ·

∑h0

k=0

(
h1

k

)
, and h = (hs)

h1 ·(h1)! .

• Fix εΦ = 1
32h

· ε .

• Fix l
def
= max(8 log 2

ε
· |RX | , 2(h1)

2 · |RX |).

Remarks. The supremum supq∈[p,pmax]

(
h(q, 1

16ε,
2

pmax−p)
)

in the definition of h0 is bounded,

because h(q, 1
16ε, 16ε−1) is a continuous function of q, see Theorem 2.3. The value of γ is

well defined because the function f(p) = max(p2, 4p3 − 3p4) is a continuous function of p.
Also, since the parameters affecting l, including |RX |, (see Corollary 3.4) are constant and
unrelated to the size of the instance |Φ|, we can assume that l < 1

2
|X|.

4.1 Completeness

We now proceed to establish the (easier) completeness part of the reduction,

Lemma 4.3 (Completeness) If Υ(Φ) = 1 then there exists an independent set I ⊂ V ,
with

Λ(I) ≥ p− ε
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Proof: Let AΦ : (X → RX , Y → RY ) be a satisfying assignment for Φ. Consider all
vertices of GZ [Φ] consistent with AΦ

I[AΦ] = {(x,A(x)) ∈ Z} .

Let Z ′ be the set of blocks B ∈ Z =
(
Z
l

)
that intersect I[AΦ] on at least t elements

|B ∩ I[AΦ]| ≥ t. The probability that a block is not in Z ′ is bounded, via a simple

Chernoff bound (see Proposition B.2), by 2e
− l

8|RX | < ε. For a block B ∈ Z ′, let us define
the block-assignment fB ∈ RB, assigning T to values from I[AΦ] and F to the rest:

∀(x, a) ∈ B fB(x, a)
def
=


T AΦ(x) = a

F AΦ(x) 6= a

Now take I to be the set of all vertices containing fB:

I =
⋃
B∈Z′

{F ∈ V [B] |F 3 fB}

To see that I is an independent set, first note that for every block B ∈ Z ′, I∩V [B] 3 fB.
Furthermore, consider two blocks B1, B2 ∈ Z and a pair of vertices F1 ∈ V [B1] ∩ I, F2 ∈
V [B2]∩I and denote B̂ = B1∩B2. fB1 , fB2 must coincide on B̂ as both are defined according
to A. If B1 3 (x1, a1) and B2 3 (x2, a2) are Z-inconsistent (see definition 3.3), since AΦ is
a satisfying assignment, not both AΦ(x1) = a1 and AΦ(x2) = a2, thus by definition at least
one of fB1(x1, a1) and fB2(x2, a2) is F, hence fB1 , fB2 are consistent and F1, F2 as well.

4.2 Soundness

We next proceed to the the heart, and most technical part, of the proof of correctness,
proving the construction is sound, that is, that in case Φ is far from being satisfiable,
G[p,p•](Φ) has only a small independent set.

Lemma 4.4 (Soundness) If α(G[p,p•](Φ)) ≥ p• + ε then Υh(Φ) ≥ εΦ.

Proof Overview: Assuming an independent set I ⊂ V of weight Λ(I) ≥ p•+ ε, we consider
for each block B ∈ Z, its supposed long-code: the family I[B] = I ∩ V [B].

The first step (Lemma 4.6) is to find, for a non-negligible fraction of the blocks Zq ⊆ Z,
a small core of permissible block-assignments, and in it, one distinguished block-assignment
to be used later to form an h-assignment satisfying εΦ of Φ. This is done by showing that
for every B ∈ Zq, I[B] has both significant weight and low average-sensitivity. This, not
necessarily true for p, is asserted for some slightly shifted value q ∈ (p, p + γ). Utiliz-
ing Friedgut’s lemma, we deduce the existence of a small core for I[B]. Then, utilizing
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an Erdős-Ko-Rado-type bound on the maximal size of a 2-intersecting family, we find a
distinguished block-assignment for each B ∈ Zq.

The next step is to focus on a subset of the blocks in Zq, that would serve as good
representatives of Z = X ×RX , from which emerges an h-assignment that semi-satisfies at
least an εΦ fraction of ϕ ∈ Φ. This is done by taking a random sub-block B̂ ∈ Z(l−1), and
considering all blocks in Z that extend it. The distinguished block-assignment of each of
these blocks form a multi-assignment AI for Φ.

The final, most delicate part of the proof is Lemma 4.10, asserting that the distinguished
block-assignments of the blocks extending B̂ must be consistent. Indeed, since they all
share the same (l− 1)-sub-block B̂, the consistency constraints these blocks impose on one
another will be sufficiently tight. More accurately, we show there cannot be even h blocks
extending B̂ whose distinguished block-assignments are pairwise inconsistent, sufficing to
conclude the proof.

Proof: Let then I ⊂ V be an independent set of size Λ(I) ≥ p• + ε, and denote, for each
B ∈ Z,

I[B]
def
= I ∩ V [B] .

The fractional size of I[B] within V [B], according to ΛB, is ΛB(I[B]) = µp(I[B]).
Assume w.l.o.g. that I is maximal, thus I[B], for any B ∈ Z, is monotone and

intersecting: It is intersecting, as G[p,p•](Φ) has edges connecting vertices corresponding to
non-intersecting subsets, and it is monotone due to maximality:

Proposition 4.5 Let I be an independent set of G[p,p•](Φ). If F ∈ I ∩ V [B], and F ⊂
F ′ ∈ V [B], then I ∪ {F ′} is also an independent set.

The first step in our proof is to find for a significant fraction of the blocks, a small core,
and in it one distinguished block-assignment. Recall from Definition 2.9, that an element
f ∈ C would be distinguished for a family 〈I[B]〉C if there are two subsets F [, F ] ∈ 〈I[B]〉C
whose intersection is exactly F [ ∩ F ] = {f}.

Friedgut’s Lemma asserts the existence of a small core only for families with low average-
sensitivity. We overcome this by slightly increasing p,

Lemma 4.6 There exists some q ∈ (p, pmax), and a set of blocks Zq ⊆ Z whose size is
|Zq| ≥ 1

4
ε · |Z|, such that for all B ∈ Zq,

1. I[B] has an ( 1
16
ε, q)-core, Core[B] ⊂ RB, of size |Core[B]| ≤ h0.

2. The core-family 〈I[B]〉Core[B] has a distinguished element f♦[B] ∈ Core[B].

Proof: We will find a set of blocks Zq ⊆ Z such that for every B ∈ Zq, I[B] is of large
weight and low average sensitivity, according to µq. We will then proceed to show that this
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implies the above properties. First consider blocks whose intersection with I has weight
not much lower than the expectation,

Z ′ def=
{
B ∈ Z

∣∣∣∣ ΛB(I[B]) > p• +
1

2
ε

}
By simple averaging, it follows that |Z ′| ≥ 1

2
ε · |Z|, as otherwise

Λ(I) · |Z| =
∑
B∈Z

ΛB(I[B]) ≤ 1

2
ε |Z|+

∑
B 6∈Z′

ΛB(I[B]) <
1

2
ε |Z|+

∑
B 6∈Z′

(p•+
1

2
ε) ≤ (p•+ε) · |Z|

Since µp is non-decreasing with p (see Proposition 2.4), and since the value of γ was chosen
so that for every q ∈ (p, p+ γ), p• + 1

4
ε > q•, we have for every block B ∈ Z ′,

µq(I[B]) ≥ µp(I[B]) > p• +
1

2
ε > q• +

1

4
ε . (∗)

The family I[B], being monotone, cannot have high average sensitivity for many values of
q, so by allowing an increase of at most γ, the set

Zq
def
=

{
B ∈ Z ′

∣∣∣∣ asq(I[B]) ≤ 2

γ

}
must be large for some q ∈ (p, p+ γ):

Proposition 4.7 There exists q ∈ (p, p+ γ) so that |Zq| ≥ 1
4
ε · |Z|.

Proof: Consider the average, within Z ′, of the size of I[B] according to µq

µq[Z ′]
def
= |Z ′|−1 ·

∑
B∈Z′

µq(I[B])

and apply a version of Lagrange’s Mean-Value Theorem. The derivative of µq[Z ′] as a
function of q is

dµq[Z ′]
dq

= |Z ′|−1 ·
∑
B∈Z′

dµq
dq

(I[B]) = |Z ′|−1 ·
∑
B∈Z′

asq(I[B])

where the last equality follows from the Russo-Margulis identity (Lemma 2.5). Therefore,

there must be some q ∈ (p, p+ γ) for which
dµq [Z′]
dq

≤ 1
γ
, as otherwise µq[Z ′] would increase

too rapidly and µp+γ[Z ′] would be larger than 1 which is impossible. It follows that at least
half of the blocks in Z ′ have asq(I[B]) ≤ 2

γ
.

Fix then q ∈ (p, p + γ), to be as in the proposition above, so that |Zq| ≥ 1
4
ε · |Z|.

We next show that the properties claimed by the lemma, indeed hold for all blocks in Zq.
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The first property, namely that I[B] has an ( 1
16
ε, q)-core, denoted Core[B] ⊂ RB, of size

|Core[B]| ≤ h0, is immediate from Friedgut’s Lemma (see Theorem 2.3), plugging in the
average sensitivity of I[B], and by definition of h0 = supq∈[p,pmax] h(q, 1

16 ε,
2
γ
).

Denote the core-family approximating I[B] on Core[B], (see Definition 2.5), by CFB
def
=

〈I[B]〉Core[B]. By Proposition 2.10, since I[B] is monotone and intersecting, so is CFB.
Moreover, Lemma 2.1 (a corollary of Friedgut’s Lemma) asserts that

µq(CFB) > µq(I[B])− 3 · ε
16

> q•

where the second inequality follows from inequality (∗) above. We can now utilize the bound
on the maximal size of a 2-intersecting family (see Lemma 2.13), to deduce that CFB is too
large to be 2-intersecting, and must contain a distinguished element

{
f♦
}
∈ Core[B], and

two subsets F ], F [ ∈ CFB that intersect on exactly that block-assignment, F ]∩F [ =
{
f♦
}
.

This completes the proof of Lemma 4.6.
Let us now fix q as guaranteed by Lemma 4.6 above. The following implicit definitions

appeared in the above proof, and will be used later as well,

Definition 4.2 (Core, Core-Family, Distinguished Block-Assignment) Let B ∈ Zq.

• B’s core, denoted Core[B] ⊂ RB, is an arbitrary smallest ( 1
16
ε, q)-core of I[B].

• B’s core-family, is the core-family on B’s core (see Definition 2.5), denoted CFB =
〈I[B]〉Core[B].

• B’s distinguished block-assignment, is an arbitrary distinguished element of CFB,
denoted f♦[B] ∈ Core[B]; i.e. for which there exist F ], F [ ∈ CFB with F ] ∩ F [ ={
f♦[B]

}
.

Let us further define for each block B ∈ Zq, the set of all block-assignments of B that
have non-negligible influence:

Definition 4.3 (Extended Core) For B ∈ Z, let the extended core of B be

ECore[B]
def
= Core[B] ∪

{
f ∈ RB

∣∣ influencef
q(I[B]) ≥ η

}
The average-sensitivity of I[B] is defined to be the sum of the elements’ influences, thus,
since for every B ∈ Zq, it is bounded by asq(I[B]) ≤ 2

γ
,

|ECore[B]| ≤ asq(I[B])

η
+ h0 ≤

⌈
2
γ·η

⌉
+ h0 = h1

The next step in our proof, is to identify an (l − 1)-sub-block B̂ ∈ Z(l−1) whose ex-
tensions B̂ ∪ {z} represent Z = X × RX , and whose distinguished block-assignments will
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be sufficiently consistent for defining an h-assignment for Φ. Analyzing the consistency
between the distinguished block-assignments of distinct blocks, is complicated by the fact
that families encoding distinct blocks consist of subsets of distinct domains (RB1 6= RB2 for
B1 6= B2). Considering only the blocks that extend a specific sub-block B̂ ∈ Z(l−1), yields
a nice 2-to-2 correspondence between their block-assignments. The block-assignments of
blocks B = B̂ ∪ {z} are paired according to their restriction to B̂, such that all the pairs
whose restriction is mapped to the same sub-block-assignment naturally correspond to each
other.

It would be undesired to have both block-assignments in a given pair influential in I[B]
for this would mean that the structure of I[B] is not preserved when reduced to B̂. Thus,
besides requiring that many of the blocks B̂ ∪ {z} extending B̂ reside in Zq, we need them

to be preserved by B̂:

Definition 4.4 (Preservation) Let B ∈ Z, and let B̂ ⊂ B, |B̂| = l−1. Let us denote by
f|B̂ the restriction to B̂ of a block-assignment f ∈ RB. We say that B̂ preserves B, if there
is no pair of block-assignments f1 6= f2 ∈ RB with f1|B̂ = f2|B̂, such that f1, f2 ∈ ECore[B].

It is almost always the case that B̂ preserves B̂ ∪ {z}:

Proposition 4.8

∀B ∈ Z |{z ∈ B |B \ {z} does not preserve B}| < (h1)
2

2
.

Proof: Each pair of block-assignments f1, f2 ∈ ECore[B] can cause at most one B̂ to not
preserve B, and for any block B ∈ Zq , |ECore[B]| ≤ h1; consequently, the number of B̂ not

preserving B is at most
(
h1

2

)
< (h1)2

2
.

The last step before identifying the required B̂ is to note that a distinguished block-
assignment for a block B̂ ∪ {z} is useful for constructing an assignment for Φ, if it assigns
T to z = (x, a). Hence, for each B̂ we consider the following set ZB̂ ⊂ Z:

Definition 4.5 Let ZB̂ ⊆ Z be:

ZB̂
def
=
{
z ∈ Z \ B̂

∣∣∣B = B̂ ∪ {z} ∈ Zq, and B̂ preserves B, and f♦[B](z) = T
}

It follows from the definition of ZB̂, that if z1, z2 ∈ ZB̂ are Z-inconsistent (recall Defini-

tion 3.3), then the distinguished block-assignments of B1 = B̂ ∪ {z1} and B2 = B̂ ∪ {z2}
are inconsistent, f♦[B1] ./ f♦[B2], (see Definition 3.5). Finally, let us identify a sub-block
B̂, for which ZB̂ is large:

Proposition 4.9 There exists B̂ ∈
(
Z
l−1

)
, with |ZB̂| ≥ 1

32
ε |Z||RX | =

1
32
ε |X|.
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Proof: We write

Pr
B̂, z∈Z\B̂

[z ∈ ZB̂] ≥ 1

4
ε · Pr

B, z∈B

[
z ∈ ZB\{z}

∣∣B ∈ Zq
]
≥ 1

4
ε · 1

4 |RX |

where the first inequality follows from Proposition 4.7 asserting Zq ≥ 1
4
ε |Z|. The second

inequality is a consequence of the fact that for any f ∈ RB, there are at least t = l
2|RX |

elements z ∈ B with f(z) = T; and at most (h1)2

2
(l − 1)-blocks B̂ ⊂ B not preserving B;

hence, conditioned on B ∈ Zq, the probability of z ∈ ZB̂ is at least 1
2|RX |

− (h1)2

2l
≥ 1

4|RX |
as

l ≥ 2(h1)
2 · |RX |.

There must therefore be at least one B̂ for which Prz∈Z\B̂ [z ∈ ZB̂] ≥ ε
16|RX |

, hence,

|ZB̂| ≥ 1
16|RX |

ε ·
∣∣∣Z \ B̂∣∣∣ ≥ 1

32
ε · |X|, as l < 1

2
|X|.

The h-Assignment AI. We are now ready to present, based on ZB̂, an h-assignment

AI semi-satisfying Φ. Fix one such B̂ for which |ZB̂| ≥ 1
32
ε · |X|. For every x ∈ X and

y ∈ Y , set

AI(x)
def
= {a ∈ RX | (x, a) ∈ ZB̂}

AI(y)
def
=

⋃
ϕx→y∈Φ

ϕx→y(AI(x))

Ideally, we would have liked to rule out the possibility of two zi’s in ZB̂ being Z-
inconsistent, in which case for every x, y, |AI(x)| , |AI(y)| ≤ 1. Instead, we show there
cannot be h values in ZB̂ that are pairwise Z-inconsistent. Specifically, we prove,

Lemma 4.10 For every x ∈ X, |AI(x)| < h, and for every y ∈ Y , |AI(y)| < h.

This lemma implies that Υh(Φ) ≥ εΦ, due to the following. By the definition of AI , for
every x with AI(x) 6= φ and for every ϕx→y ∈ Φ,

ϕx→y(AI(x)) ∩ AI(y) 6= φ .

Denote XB̂ = {x ∈ X |AI(x) 6= φ} and observe that, since Φ is regular (see section 3.1),
there is an equal number of ϕx→y ∈ Φ for each variable x, therefore AI ’s success probability
is:

Pr
ϕx→y∈Φ

[ϕx→y(AI(x)) ∩ AI(y) 6= φ] =
|XB̂|
|X|

>
1

h

|ZB̂|
|X|

≥ ε

32h

|X|
|X|

= εΦ .

Proof: (of Lemma 4.10) Assume, by way of contradiction, that there exist z1, . . . , zh ∈
ZB̂, where Bi = B̂∪{zi}, and such that zi are pairwise Z-inconsistent; we would then show
that ∪i∈[h]I[Bi] is not an independent set.
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This suffices so as to prove the lemma, as, a variable x ∈ X, with |AI(x)| ≥ h, or y ∈ Y ,
with |AI(y)| ≥ h, implies h blocks Bi = B̂ ∪ {zi} with pairwise Z-inconsistent zi’s.

Let us begin with a brief sketch of the proof that follows. Analyzing consistency between
blocks B̂∪{zi} leads us to consider the common sub-block B̂, and the sub-block-assignments
that are restrictions of block-assignments in RBi to B̂.

We begin by defining these restrictions, for the core, the distinguished block assignment,
and the extended core of each block. Next we find – applying some combinatorics (namely,
a pigeon-hole principle and a sunflower lemma) – a pair of blocks B1 and B2, out of the h,
whose encodings I[B1], I[B2] are ’extremely-inconsistent’. We then proceed in a series of
steps (Propositions 4.12–4.16) to identify a pair of subsets F1 ∈ I[B1] and F2 ∈ I[B2] with
an edge between them.

The (l − 1)-block-assignments of B̂ ∈
(
Z
l−1

)
, are defined to be

RB̂

def
=
{

f : B̂ → {T,F}
}

A block-assignment f ∈ RBi has a natural restriction to B̂, denoted f|B̂ ∈ RB̂, where
f|B̂(z) = f(z).

For the remaining analysis, let us name the three important entities regarding each
block Bi, for i ∈ [h]: Bi’s distinguished block-assignment, the core of Bi, and the extended
core of Bi,

f♦i
def
= f♦[Bi] Ci

def
= Core[Bi] Ei

def
= ECore[Bi]

and their natural restrictions to B̂ (where the natural restriction of a set is the set com-
prising the retrictions of its elements),

f̂♦i
def
= f♦i |B̂ Ĉi

def
= Ci|B̂ Êi

def
= Ei|B̂

Now, recall the core-family CFBi , which is the family of subsets, over the core of each Bi,
each of which extension is of 3

4
weight in I[Bi]. For each block Bi, i ∈ [h], f♦i being

distinguished implies a pair of subsets

F [
i , F

]
i ∈ CFBi so that F [

i ∩ F
]
i =

{
f♦i
}

Let their natural restriction to B̂ be

F̂ [
i
def
= F [

i |B̂ F̂ ]
i
def
= F ]

i |B̂

and note that, as B̂ preserves every Bi, it follows that, for all i ∈ [h],

F̂ [
i ∩ F̂ ]

i =
{

f̂♦i

}
(4.1)

Let us add some brief intuition for the first step of the proof. Our first goal is to identify
two blocks Bi1 and Bi2 that are extremely inconsistent. This task would be easy had we
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found two blocks whose restricted extended-cores Êi are disjoint. Loosely speaking, this
follows since anything that is of any remote influence in the encoding of a block, takes place
within the extended-core. Resorting to the next best thing, to our aid comes a combinatorial
lemma, that identifies a subset of the blocks, whose Êi’s are pairwise disjoint, except for a
common center. This is achieved by the Erdős-Rado Sunflower lemma:

Lemma 4.11 ([ER60]) For any F ⊂
(
R
k

)
, if |F| ≥ dk · k!, there are d distinct sets

F1, . . . , Fd ∈ F , such that, let ∆
def
= F1 ∩ . . . ∩ Fd, the sets Fi \∆ are pairwise disjoint.

The sets F1, .., Fd are called a Sunflower, or a ∆-system. This statement can easily be
extended to families in which each subset is of size at most k.

We apply this lemma for R = RB̂, and F = {Ê1, .., Êh}. Recall (definition 4.1) we have
fixed h = (hs)

h1 · (h1)!, hence Lemma 4.11 implies there exists some J ⊆ [h], |J | = hs, such
that {

Êi \∆
}
i∈J

are pairwise disjoint for ∆
def
=
⋂
i∈J

Êi (4.2)

Out of these hs blocks, we will find, applying a pigeon-hole principle, a pair of incon-
sistent blocks. Inconsistent, in this context, means that the core-families of these blocks
contain two subsets, F1 ∈ CFB1 and F2 ∈ CFB2 , whose block-assignments are pairwise
inconsistent. As the blocks Bi for i ∈ J have pairwise disjoint Êis outside ∆, we need to
consider only block-assignments whose restrictions fall into ∆.

Consider, for each i ∈ J , the triplet
〈
Ĉi ∩∆, F̂ [

i ∩∆, F̂ ]
i ∩∆

〉
, and note that,

since F̂ [
i, F̂ ]

i ⊆ Ĉi the number of possible triplets is at most∣∣∣{〈Ĉ ∩∆, F̂ [ ∩∆, F̂ ] ∩∆
〉 ∣∣∣ |Ĉ| ≤ h0, F̂ [, F̂ ] ⊆ Ĉ

}∣∣∣ ≤
h0∑
k=0

(
h1

k

)
· 2h0 · 2h0

< hs = |J |

(recall we have set (definition 4.1) hs = 1+22h0 ·
∑h0

k=0

(
h1

k

)
). Therefore, by the pigeon-hole

principle, there must be some i1, i2 ∈ J for which〈
Ĉi1 ∩∆, F̂ [

i1 ∩∆, F̂ ]
i1 ∩∆

〉
=
〈
Ĉi2 ∩∆, F̂ [

i2 ∩∆, F̂ ]
i2 ∩∆

〉
(4.3)

Assume w.l.o.g. that i1 = 1, i2 = 2. We will arrive at a contradiction by finding an edge
between the blocks B1, B2, specifically, by finding two extensions, one of F [

1 in I[B1], and
another of F ]

2 in I[B2], all of whose block-assignments are pairwise inconsistent.
As a first step, let us prove that the block-assignments in F [

1 and F ]
2 are pairwise

inconsistent:

Proposition 4.12
f1 ∈ F [

1 , f2 ∈ F
]
2 ⇒ f1 ./ f2
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Figure 4.1: Block Assignments of B1, B2 and sub-block-assignments of B̂.
RB1 (resp. RB2) is represented by the two upper (resp. two lower) horizontal lines labelled
by T and F to indicate the value assigned to v1 (resp. v2) by block-assignments on that line.
Each circle represents a single block assignment. On the left a column (highlighted as a
light gray vertical line) consists of four block assignments and a sub-block assignment which
is their common restriction to B̂. All block assignments in the same column agree on their
restriction to B̂, depicted as a gray circle on the middle horizontal line that represents RB̂.
Two block assignments are consistent only if they are in the same column and are not both
T. The blackened circles represent members of the core of B1 and the block-assignments in
F [

1 and F ]
1 are labelled [ and ]. The distinguished block-assignment – marked by a white

dot – is labelled by both [ and ], and assigns T to v1. The dashed vertical lines border the
intersection of Ĉ1 with Ĉ2, which is equal to Ĉ1 ∩ Ĉ2 = Ĉ1 ∩∆ = Ĉ2 ∩∆ and is where the
restrictions of F ]

1 , F
[
1 are equal to those of F ]

2 , F
[
2 . This also implies (see Proposition 4.15)

that (D̂1 \ Ĉ1) ∩∆ ⊆ (D̂1 \ Ĉ1) ∩ Ê1 = φ.
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Proof: For f1 to be consistent with f2, it must be that f1|B̂ = f2|B̂ ∈ F̂ [
1 ∩

ˆ
F ]

2 ⊆ Ê1∩ Ê2 =

∆. B1 and B2 are chosen (see equation 4.3) so that F̂ [
1∩∆ = F̂ [

2∩∆ and
ˆ
F ]

2∩∆ = F̂ ]
1∩∆.

Consequently f1|B̂ = f2|B̂ ∈ F̂ [
1 ∩ F̂ ]

1 ∩∆ = F̂ [
2 ∩ ˆ

F ]
2 ∩∆, however, equation (4.1) asserts

that the only block-assignment in these two intersections is the distinguished one, hence
f̂♦1 = f1|B̂ = f2|B̂ = f̂♦2 . Since B̂ preserves both B1 and B2, f1 = f♦1 and f2 = f♦2 . However,
f♦1 ./ f♦2 , as they assign T to both z1 and z2 that are Z-inconsistent.

It may well be that F [
1 6∈ I[B1] and F ]

2 6∈ I[B2], thus the fact that they are inconsistent
(and so, connected by an edge) is only a first step towards a contradiction. Nevertheless,
we know that F [

1 ∈ CFB1 = 〈I[B1]〉Core[B1] means that 3
4

of
{
F [

1

}
t P (RB1 \ Core[B1]) are

in I[B1]; and likewise for F ]
2 . In what follows, we utilize this large volume of 3

4
to find

extensions of these sets, that are in I, yet are inconsistent.
Let us partition the set of (l − 1)-block assignments of RB̂ into the important ones,

which are restrictions of block-assignments in the cores of B1 or B2, and the rest,

D̂ = Ĉ1 ∪ Ĉ2 and R̂ = RB̂ \ D̂

which immediately partitions the block-assignments of RB1 and RB2 , according to whether
their restriction falls within D̂:

D1 =
{

f ∈ RB1

∣∣∣ f|B̂ ∈ D̂
}

and R1 = RB1 \D1

and similarly for RB2 ,

D2 =
{

f ∈ RB2

∣∣∣ f|B̂ ∈ D̂
}

and R2 = RB2 \D2

Proposition 4.13 |D1| ≤ 4h0 and |D2| ≤ 4h0.

Proof: Simply note that |D1|, |D2| ≤ 2|D̂| ≤ 2(|Ĉ1|+ |Ĉ2|) ≤ 2(|C1|+ |C2|) = 4h0.
So far we have established two subsets F [

1 ∈ CFB1 and F ]
2 ∈ CFB2 in the core-families

of B1 and B2, all of whose block-assignments are pairwise inconsistent. Furthermore,
F [

1 ∈ P (C1) ⊆ P (D1) and F ]
2 ∈ P (C2) ⊆ P (D2), hence it suffices to show two subsets

H1 ∈ P (R1) and H2 ∈ P (R2) all of whose block-assignments are pairwise-inconsistent,
and so that F [

1 ∪H1 ∈ I[B1] and F ]
2 ∪H2 ∈ I[B2].

Let us prove this by showing first that the families of subsets extending F [
1 and F ]

2

within I are large; and then proceed to show that there are two subsets, H1 and H2 as
required.

Let us first name these two families of subsets extending F [
1 and F ]

2 within I:

I1 =
{
F ∈ P (R1)

∣∣ (F [
1 ∪ F ) ∈ I[B1]

}
and I2 =

{
F ∈ P (R2)

∣∣∣ (F ]
2 ∪ F ) ∈ I[B2]

}
and proceed to prove they are large:
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Proposition 4.14

µR1
q (I1) >

1

2
and µR2

q (I2) >
1

2

Proof: Let us prove the first case; the second one is proven by a symmetric, but otherwise
identical, argument. By definition of CFB1 = 〈I[B1]〉C1

, it is the case that

Pr
F∈µq

[
F ∈ I[B1]

∣∣ F ∩ C1 = F [
1

]
>

3

4

Note that the only difference between this event and

µR1
q (I1) = Pr

F∈µq

[
F ∈ I[B1]

∣∣ F ∩D1 = F [
1

]
is the conditioning on F to not contain any block-assignment in D1 \ C1. Simplistically, if
the elements in D1\C1 have tiny influence, then removing them from a subset does not take
it out of I[B1]. Hence, it suffices to prove that this family, of extensions of F [

1 within I[B1],
is almost independent of the set of block-assignments D1 \C1, that is, that one can extract
a small (< 1

4
) fraction of I1 and make it completely independent of the block-assignments

outside R1 ∪ C1.
Let us first observe that block-assignments in D1 \ C1 indeed have tiny influence,

Proposition 4.15
(D1 \ C1) ∩ E1 = φ

Proof: There are two cases to consider for f ∈ D1 \ C1: Either f|B̂ ∈ Ĉ1 and in that case,

since B̂ preserves B1 and since f 6∈ C1, f 6∈ E1; or, f|B̂ ∈ Ĉ2 \ Ĉ1 and since B1 and B2 are

chosen (¶) so that Ĉ1 ∩∆ = Ĉ2 ∩∆, we deduce f|B̂ 6∈ ∆. Now f|B̂ ∈ Ĉ2 ⊆ Ê2, implies

f|B̂ 6∈ Ê1, thus f 6∈ E1.
By definition of the extended core Ei (Definition 4.2), it follows that for every f ∈ D1\C1,

influencef
q(I[B1]) < η. Since |D1 \ C1| < 4h0 (Proposition 4.13) we can deduce that I[B1]

is almost independent of D1 \ C1, utilizing a relatively simple, general property related to
influences. Namely, that, given any family of subsets of a domain R, and a set T ⊂ R of
elements of tiny influence, one has to remove only a small fraction of the family to make it
completely independent of T . More accurately, Proposition 2.8 asserts that if the influence
of elements in D1 \C1 is bounded by η, then the weight of the subsets in I[B1]

′, i.e. those
that have to be removed from I[B1] to make it independent of D1 \ C1,

I[B1]
′ def= {F ∈ I[B1] | (F \ (D1 \ C1)) 6∈ I[B1]} ,

is bounded by

µ
RB1
q (I[B1]

′) < 4h0 · η · q−4h0 ≤ 1

4
q4h0
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since η = 1
16h0

· p8h0 ≤ 1
16h0

· q8h0 , see Definition 4.1.

Even if all I[B1]
′ is concentrated on F [

1 , since F [
1 ’s weight in P (D1) is at least q|D1| ≥

q4h0 , µD1
q

(
F [

1

)
≥ q4h0 , it follows that (using Pr(A |B) ≤ Pr(A)/Pr(B)),

Pr
F∈µR1

q

[
F ∈ I[B1]

′ |F ∩D1 = F [
1

]
≤ Pr

F∈µR1
q

[F ∈ I[B1]
′] · 1

µD1
q

(
F [

1

) < 1

4

Proposition 4.14 is thereby proven.
We complete the proof of the Soundness Lemma, by deducing from the large volume

of I1, I2, the existence of two subsets H1 ∈ I1 and H2 ∈ I2 so that 〈H1, H2〉 ∈ E, implying〈
F [

1 ∪H1, F
]
2 ∪H2

〉
∈ E, which is the desired contradiction.

Proposition 4.16 Let I1 ⊂ P (R1) , I2 ⊂ P (R2). If (1−q)2 ≥ q and µR1
q (I1)+µ

R2
q (I2) > 1,

there exist H1 ∈ I1 and H2 ∈ I2 such that 〈H1, H2〉 ∈ E.

Proof: This proposition is proven by modifying the proof for the case of cross-intersecting
families (Proposition 2.9). In that proof, we bounded the size of a pair of cross-intersecting
families by pairing each subset with its complement, noting that at p = 1

2
their weights are

equal.
In this case, we focus on the value q = pmax = 3−

√
5

2
for which (1− q)2 = q, noting that

since q ≤ pmax, the monotonicity of I1, I2 (see Proposition 2.4) yields µpmax(I1)+µpmax(I2) >
1. Here let us partition both P (R1) and P (R2), and define an appropriate ’complement’
for each part, rather than for each subset.

Our partition is defined according to a ’representative mapping’ mapping each F ∈
P (R1) to a function Π[F1] : R̂→

{
TF,TF,F

}
defined as follows:

∀f̂ ∈ R̂, Π[F1](̂f)
def
=


TF f̂(z1←T), f̂(z1←F) 6∈ F1

TF f̂(z1←T) ∈ F1, f̂(z1←F) 6∈ F1

F f̂(z1←F) ∈ F1

(symmetrically, we define Π[F2] for each F2 ∈ P (R2)). This mapping is natural when
considering the characteristic function of F1 and asking, for every f̂ ∈ R̂, the value of that
function on the two extensions of f̂ in R1, f̂(z1←T) and f̂(z1←F).

Additionally, for a function Π = Π[F1], Π : R̂ →
{
TF,TF,F

}
, let its complement be

Πc : R̂→
{
TF,TF,F

}
defined as follows:

∀f̂ ∈ R̂, Πc(̂f)
def
=


TF Π(̂f) = F

TF Π(̂f) = TF

F Π(̂f) = TF
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Observe that Πcc = Π, and that this is indeed a perfect matching of the possible
functions Π : R̂ →

{
TF,TF,F

}
, and most importantly that Π[H1] = Πc[H2] implies

〈H1, H2〉 ∈ E.
Next, observe that for a fixed Π0 : R̂→

{
TF,TF,F

}
,

Pr
F1∈µ

R1
q

[Π[F1] = Π0] =
∏

f̂: Π0 (̂f)=TF

(1− q)2 ·
∏

f̂: Π0 (̂f)=TF

q(1− q) ·
∏

f̂: Π0 (̂f)=F

q

Now if q = pmax, i.e. (1 − q)2 = q, we have PrF [Π[F ] = Π0] = PrF [Π[F ] = Πc
0]. Since

µq(I1) + µq(I2) > 1, there must be a pair Π,Πc such that

{F1 ∈ P (R1) | Π[F1] = Π} ∩ I1 6= φ and {F2 ∈ P (R2) | Π[F2] = Πc} ∩ I2 6= φ

providing the necessary pair of H1 ∈ I1, H2 ∈ I2 with 〈H1, H2〉 ∈ E.
Lemma 4.10 is thereby proved.
The Soundness of the construction (Lemma 4.4) is proven as well.

4.3 Tightness

In this section we show our analysis of G[p,p•](Φ) is tight in two respects. First, we show
that for any value of p there is always an independent set I in G[p,p•](Φ) whose size is almost
p•, regardless of whether or not Φ is satisfiable. Next, we show that if p > (1 − p)2 (this

happens for p ≥ 3−
√

5
2

), then a large independent set can be formed in G[p,p•](Φ), again,
regardless of the satisfiability of Φ.

Here might be the place to note that our proof of soundness does not mention edges
between blocks B1, B2 ∈ Z for which |B1 ∩B2| < l − 1 at all. Thus, removing these edges
altogether from the graph, would not harm the soundness argument, and would clearly not
harm the completeness either.

This is not very surprising since in fact there exists a negligible subset of the vertices
V0 ⊂ V that covers all of these edges1. Thus, a set I ⊂ V that is independent in the graph
with these edges removed, can be translated to I \ V0 which is of essentially the same size,
and is independent in our graph G[p,p•](Φ).

In what follows, we ignore such edges, for simpler presentation. Of course, removing V0

from the independent sets presented here eliminates these additional edges at once.

The 2-intersecting bound. We will exhibit an appropriate choice of maximal 2-intersecting
families for almost all of the blocks Z, that constitutes an independent set in G[p,p•](Φ).

1The set V0 is, in each block, the set of all subsets of RB for which there is some sub-block B′ ⊂ B,
|B′| ≤ l − 2 on which this subset is ”under-represented”, in the sense that less than half of the sub-block-
assignments f : RB′ → {T,F} have a false extension that falls in the subset.
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The reason for the existence of this ”counter-example” is that there is a way to assign
almost all B ∈ Z with a small special set of block-assignments such that for any two blocks
B1, B2 such that |B1 ∩B2| = l − 1, B1’s assignments can be matched to B2’s assignments,
so that all but at most one matched pair are consistent. Then, all we need to do is to take,
for each block, a 2-intersecting family over this special set of block-assignments. A subset
in I ∩V [B1], when viewed according to the matching as a subset of the special assignments
of B2, must intersect each subset in I ∩ V [B2] on at least two special block-assignments,
and by the special choice above, at least one of these pairs must be a consistent one.

We exhibit this phenomenon concretely by assigning each block 4 block-assignments,
and constructing the ”3 out of 4” 2-intersecting family which is maximal for p = 3−

√
5

2
.

Let Zred ∪Zgreen ∪Zblue ∪Zyellow be a partition of Z into roughly equal sizes. For every
block B ∈ Z, define four special block-assignments, fBred, f

B
green, f

B
blue, f

B
yellow defined as being

true on their color, and false elsewhere, e.g.

∀z ∈ B, fBred(z)
def
=


T z ∈ Zred

F otherwise

Of course, not all four are defined for every block, as a block-assignment f ∈ RB must
contain at least t T’s, and there is a negligible fraction of the blocks Z ′ ⊂ Z that intersect
at least one of Zred ∪ Zgreen ∪ Zblue ∪ Zyellow with less than t values. Neglecting these, we
take for each block, the following set of vertices

I[B] =
{
F ∈ V [B]

∣∣ ∣∣F ∩ {fBred, fBgreen, fBblue, fByellow}∣∣ ≥ 3
}

and let I def
=
⋃
B∈Z\Z′ I[B].

Let B̂ ∈ Z(l−1), and let B1 = B̂ ∪ {z1}, and B2 = B̂ ∪ {z2}. Assume z1 ∈ Zred
(symmetrically for any other color), and observe the following,

1. fB1
green, f

B1
blue, f

B1
yellow are respectively consistent with fB2

green, f
B2
blue, f

B2
yellow.

2. For any F1 ∈ I[B1],
∣∣F1 ∩

{
fB1
green, f

B1
blue, f

B1
yellow

}∣∣ ≥ 2, and similarly for F2 ∈ I[B2],
therefore, these vertices are consistent.

Thus, I is an independent set.

The bound p < (1 − p)2. Assume p > 3−
√

5
2

. We construct an independent set by
selecting an arbitrary block assignment for each block, and taking all subsets containing it.
By removing a negligible fraction of the vertices (subsets) in each block, we eliminate all
edges between blocks.

Consider two blocks B1, B2 ∈ Z, such that B1 = B̂ ∪{z1}, B2 = B̂ ∪{z2}. Denote by R̂
the set of sub-block assignments for B̂ that are restrictions of RB1 and of RB2 , and assume
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for simplicity that every sub-block assignment in R̂ has two extensions (to F and to T) in
both RB1 and RB2 .

A random subset F ∈µp P (RB1), has expectedly p · |RB1| block-assignments. Moreover,

there are expectedly (1−p)2 · |R̂| sub-block-assignments in R̂ for which f(z1←F), f(z1←T) 6∈ F ,
and expectedly p · |R̂| sub-block-assignments for which f(z1←F) ∈ F .

For two vertices F1 ∈ V [B1] and F2 ∈ V [B2] to be inconsistent, one of them must
deviate from the expectation, due to the following. Every f̂ ∈ R̂ for which f(z1←F) ∈ F1

must have both f(z2←F), f(z2←T) 6∈ F2. If both F1, F2 are near their expectation, there are
roughly (1− p)2 · |R̂| sub-block-assignments in R̂ for which f(z2←F), f(z2←T) 6∈ F2, and since
(1−p)2 < p, this is not enough to meet the expected p · |R̂| sub-block-assignments for which
f(z2←F) ∈ F1.

Standard Chernoff bounds imply that we need to remove only a tiny fraction of the
vertices of each block, so as to eliminate all subsets that deviate from the expectation
according to at least one sub-block B̂.
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Chapter 5

Discussion

Our hardness result for vertex cover relies, in essence, on a new combination of an underlying
PCP test-system together with the biased long-code. This PCP system has been custom
made for use with the biased long-code, a combination that works due to optimal bounds
on the maximal weight of 2-intersecting families.

The Biased Long-Code. The generalization of the long-code, allowing a non-uniform
distribution over its bits, opens up new possibilities of utilizing it for obtaining hardness-
of-approximation results.

The connection between the study of influences of variables on Boolean functions, and
analyzing the long-code, has clarified some of the structure of the long-code, a structure that
initially seemed quite complicated. The ideas in this field, and specifically the Friedgut-
Lemma, proved to be quite powerful for analyzing the long-code. In particular, the ’de-
coding’ of a p-biased long-code by allowing a slight increase in the value of p in return
for low average sensitivity, is actually a reverse view of the well-studied sharp-threshold
phenomenon of monotone families.

Standard PCP Terminology and Context. The parallel repetition theorem of [Raz98],
in standard PCP terminology says that any NP language L has a 2-prover 1-round inter-
active proof with certain parameters. Namely, there is a polynomial-time verifier machine
V , that upon input I tosses a logarithmic number of coins r and based on that computes
queries q1(I, r) and q2(I, r) and sends them to provers P1 and P2 respectively. The verifier
accepts (i.e. declares that I ∈ L) if the provers’ answers are consistent. The completeness
and soundness of the proof system are defined as the respective probabilities of accepting
an input I ∈ L and I 6∈ L.

There is a direct translation from this terminology to that of a SAT instance 〈Φ, X, Y 〉
where the random coin toss r selects a test ϕx→y ∈ Φ, upon which the verifier queries the
value of x from prover P1 and the value of y from prover P2, and accepts iff ϕx→y(x, y) =



62 Discussion

true.
For the maximum independent set problem, the main parameter of interest, is the free-

bit complexity, as defined by [FK94, BGS98]. This parameter is equal to the average, over
the coin-tosses r, of the logarithm2 of the number of possible answers that would cause the
verifier to accept. In our terminology, the free bit complexity of our initial SAT instance Φ
is simply log |RX | because there are |RX | possible assignments for the X variable and this
equals the total number of acceptable answers, since each assignment for the X variable
determines exactly one assignment for the Y variable that satisfies ϕx→y.

comment: Any proof system that has this structure of one prover determining the
second prover, can be made into a symmetric proof system by asking both provers the
questions of the first prover. This might be interesting later.

A Zero Free-Bit Protocol. It is known that any hardness result for vertex cover can
be immediately translated into a PCP protocol with zero free bits as follows. Given input
a graph G, the verifier selects a random vertex and accepts if that vertex is outside the
vertex-cover and all of its neighbors are inside. This protocol has zero free bits since there is
only one acceptable answer. Our graph G[p,p•](Φ) yields such a protocol with completeness
c ≈ p and soundness s ≈ p•. In general, any zero-free-bit protocol with completeness c and
soundness s gives a hardness of approximation factor for Vertex-Cover to within 1−s

1−c .

The Bias Parameter. Currently, the only method for achieving a protocol with few free
bits, is via composition: One constructs a PCP protocol e.g. the Raz-verifier or extensions
of it, on which one applies a version of the long-code. The trick is to get the right interplay
between these two parts so as to achieve the best parameters for the resulting composed
protocol.

The failure of the ’naive’ construction, namely that of applying the long-code directly
onto the FGLSS graph, can be attributed to the fact that in the underlying PCP (parallel
repetition) an assignment to the first variable allows for many possible assignments to the
second variable. When we apply the p-biased long-code over such a construction, unless p
is extremely small, we lose essentially all structure of consistency between variables.

This leads us to define the graph of consistency between answers of the two provers.
Let Hq1,q2 = 〈R1, R2, E〉 be a bipartite graph with parts R1 and R2 denoting the possible
answers of provers 1 and 2 to the respective questions q1, q2 (in this paper’s terminology:
R1 = RX , and R2 = RY ). Connect a1 ∈ R1 and a2 ∈ R2 by an edge if (a1, a2) will
cause the verifier to reject. Note that Hq1,q2 is the subgraph consisting of two layers in
the FGLSS graph. Applying the long-code over Hq1,q2 simply means to take the bipartite
graph LC(Hq1,q2) = 〈P (R1) ,P (R2) , ELC〉 whose parts are P (R1) and P (R2) and put an
edge between F1 ∈ P (R1) and F2 ∈ P (R2) if F1 × F2 ⊆ E.

Intuitively, the sparser we can make Hq1,q2 , the larger we can take p in the p-biased–
long-code to be (our ultimate goal being p = 1

2
).
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Call a vertex set nearly(p)-independent in LC(Hq1,q2), if one can remove from it a set
whose size according to µp is exponentially small in |R1| , |R2| to make it an independent
set in LC(Hq1,q2). Define the p-threshold-family F≥p(R) = {F ⊂ R | |F | ≥ p · |R|}, and
let

bias(Hq1,q2)
def
= sup

p

(
F≥p(R1) ∪ F≥p(R2) is not nearly(p)-independent in LC(Hq1,q2)

)
.

Finally, we define the bias parameter of the proof system to be the maximum, over all
pairs q1, q2, of bias(Hq1,q2). Notice that if the average co-degree of Hq1,q2 is large, we have
no hope of getting a large bias parameter. In fact, it would have been nice, but appears
non-trivial, to be able to formulate a connection between the average or the minimum
co-degree of H and an upper bound on the bias of H (the expansion of the graph with
respect to sets of relative size p can be used to lower-bound the bias parameter, but this
connection is not tight).

Let us now inspect our construction in view of this new parameter. Indeed, our graph
GZ [Φ] can be viewed as a 1-round 2-prover proof-system with bias parameter p = 3−

√
5

2
as

follows. Let the question to the first prover be a block B ∈ Z, and a possible answer a
block-assignment in RB. Let the question to the second prover be symmetrically another
block B′, intersecting with the previous one on an l−1-sub-block B∩B′ = B̂, and again an
answer would be a block-assignment in RB′ . The verifier will accept if the answers agree on
the common l− 1 sub-block. Obviously the graph HB,B′ is the subgraph of GZ [Φ] induced
by two blocks.

Interestingly, although this construction has almost perfect completeness (i.e. a good
input is accepted with probability 1− ε) we cannot prove that the soundness probability is
low. However, for establishing a lower-bound for the vertex cover problem, a weaker gap
suffices. Indeed, we prove that it is NP hard to distinguish between the following:

• There is a prover-strategy causing the verifier to accept with probability 1− ε.

• For any prover strategy, any ε fraction of queries (i.e. blocks) contain at least one
inconsistent pair.

The 2-Intersecting Limitation. When we apply the biased long-code to the above
PCP protocol, the composition limits our bias to p ≤ 3−

√
5

2
. A further limitation of our

technique results in a gap not between 1− p and 1− ε but rather between 1− p and 1− p•.
The reason for this is that the underlying PCP system (corresponding to GZ [Φ]) does not
allow for ”multi-assignments”. Regardless of the original input, we can exhibit a choice
of two answers per query, such that for any pair of blocks there is always a selection of
one from each that make an acceptable answer. Had this not been the case, a stronger
vertex-cover result would follow. Let us state a conjecture that would imply hardness of
approximating vertex cover to within 2− ε:
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Conjecture 5.1 For every ε, h > 0 there exists an R > 1, such that if Φ is a SAT instance
with variables X whose range is R, such that each test ϕ ∈ Φ depends on two variables and
the bias parameter is 1

2
, then it is NP-hard to distinguish between

• There is an assignment A : X → R satisfying 1− ε of Φ.

• For every multi-assignment A : X →
(
R
h

)
there is a pair of variables whose multi-

assignments are pairwise inconsistent.

Moreover, as explained above, such a conjecture would also immediately imply the
existence of a PCP with 0 free-bits, soundness ε and completeness 1

2
− ε.

Other problems. Analyzing existing results for other approximation problems with
tools such as the Friedgut Lemma, may be fruitful. Two obvious candidates for this
are the Maximum-Clique, and the problem of approximating the Chromatic Number of
a 3-colorable graph.

The best known algorithm for coloring such a graph, uses nconst colors [KMS98]. On
the other hand, it is known to be NP-hard to color such a graph with 5 colors [KLS00].
Narrowing this gap is one of the most interesting remaining open questions in this field.

Such a hardness result can be obtained, for example, if one exhibits a graph G for which
it is NP-hard to distinguish between the case G is 3-colorable and the case where the largest
independent-set of G is small.

One of the obstacles preventing the adaptation of our construction to this setting, is
the fact that our construction has imperfect completeness. Even in case of a satisfiable
instance, almost but not all of Z participates in the independent set. This prevents our
graph from being 3-colorable, in case we start with a satisfying assignment.
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The Closest Vector Problem





Chapter 6

Introduction

An n-dimensional lattice L = L(v1, .., vn), for linearly independent vectors v1, .., vn ∈ Rk is
the additive group generated by the vectors, i.e. the set L = {

∑
aivi | ai ∈ ZZ}. Given L

and an arbitrary vector y, the Closest Vector Problem (CVP) is to find a vector in L closest
to y in a certain norm. The Shortest Vector Problem (SVP) is a homogeneous analog of
CVP, and is defined to be the problem of finding the shortest non-zero vector in L.

These lattice problems have been introduced in the 19th century, and have been studied
since. Minkowsky and Dirichlet tried, with little success, to come up with approximation
algorithms for these problems. It was much later that the lattice reduction algorithm was
presented by Lenstra, Lenstra and Lovász [LLL82] , achieving a polynomial-time algorithm
approximating the Shortest Lattice Vector to within the exponential factor 2n/2, where n is
the dimension of the lattice. Babai [Bab86] applied LLL’s methods to present an algorithm
that approximates CVP to within a similar factor. Schnorr [Sch85] improved on LLL’s
technique, reducing the factor of approximation to (1 + ε)n, for both CVP and SVP, where
the polynomial running time depends on 1

ε
in the exponent. These positive approximation

results are quite weak, achieving only extremely large (exponential) factors. The question
naturally arises: What are the factors of approximation to within which these problems
can be approximated in polynomial time?

Interest in lattice problems has been renewed due to a result of Ajtai [Ajt96], showing
a reduction, from a version of SVP, to the average-case of the same problem.

CVP was shown to be NP-hard for any lp norm in [vEB81], where it was also conjectured
that SVP is NP-hard. Arora et al. [ABSS93] utilized the PCP characterization of NP to
show that CVP is NP-hard to approximate to within any constant, and quasi-NP-hard to
approximate to within 2(logn)1−ε for any constant ε > 0 (i.e. an approximation algorithm
for such factors would imply NP ⊆ DTIME(2polylogn).

As for SVP, it is NP-hard to approximate to within [Ajt98, Mic98] some constant fac-
tor (see also [CN98]). The proof in [Mic98] relies on the PCP characterization of NP
and is carried out via a reduction from gap-CVP (shown NP-hard for any constant gap
in [ABSS93]). Using gap-CVP allows, in addition to the significant improvement in the
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hardness-of-approximation factor, a major simplification of the main technical lemma from
[Ajt98]. Better hardness results for gap-CVP may result in improved approximation hard-
ness results for SVP.

So far there is still a huge gap between the positive results, showing approximations
for these problems with exponential factors, and the above hardness results. Nevertheless,
some other results provide a discouraging indication for improving the hardness result
beyond a certain factor. [LLS90] showed that approximating CVP to within n1.5 is in co-
NP, and later [GG98] showed that approximating both SVP and CVP to within

√
n is in

NP∩ co-AM. Hence it is unlikely for any of these problems to be NP-hard.

The strongest NP-hardness result likely to be true for these problems, hence, is that
they are NP-hard to approximate to within a constant power of the dimension.

Our Results. We improve on [ABSS93] in two ways. First, we go beyond the factor of
2(logn)1−ε for any constant ε > 0, which was the previous hardness-of-approximation factor

known for CVP. Instead, we achieve a factor of 2
logn

log logn = n
1

log logn . Furthermore, we show
approximating CVP is NP-hard for these large factors, compared to the previously known
quasi NP-hardness.

The known PCP characterizations of NP seem inadequate in order to show hardness of
approximating CVP to within large factors. The proof of [ABSS93] utilizes amplification
techniques, in which the dimension of the instance grows faster than the factor for which
approximation hardness is obtained. It is therefore unlikely that using this technique,
even if allowing a super-polynomial blow-up, one can obtain such strong results. It seems
that with this method it will always be the case that the factor for which hardness of
approximation is proven never reaches beyond the barrier of 2(logn)1−ε for any constant
ε > 0.

We introduce a new NP-hard gap-problem, Super-SAT (S-SAT for short), that we
use to prove our result. The S-SAT problem is a gap version of SAT, minimizing a new,
appropriately defined, objective function. Although the S-SAT characterization differs from
the PCP characterizations, its proof relies on similar techniques.

Let SAT[F] be the following problem: An instance of SAT[F] is a set of local-constraints
(Boolean functions) called tests, on variables from a common set, each variable ranging
over a finite set F . Each test is represented by a list of assignments for its variables, which
are said to satisfy the test. The goal is to attach to each test one of the assignments
that satisfies it, such that consistency is maintained among the assignments, that is, each
variable is given the same value by the assignments of all tests that depend on it. If this is
possible, the instance is accepted, and otherwise it is rejected.

Our gap version of this problem, S-SAT, is as follows: S-SAT is the same as SAT[F]
except not all non-satisfiable instances must be rejected. We generalize the notion of
assignment to that of super-assignment – formal linear combinations of assignments with
integer coefficients – and modify the acceptance condition accordingly: Previously accepted
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instances must still be accepted. An instance must be rejected only if there is no super-
assignment to the tests, whose norm (see Definition 7.2) is smaller than g, and which is
”everywhere consistent” (in a sense similar to that described above). If the instance is
somewhere in-between (i.e. minimizing the norm of its consistent super-assignments gives
a value greater than 1 but less than g), then that instance is not necessarily rejected (any
outcome is ok).

We show (Theorem 7.1) that solving this problem is NP-hard for g = n1/ log logn (n
denotes, as usual, the size of the instance). We then reduce this problem to CVP, preserving
the approximation factor. Improving the hardness of approximation factor of S-SAT to a
constant power of n, namely where g = nε for some constant ε (Conjecture 7.2), would
directly imply CVP to be hard to approximate to within a constant power of the dimension.

For simplicity, our proof works with l1 norm, however it can be extended to lp norm for
any 1 < p <∞ as shown in Section 11.3.

Outline. We begin, in Chapter 7, by presenting the new NP-hard gap-problem, S-SAT.
We first formally define S-SAT and then state Theorem 7.1 asserting it is NP-hard to
approximate to within large factors of approximation (n1/ log logn). Chapter 8 gives some
definitions and techniques which are the basis of the construction. The NP-hardness of
S-SAT, that is the most technical part of this work, is established in two parts. In Chapter 9,
we describe the reduction from a low error-probability PCP characterization of NP, to
S-SAT. We proceed to prove the correctness of the reduction (Theorem 7.1) in Chapter 10.
In Finally, in Chapter 11 we show a simple reduction from S-SAT to CVP.
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Chapter 7

Super-SAT - S-SAT

In this chapter we introduce a new NP-hard problem, S-SAT. Let us begin by defining
SAT[F ], which is actually SAT over non-Boolean variables, presented from a different point
of view. An instance of SAT[F ]

I = 〈Ψ = {ψ1, .., ψn}, V = {v1, .., vm}, {Rψ1 , ..,Rψn}〉

is a set Ψ of tests (Boolean functions) over a common set V of variables that take values
in a field F . In what follows |F|, m, and |Rψi| will always be bounded by a polynomial in
n = |Ψ|. Each test ψ ∈ Ψ has associated with it a list Rψ of assignments to its variables,
called the satisfying assignments or the range of the test ψ. Having both ψ and Rψ is
convenient yet somewhat redundant since the list Rψ actually specifies all there is to know
about the test ψ.

An assignment for an instance maps to each test, a satisfying assignment from its range.
An instance is accepted iff there is an assignment to the tests that is everywhere consistent,
that is, each variable is given the same value by the assignments to all tests that depend
on it. It is easy to see that SAT[F ] is NP-complete.

S-SAT is a gap variant of this problem, obtained by setting a new measure on the non-
satisfiability of an instance. While in PCP we measured the fraction of tests, satisfiable
by a single assignment, in S-SAT we will define a measure of a different nature - we will
introduce a notion of super-assignments to the tests, that is, formal linear combinations of
assignments. We will then measure the ’length’ of a super-assignment, and ask how ’short’
it may get while maintaining ’consistency’.

Definition 7.1 (Super-Assignment to Tests) A super-assignment is a function S map-
ping to each ψ ∈ Ψ a value from ZZRψ . S(ψ) is a vector of integer coefficients, one for each
value r ∈ Rψ. Denote by S(ψ)[r] the rth coordinate of S(ψ).

If S(ψ)[r] 6= 0, we say that the value r appears in S(ψ). A natural super-assignment
assigns each ψ ∈ Ψ a unit vector ei ∈ ZZRψ with a 1 in a single coordinate i corresponding to
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an assignment for that test in the usual sense (i.e. an assignment which maps r ∈ Rψ to ψ
corresponds to the natural super-assignment S(ψ) such that S(ψ)[r] = 1 and S(ψ)[r′] = 0
for all r′ 6= r). We use the average over the l1 norms of the vectors S(ψ), ‖S(ψ)‖, to
measure the closeness of S to a natural super-assignment,

Definition 7.2 (Norm of a Super-Assignment) The norm of a super-assignment S is
the average norm of its individual assignments ‖S‖ = 1

|Ψ|
∑

ψ∈Ψ ‖S(ψ)‖, where ‖S(ψ)‖
denotes the l1 norm of the vector S(ψ).

The norm of a natural super-assignment is 1. The gap of S-SAT will be formulated in
terms of the norm of the minimal super-assignment that maintains consistency. A natural
assignment r ∈ Rψ to a test ψ induces an assignment to each variable x, denoted r|x.
In the SAT[F ] problem an assignment is called consistent if for every pair of tests with
a common variable, the assignments to the tests, restricted to the variable, are equal.
We extend this notion of consistency to super-assignments by defining the projection of a
super-assignment S(ψ) onto each of ψ’s variables. Consistency between tests will amount
to equality of projections on common variables.

Definition 7.3 (Projection) Let S : Ψ →
⋃
ψ ZZRψ be a super-assignment to the tests.

We define the projection of S(ψ) on a variable x of ψ, πx(S(ψ)) ∈ ZZF , as follows:

∀a ∈ F : πx(S(ψ))[a]
def
=

∑
r∈Rψ , r|x=a

S(ψ)[r]

Namely, we partition the assignments in Rψ according to their value a ∈ F on the variable
x (we associate with a ∈ F all assignments r ∈ Rψ for which r|x = a). For each value
a ∈ F , we then add the coefficients S(ψ)[r] of the assignments associated with it, and this
is the value of the coefficient πx(S(ψ))[a].

We shall now proceed to define the notion of consistency between tests. If the projections
of two tests on each common variable x are equal (in other words, they both give x the
same super-assignment), we say that the super-assignments of the tests are consistent.

Definition 7.4 (Consistency) Let S be a super-assignment to the tests in Ψ. S is con-
sistent if for every pair of tests ψi and ψj with a common variable x,

πx(S(ψi)) = πx(S(ψj))

S is said to be non-trivial if every variable x ∈ V there is at least one test ψ ∈ Ψ that
isn’t ’cancelled’ on x: πx(S(ψ)) 6= ~0. For a variable x we think of all the values a ∈ F
receiving non-zero coefficients in πx(S(ψ)) (i.e. values for which πx(S(ψ))[a] 6= 0)) as
being simultaneously ’assigned’ to x by ψ. The non-triviality requirement means that each
variable must be assigned at least one value.
We can now define the S-SAT problem.
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Definition 7.5 (g-S-SAT) An instance of S-SAT with parameter g

I = 〈Ψ = {ψ1, .., ψn}, V = {v1, .., vm}, {Rψ1 , ..,Rψn}〉

consists of a set Ψ of tests over a common set V of variables that take values in a field
F . The parameters m and |F| and |Rψ| are always bounded by some polynomial in n.
Each test ψ ∈ Ψ has associated with it a list Rψ of assignments to its variables, called the
satisfying assignments or the range of the test ψ. The problem is to distinguish between the
following two cases,

Yes: There is a consistent natural super-assignment for Ψ.

No: Every non-trivial consistent super-assignment for Ψ has norm > g.

Theorem 7.1 (S-SAT Theorem) There is some constant c > 0, such that S-SAT is NP-
hard for g = nc/ log logn.

The S-SAT theorem (Theorem 7.1) can be viewed as an extension of Cook’s theorem
[Coo71, Lev73] in the following way. An algorithm solving S-SAT is required to accept if
the test system is satisfiable. However, the algorithm is allowed to accept non-satisfiable
instances that have a consistent super-assignment of norm ≤ g. It must only reject when
every consistent super-assignment for Ψ has norm > g. We are, in fact, adding slackness
between the acceptance and rejection cases.

We suggest a stronger conjecture which, if true, would imply that CVP is NP-hard to
approximate to within a constant power of the lattice-dimension.

Conjecture 7.2 S-SAT is NP-hard for g = nc for some constant c > 0.

It is unlikely that the conjecture remain true for c ≥ 1
2

due to the result of [GG98] showing
that approximating CVP to within

√
n is in NP∩ co-AM. Our reduction from S-SAT to

CVP is linear, and hence it follows that approximating S-SAT to within
√
n is in NP∩

co-AM as well.
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Chapter 8

Tools and Definitions

8.1 Preliminaries

Let F denote a finite field F = ZZp for some prime number p > 1.

Definition 8.1 (Low Degree Function) A function f : Fd → F is said to have degree
r if its values are the point evaluation of a polynomial on Fd with degree ≤ r in each
variable. In this case we say that f is an [r, d]-LDF, or f ∈ LDFr,d.

Sometimes we omit the parameters and refer simply to an LDF. The total degree of a
function is the total degree of the corresponding polynomial, i.e. the maximum over its
monomials, of the sum of degrees of each variable in the monomial. Every [r, d]-LDF has
total degree at most rd.

For an LDF P : Fd → F , we define its restriction and re-parameterization P |C :
FD → F to the D dimensional cube (affine subspace) C = x̄0 + span(x̄1, .., x̄D) (where
x̄0, .., x̄D ∈ Fd), in the natural way. Namely,

∀(t1, .., tD) ∈ FD, PC(t1, .., tD) = P (x̄0 +
D∑
i=1

tix̄i)

Observe that the total degree of P |C is at most that of P , namely ≤ rd.

Definition 8.2 (Low Degree Extension) Let m, d > 0 be natural numbers, and let H ⊂
F such that |H|d = m. A vector (a0, .., am−1) ∈ Fm can be naturally identified with a
function A : Hd → F by looking at points in Hd as representing numbers in base |H|.

Let Â : Fd → F be defined by

Â(x1, .., xd) =
∑

(h1,..,hd)∈Hd

∏
i ∈ H
i 6= h1

(x1 − i)

(h1 − i)
·
∏
i ∈ H
i 6= h2

(x2 − i)

(h2 − i)
· · ·

∏
i ∈ H
i 6= hd

(xd − i)

(hd − i)
· A(h1, .., hd)
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Â is a (|H| − 1, d)-LDF called the |H| − 1 degree extension of A in F .

Let V = {v0, .., vm−1} be a set of variables, and identify every assignment A : V → F
with the vector (a0, .., am−1) ∈ Fm where ai = A(vi). One can extend A to a larger set
of variables V̂ ⊃ V via the low-degree-extension of (a0, .., am−1). Namely, we identify the
variables V with the points in Hd, and add new variables for the rest of the points in
Fd. The new set of variables V̂ correspond each to a point in Fd. Â is thus viewed as an
assignment to V̂ ⊃ V that (1) extends A, and (2) is a point-evaluation of an [|H|−1, d]-LDF.

Similar to the definition of super-assignments, we define a super-LDF G : LDF → ZZ to
be a formal integer linear combination of LDFs, and denote by G[P ], the integer coefficient
assigned to the LDF P . We say that the LDF P appears in G iff G[P ] 6= 0. This definition
arises naturally from the fact that the tests in our final construction will range over LDFs.
We further define the norm of a super-LDF to be the norm of the corresponding coefficient
vector (same as with super-assignments). We say that a super-LDF has total degree r if
every LDF appearing in it has total degree ≤ r.

Given a super-[r, d]-LDF G, we define its restriction πC(G) to a D-dimensional cube C,
(which is a super-LDF of dimension D and degree rd) in the natural way. Namely,

∀P ∈ LDFrd,D πC(G)[P ]
def
=

∑
Q∈LDFr,d, Q|C=P

G[Q]

We say that a point x is ambiguous for a super-LDF G if there are two LDFs appearing in
G, that agree on x. The following (simple) property of super-LDFs will be very important.

Proposition 8.1 (Low Ambiguity) Let G be an [r, d]-super-LDF of norm ≤ g. The

fraction of ambiguous points for G is ≤ amb(r, d, g)
def
=
(
g
2

)
rd
|F| .

Proof: Two distinct [r, d]-LDFs agree on at most rd
|F| of their points. At most g LDFs

appear in any super-LDF of norm ≤ g, and so there are no more than
(
g
2

)
pairs.

Two LDFs can coincide on only a small fraction of cubes,

Proposition 8.2 Let P,Q be two [r, d]-LDFs. The fraction of cubes C (affine subspaces of
dimension D < d) on which P |C = Q|C is ≤ rd

|F| .

This follows from the fact that two distinct [r, d]-LDFs agree on at most rd
|F| of their

domain, and by the fact that selecting a random point in a random cube gives a uniform
distribution on the entire domain, which implies that the restriction of an LDF to a random
cube, is even less likely to avoid all points for which P (x) 6= Q(x).
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8.2 Embedding Extension

An important technique utilized herein is adapted from [DFK+99], and shows how to
represent an LDF over a low-dimensional domain C = F t by a lower-degree LDF over a
domain of higher dimension D = Fkt. The points in the domain C are embedded in the
domain D by taking each ’axis’ in F t and replacing it by k new ones (thus the extended
domain Fkt has dimension k ·t) so that an LDF of degree r (in each variable) on the original
domain F t is transformed to an LDF of degree k

√
r (in each variable) on the extended domain

Fkt.

Definition 8.3 (embedding extension) Let b ≥ 2, k > 1 and t be natural numbers. We
define the embedding extension mapping Eb : F t → F t·k as follows. Eb maps any point
x = (ξ1, .., ξt) ∈ F t to y ∈ F t·k, y = Eb(x) = (η1, .., ηt·k) by

Eb(ξ1, .., ξt)
def
=
(
ξ1, (ξ1)

b, (ξ1)
b2 , .., (ξ1)

bk−1

, . . . , ξt, (ξt)
b, (ξt)

b2 , .., (ξt)
bk−1
)

Hence Eb(F t) ⊂ Fkt is a manifold (multi-dimensional curve) in Fkt. Each of Fkt’s axes
corresponds to some preset power of an axis of F t, and Eb(F t) consists of exactly the points
in which those axes indeed match.

The following proposition shows that any LDF on F t can be represented by an LDF on
F t·k with significantly lower degree:

Proposition 8.3 Let f : F t → F be a [bk − 1, t]-LDF, for integers t > 0, b > 1, k > 1.
There is a [b− 1, t · k]-LDF fext : F t·k → F such that

∀x ∈ F t : f(x) = fext(Eb(x))

Proof: We rewrite f as an LDF fext : F t·k → F by replacing each power (ξi)
p of ξi,

0 < i ≤ t 0 < p < bk (ξi)
p −→ (ηi,0)

β0 · (ηi,1)β1 · · · (ηi,k−1)
βk−1

where 〈β0β1...βk−1〉 is the base b representation of p, and we ’re-index’ ηi,j
def
= η(i−1)k+j+1.

The degree in each variable of fext is b − 1, and the dimension is t logb b
k = t · k. The

restriction of fext to the manifold Eb(F t), will give f , as seen from substituting the manifold
equations ηi,j = (ηi,0)

bj into each of the monomials).

Note that an arbitrary [r, tk]-LDF f on the larger domain F t·k can be viewed, when
restricted to the manifold, as a [r̃, t]-LDF f̃ with r̃ = r · (1+b+b2 + . . .+bk−1) ≤ r · (bk−1).
This LDF is the re-parameterization of the LDF obtained by substituting in the manifold
equations. Note that if the total degree of f is s, then the total degree of f̃ is ≤ s · bk−1.



78 Tools and Definitions



Chapter 9

Reducing PCP to S-SAT

In this chapter, we present a reduction from a low error-probability PCP characterization
of NP, to S-SAT. Starting with a PCP instance, we show how to construct an instance of
S-SAT. The correctness of the reduction is proven in the next chapter.

Let Φ = {ϕ1, .., ϕn} be a system of tests over Boolean variables VΦ = {v1, .., vm}, (assume
m = nc for some constant c > 0) such that each test depends on D = O(1) variables. The
following theorem is a direct corollary of [AS92, ALM+92]:

Theorem 9.1 It is NP-hard to distinguish between the following two cases:

Yes: There is an assignment to VΦ such that all ϕ1, ..., ϕn are satisfied.

No: No assignment can satisfy more than 1/2 of the tests in Φ.

Starting from Φ, we will construct an S-SAT test-system Ψ over variables VΨ ⊃ VΦ. Our
new variables VΨ will range over a larger, non-Boolean, range, namely a field F . An
assignment to VΨ can be interpreted as an assignment to VΦ by identifying the value 0 ∈ F
with the Boolean value true and every non-zero value a ∈ F with the Boolean value false.

9.1 Constructing the CR-Forest

We construct Ψ from Φ by replacing each ϕ ∈ Φ with a set of new tests ψ. These tests
essentially test that ϕ is satisfied, and that some set of variables (that encode ϕ’s variables)
are an LDF. The construction relies on strong ’error-correcting’ properties of LDFs (in a
similar manner to proofs of PCP theorems) to eventually ’decode’ any consistent low-norm
super-assignment for Ψ into a satisfying assignment for the original test-system Φ. The
idea is to embed Φ’s variables into a geometric domain and then recursively encode this
domain by multiple new domains, adding new variables along the way.

We describe the construction via an underlying tree structure, one tree per test ϕ ∈ Φ.
Each node in the tree is associated with a set of variables such that the variables of all of
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the offspring of a node encode that node’s variables. For each leaf of the tree, Ψ will have
one test that depends on the variables associated with that leaf.

The key to the construction lies in understanding how the variables associated with
different nodes relate to each other This is described in Section 9.2. The variables of
the root node contain ϕ’s variables, plus some additional ones that together represent the
points of a domain Fd0 . In fact, every node in the tree will associated with a domain Fd,
and each offspring of that node will be associated with a cube C ⊂ Fd in that domain.
This is roughly how the points of the parent domain are distributed among its offspring.
The variables of each offspring will consist of some of the parent’s variables but also some
new ”extension” variables, together corresponding to points in a new domain Fd where the
parent ”cube” variables are mapped via the embedding extension mapping into the new
domain.

The idea is that a consistent super-assignment to the tests of Ψ, essentially assigning a
super-LDF to each leaf node, can be inductively decoded into super-LDFs on domains of
nodes residing higher up in the tree, reaching all the way up to the root. For this decoding
to work, certain points in a domain, containing more ’information’ than others, need to
have a larger proportion of offspring representing them. This is established (in Section 9.3)
by defining for each domain a set of ’distinguished points’. Then, a mechanism of labels
serves to obtain the correct proportion of offspring encoding the distinguished and the
non-distinguished points.

Let us begin by defining the composition-recursion forest (CR-forest), which holds the
underlying structure of Ψ.

Let F be a field of size |F| = |VΦ|Θ(1)/ log logn = nc1/ log logn for some constant c1 > c
(recall we denoted |VΦ| = nc). Let d0 = dlog log ne, recall that D denotes the number of
variables each test in Φ depends on, and set d = 4D + 8. Let L = dc2 log log ne, (the
constant c2 > 0 will be specified later).

Let B(Fd, t1, t2) denote the number of different affine-subspaces of dimension t1 (in a
domain Fd) that contain a certain affine subspace of dimension 0 ≤ t2 ≤ t1. It is easy to

see that B(Fd, t1, t2) ≤ |F|d(t1−t2).

Definition 9.1 (Fn(Φ)) The composition-recursion forest (CR-forest) Fn(Φ) = {Tϕ |ϕ ∈ Φ}
is a set containing one depth-L tree Tϕ for every test ϕ ∈ Φ. The root node (level-0) of
Tϕ has B(Fd0 , D + 2, D − 1) = nO(1) offspring, and all nodes in levels i = 1, . . . , L − 1

have 2 |F|D+2 ·B(F4D+8, D + 2, 0) = |F|O(1) offspring. Note that although the forest Fn(Φ)
depends on many parameters (L,D, d0) which can all be derived from Φ, we single out the
parameter n according to which the size of the generated instance is measured.

The forest Fn(Φ) will be the base upon which Ψ’s variables and tests will be defined
as follows. With each node v ∈ Tϕ (ϕ ∈ Φ), we associate a distinct geometric domain,

denoted domv. For the root rootϕ of every tree, domrootϕ

def
= Fd0 , while for non-root nodes
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v, domv
def
= Fd. For a node v, we associate with each point in domv a distinct variable

from VΨ, by defining an injection varv : domv → VΨ. Points from domains of distinct
nodes may be mapped to the same variable. In particular, the variables that ϕ depends on
will belong to varv(domv) for many of the leaves in the tree Tϕ.

We can already at this point define the tests of Ψ,

Definition 9.2 (tests) Ψ will have one test ψv for each leaf v in the forest. ψv will depend
on the variables in varv(domv). An assignment A for ψv’s variables is considered satisfying
if and only if the following two conditions hold:

1. A is an [rL, d]-LDF on varv(domv) (where rL ≤ 2(D + 2) = O(1) will be defined
below).

2. If v ∈ Tϕ for ϕ ∈ Φ and all of ϕ’s variables appear in varv(domv), then A must
satisfy ϕ.

The instance of S-SAT that we construct, must have a list of satisfying assignments for
each test. Note that the size of this list is bounded by the number of [rL, d]-LDFs which is

|F|O(1), i.e. polynomial in n. Having defined the tests in Ψ and the satisfying assignments
for each test, it now only remains to specify the variables that each test accesses, i.e. define
for each node v, the mapping varv : domv → VΨ.

9.2 Variables

We begin by defining the variable mappings for the root nodes of the trees in the forest.
Recall that for the root node rootϕ of each tree Tϕ, we set domrootϕ = Fd0 . Let V̂Φ ⊃ VΦ

be the variables representing the low-degree-extension (Definition 8.2, with parameters
m = |VΦ| , d0 = dlog log ne, and H ⊂ F such that1 |H|d0 = |VΦ|) of VΦ, i.e. V̂Φ is a set of
|F|d0 variables each representing a distinct point in Fd0 . We define the mapping varrootϕ

as follows,

Definition 9.3 (varrootϕ) The bijection varrootϕ : domrootϕ → V̂Φ maps the points of

domrootϕ = Fd0 to V̂Φ in the following manner. Take H def
= {0, .., h− 1} ⊂ F such that

|H|d0 = hd0 = |VΦ| (i.e. |H| = |VΦ|
1
d0 = nc/d0 = nc/ log logn and since |F| = nc1/ log logn we

have |H|c1/c = |F|). We define varrootϕ to be a bijection independent of ϕ, taking the points

of Hd0 ⊂ Fd0 to VΦ, and the remaining points Fd0 \ Hd0 to V̂Φ \ VΦ.

Note that for every ϕ ∈ Φ the points of domrootϕ were mapped to the same variables, hence

each of the |F|d0 variables in V̂Φ has |Φ| pre-images (so far).

1If d0
√
m is not an integer, we add dummy variables to VΦ.
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For simplicity we assume that for each ϕ ∈ Φ, the points mapped to ϕ’s variables are in
general position (i.e. they span a (D − 1)-dimensional affine-subspace of Fd0), otherwise,
we choose an arbitrary (D − 1)-dimensional affine subspace containing these points.

Before we continue to define the mappings varv for non-root nodes, let us examine the
purpose of these mappings. Picture a super-assignment to the tests of Ψ, as a labeling
of each leaf in the forest by a super-LDF. We will prove (see Lemma 10.4) that such an
assignment, if consistent and of low-norm, ’induces’ a low-norm super-LDF for the domain
of each internal node, and in particular – a low-norm super-LDF G for the ’root-domain’,
Fd0 . We now use the fact that the variables representing this root-domain are common to
the roots of all Tϕ’s, to interpret G as a global assignment for the variables in VΦ. Namely,
we will show that any LDF that appears in G with a non-zero coefficient assigns VΦ values
that satisfy most of the tests in Φ.

The idea behind the CR-forest is that the domain domu of a node u is ’represented’
by its offspring’ domains. u’s domain’s points are distributed among the domains of each
of u’s offspring. The aforementioned Lemma 10.4 will show how to join the LDFs of u’s
offspring into one LDF for u. The advantage we gain by representing one LDF over u’s
domain by many LDFs over u’s offspring’ domains is that we can enforce the degree of the
LDFs in the leaves to be very low, compared to the degree of the LDF on the root that
they represent (the dimension of the LDFs is maintained low as well). Therefore the list of
satisfying assignments for the tests in Ψ (corresponding to LDFs on the leaves’ domains)
is not too long. We can afford to list all LDFs (i.e. satisfying assignments) only when the
degree (and dimension) of the LDFs is small enough, because for a higher degree the length
of the list would not be polynomial in n.

The key to understanding the construction is to see how a node u is ’represented’ by
its offspring. Pictorially, u’s domain’s points are distributed among the domains of u’s
offspring, each offspring v receives a slice of u’s domain. Some of v’s points correspond to
v’s slice of u’s variables. The rest of v’s points are some (low-degree) encoding or extension
of these points.

Consider a non-root node v, and denote its parent by u. Assuming varu is already
defined, we now specify the mapping varv : domv → VΨ. Some (exactly |F|D+2) of the
points in domv ’represent’ points from domu, and will thus be mapped to u’s variables
(varu(domu)). The rest of the points in domv will be mapped to fresh new variables
Vv ⊂ VΨ (|Vv| = |F|d − |F|D+2) associated with the node v. Only points in domains
of nodes in v’s sub-tree may be mapped to Vv. For uniformity of notation, we define

Vrootϕ

def
= V̂Φ, for every root rootϕ, again stressing the fact that the roots of all of the trees

share the same variables. Altogether

V
def
= VΨ =

⋃
v∈Tϕ
ϕ∈Φ

Vv .
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u’s variables are distributed among its offspring by letting each offspring v of u ’repre-
sent’ an affine sub-space Cv ⊂ domu of dimension D+2 (a (D+2)-cube). More formally, we
label (as specified later in Section 9.3) each offspring v of u by a (D+ 2)-cube Cv ⊂ domu.
We represent a cube Cv by D + 3 points x0, .., xD+2 such that Cv = x0 + span(x1, .., xD+2)
(this yields a natural way of viewing Cv as FD+2).

We embed all points of the cube Cv ⊂ domu into the domain domv by the embedding
extension mapping, defined above in Section 8.2, Ebi : Cv → domv (the parameter bi
depends on the level i ≥ 1 of the node v, and is specified shortly below). Via this mapping,
we can transform LDFs on the cube Cv to lower-degree LDFs on the domain domv. This
will allow us to represent a satisfying assignment to Φ by [ri, d]-LDFs on the domains domv

of level-i nodes (the degree ri will be defined below). The construction is aimed to lower

the degree ri of the LDFs, from r0
def
= |H| ≈ n1/ log logn to rL = O(1).

We think of the point y = Ebi(x) ∈ domv as ’representing’ the point x ∈ Cv ⊂ domu,
and define varv : domv → VΨ as follows,

Definition 9.4 (varv, for a non-root node v) Let v be a non-root node, let u be v’s
parent, and let Cv ⊂ domu be the label attached to v (the label of a node is defined below,

Definitions 9.5,9.6). For each point y ∈ Ebi(Cv) ⊂ domv define varv(y)
def
= varu(E

−1
bi

(y)),
i.e. points that ’originated’ from Cv are mapped to the previous-level variables, that their
pre-images in Cv were mapped to. For each ’new’ point y ∈ domv \ Ebi(Cv) we define
varv(y) to be a distinct variable from Vv.

The parameters used for the embedding extension mappings Ebi are t = D + 2, k = d/t.

We set r0 = |H| = |F|c/c1 and ri+1 and bi+1 (i ≥ 0) are defined by the following recursive
formulas:

bi+1 =
⌈

4
√
ri(D + 2) + 1

⌉
ri+1 = bi+1 − 1

(we will show in Section 10.1 that bi, ri decrease until for some L < log log n, rL ≤ 2(D+2) =
O(1)).

In order to complete the description of the test-system, we now only need to describe the
cube-labeling of all of the offspring of each node. This will describe how the representation
of a node u is distributed among its offspring.

9.3 Labeling Nodes

We define the offspring-labels of a node u, thereby completing the description of the con-
struction. As described above, each offspring of the node u ’represents’ an affine subspace in
the domain domu, i.e. the variables of u’s offspring represent an encoding of u’s variables.
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This representation has some error. To control this error, we proportion the offspring so
that more important variables are represented by more offspring. Roughly speaking, the
’importance’ of a variable x ∈ V is determined by how high up (towards the root) in the
tree this variable appears. The closer the variable is to the root, the more information it
represents about Φ’s original variables, VΦ.

Let us begin by defining the labels of the offspring of a root node rootϕ. The tests at
the leaves of the tree Tϕ represent the test ϕ ∈ Φ. Therefore, the variables that ϕ depends
on are ’very important’ to represent. We define the offspring-labels of rootϕ so that every
offspring represents these variables,

Definition 9.5 (offspring-labels for a root node) Let

dst(rootϕ)
def
=
{
x ∈ domrootϕ

∣∣ϕ depends on varrootϕ(x)
}

be a set of distinguished points for rootϕ (recall our assumption that dst(rootϕ) is a set of
exactly D points in general position). We label each offspring of rootϕ by a distinct cube
from the following set:

labels(rootϕ)
def
=
{
C is a (D + 2)-cube in Fd0

∣∣ C ⊃ dst(rootϕ)
}

The number of labels |labels(rootϕ)| = B(Fd0 , D + 2, D − 1) is the number of (D+2)-cubes
containing the (D − 1)-cube spanned by the points mapped to ϕ’s variables (assuming, as
mentioned above, that these points are in general position).

For a general non-root node v ∈ Tϕ, we use a mechanism of ’distinguished-points’
to promote the importance of certain points more than others. For each offspring v of
u we define, hand in hand with v’s label, a set of distinguished points dst(v). v will
’represent’ these points in the sense that the descendants of v will represent dst(v) with
special care. For a general non-root node v ∈ Tϕ, we consider two levels of ’important’
variables: (1) variables that belong to some ancestor (direct and indirect) of v (there are
|F|D+2 such variables, all mapped from v’s parent) and (2) variables mapped from the
distinguished points of v (there will always be exactly one or D such variables). The node
v will correspondingly have two equal-weight sets of offspring,

Definition 9.6 (offspring-labels for non-root nodes) Let v be a non-root node. We
define two multi-sets of offspring-labels for v. For each variable x ∈ varv(domv) \ Vv, i.e.
x that belongs to some ancestor of v, we define

labelsx(v)
def
= {C ⊂ domv is a (D + 2)-cube | x ∈ varv(C)}

we then take labels1(v) to be the multi-set

labels1(v)
def
=

⋃
x∈varv(domv)\Vv

labelsx(v)



9.4 Construction Size 85

For every offspring w of v, labelled by a cube from labelsx(v), we define dst(w) to be

the singleton set consisting of the point in domw that is mapped to x, i.e. dst(w)
def
=

{varw−1(x)} ⊂ domw.
The second multi-set (actually set) of offspring-labels is devoted to representing the

distinguished points of v. We simply take

labels2(v)
def
= {C ⊂ domv is a (D + 2)-cube | C ⊃ dst(v)}

For each offspring w of v labelled by a cube from labels2(v), we set dst(w)
def
= Ebi(dst(v))

(where i is w’s level in the tree), i.e. w distinguishes the same set of variables as v.

The final multi-set labels(v) is the union of labels1(v) and bMc copies of labels2(v),
where the number M = |F|D+2B(Fd, D + 2, 0)/B(Fd, D + 2, |dst(v)| − 1) is chosen so
that at least half of the labels are from labels1, and at least a third of the labels are from
labels2.

9.4 Construction Size

Recall that we defined d0
def
= dlog log ne and d

def
= 4D+ 8. We also set r0 = |H| = |F|c/c1 =

nc/ log logn, and defined bi+1 =
⌈

4
√

(D + 2)ri + 1
⌉

and ri+1 = bi+1 − 1 for every i ≥ 0.

We claim that indeed rL = O(1) for some L ≤ log log n. For this purpose we prove by

simple induction that ri ≤ max(
⌈
r
1/2i

0

⌉
, 2(D+ 2)). For r0 this indeed holds, and assuming

it true for ri we have that if ri > 2(D + 2) and bi+1 > 2, then

ri+1 < bi+1 =
⌈

4
√

(D + 2)ri + 1
⌉
<
⌈

4
√

2ri(D + 2)
⌉
≤
⌈
(ri)

2/4
⌉
≤ d

√
rie ≤

⌈
(r0)

1/2i+1
⌉
.

We set L to be the first index for which rL ≤ 2(D + 2) = O(1). Obviously, until that
point ri, bi decrease monotonically, and since r0 = 2c logn/ log logn, L ≤ blog(c log n/ log log n)c+
1 < log log n. This also implies that bi > 2 for all 0 ≤ i ≤ L, and completes the induction.

The Range of the Tests. The tests of the test-system range over [rL, d]-LDFs. The
number of monomials of degree rL ≤ 2(D + 2) = O(1), and dimension d = 4D + 8 = O(1)

is bounded by (rL+1)d = O(1). The number of [rL, d]-LDFs is hence bounded by |F|O(1) <
O(n) and therefore the range of the tests is polynomial in n.

The Number of Tests and Variables. It is only left to verify that the size of the forest
is polynomial. We have |Φ| = n trees, so let’s verify that the number of nodes in each tree
is polynomially-bounded.
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Consider a tree T = Tϕ ∈ Fn(Φ). rootϕ has B(Fd0 , D + 2, D − 1) ≤ |F|3d0 = nO(1)

offspring and each node in level i (0 < i < L) has 2 |F|D+2 · B(Fd, D + 2, 0) = |F|O(1)

offspring. Altogether the number of nodes in T is bounded by

nO(1) ·
L∏
i=1

|F|O(1) = nO(1) · |F|O(L) = nO(1) · (2logn/ log logn)O(log logn) = nO(1)

Hence the number of tests in Ψ is polynomial, and the number of variables is ≤ |F|d · |Ψ| =
nO(1).



Chapter 10

Correctness of the Reduction

In this chapter we prove the completeness and soundness of the reduction presented in the
previous chapter.

10.1 Completeness

Lemma 10.1 (Completeness) If there is an assignment A : VΦ → {true, false} satis-
fying all of the tests in Φ, then there is a natural assignment AΨ : VΨ → F satisfying all
of the tests in Ψ.

Of course, this assignment AΨ is equivalent to a consistent natural super-assignment. We
extend A following the rationale of the construction, by taking its low-degree-extension to
the variables V̂Φ, and then repeatedly taking the embedding extension of the previous-level
variables, until we’ve assigned all of the variables in the system. More formally,

Proof: We construct an assignment AΨ : VΨ → F . We first set (for every ϕ ∈ Φ) Prootϕ

to be the low degree extension (see Definition 8.2) of A (we think of A as assigning each
variable a value in {0, 1} ⊂ F rather than {true, false}, see discussion in the beginning
of Chapter 9). We proceed to inductively obtain [ri, d]-LDFs Pv : domv → F for every
level-i (i > 0) node v of every tree in the CR-forest, as follows. Assume we’ve defined an
[ri, d]-LDF (an [ri, d0]-LDF in case i = 0) Pu consistently for all level-i nodes, and let v
be an offspring of u, labelled by Cv. The restriction f = Pu|Cv of Pu to the cube Cv is a

[ri(D+2), D+2]-LDF. f can be written as a [
⌈

4
√
ri(D + 2) + 1

⌉
−1, 4D+8]-LDF fext over

the larger domain Fd, as promised by Proposition 8.3 taking k = 4. We define Pv = fext to

be that [ri+1, d]-LDF (recall that d = 4D+8 and ri+1 = bi+1− 1 =
⌈

4
√
ri(D + 2) + 1

⌉
− 1).

Finally, for a variable x ∈ varv, x = varv(x), we set AΨ(x)
def
= Pv(x). The construction

implies that there are no collisions, i.e. x′ = varv′(x
′) = varv(x) = x implies Pv(x) =

Pv′(x
′).
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10.2 Soundness

In this section we show that a ’no’ instance of PCP is always mapped to a ’no’ instance of
S-SAT. We assume that the constructed S-SAT instance has a consistent super-assignment
of norm ≤ g, and show that Φ – the PCP test system we started with – is satisfiable.

Lemma 10.2 (Soundness) Let g
def
= |F|cg where cg > 0 is some small enough constant,

say cg = 1/1000. If there exists a non-trivial consistent super-assignment of norm ≤ g for
Ψ, then Φ is satisfiable.

Let us first sketch a brief outline of the proof. The proof follows the structure of the
trees underlying the construction. Since the tree structure is different for the first level
nodes and for all other levels, we divide the proof accordingly.

We begin with a few definitions preparing for the proof itself. We then state Lemma 10.4
that encapsulates the inductive part, handling all internal nodes in levels ≥ 1 of the tree,
and proving that a non-trivial consistent super-assignment at the leaves can be decoded into
”consistent” super-LDFs on ”most” internal nodes. Relying on this lemma, we proceed to
prove the soundness lemma (Lemma 10.2). The heart of the proof is a consistency lemma
(Lemma 10.5) that allows us to combine ”consistent” super-LDFs on domains of offspring
of a node into one super-LDF on the domain of that node. We use this lemma to combine
the super-LDFs on the root’s offspring (i.e. level-1 nodes) into one global super-LDF on
the common domain Fd0 , and from it deduce an assignment satisfying the original PCP
test-system Φ.

We then return to the inductive proof of Lemma 10.4 again relying on the same consis-
tency lemma (Lemma 10.5) for the inductive step.

The proof of the consistency lemma (Lemma 10.5) itself follows in Section 10.3.

Proof: Let SA be a non-trivial consistent super-assignment for Ψ, of norm ‖SA‖ ≤ g.
It induces (by projection) a super-assignment to the variables

m : VΨ −→ ZZ|F|

i.e. for every variable x ∈ VΨ, m assigns a vector πx(SA(ψ)) of integer coefficients, one
per value in F where ψ is some test depending on x. Since SA is consistent, m is well
defined (independent of the choice of test ψ). Alternatively, we view m as a labeling of the
points

⋃
v∈Fn(Φ) domv by a ’super-value’ – a formal linear combination of values from F .

The label of the point x ∈ domv for some v ∈ Fn(Φ), is simply m(varv(x)), and with a
slight abuse of notation, is sometimes denoted m(x). m is used as the “underlying point
super-assignment” for the rest of the proof, and will serve as an anchor by which we test
consistency. Since SA is non-trivial, m(x) 6= ~0 for every x.

For a node u, we denote by Avg(u) the average of ‖SA(ψv)‖ over the leaves v in u’s
sub-tree. We will show that whenever Avg(u) is not too high for a node u, then u’s subtree
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is, in a sense, consistent. We thus define a ’good’ node as one having a low average norm
on its subtree’s leaves:

Definition 10.1 (Good Nodes) Fix C > 0 large enough, e.g. C = 301. A node u in
level i in the CR-forest is said to be good if

Avg(u) ≤ gi
def
= g · Ci+1.

We denote by nodes∗i the set of good nodes in level i.

For any node v, denote by ofsp(v) the set of v’s direct offspring. It is easy to see that
most offspring of a good node are themselves good:

Proposition 10.3 If u ∈ nodes∗i , then

Pr
v∈ofsp(u)

(v ∈ nodes∗i+1) ≥ 1− 1/C

Proof: u is good, thus by definition Avg(u) ≤ gi. Had u more than 1/C bad offspring, then
the total average of SA(ψv) on its sub-tree would be > gi+1 · 1

C
= gi.

The central task of our proof is to show that a consistent low-norm super-assignment to
the tests at the leaves induces a low-norm super-LDF on the root domain. The key step in
this proof is the inductive step showing that if, for a node v, almost all of its offspring have
a low-norm super-LDF that is consistent with m, then we can deduce such a super-LDF
Gv over domv.

It turns out that for a general node u we cannot always deduce a super-LDF agreeing
with m on every point in domu (a counter-example can be constructed). Instead, for good
nodes u we show that there exists a super-LDF Gu over domu that agrees with almost all of
the super-LDFs on u’s offspring. By ’agrees’ we mean that (suppose v is an offspring of u
labelled by Cv) the parent super-LDF Gu projected on the points of Cv equals Gv projected
on the manifold points Ebi(Cv).

The consistency with m will then follow inductively from the fact that the offspring’
super-LDFs were consistent with m. The importance of consistency with m is not the
same for all points. For certain points (e.g. those mapped to variables from VΦ) we cannot
allow any inconsistency, while for others we can allow some small error. For every node
v we consider, as mentioned before in the construction, two types of special points: The
distinguished points dst(v), and the manifold points,

Definition 10.2 (Manifold Points) For a non-root node v labelled by Cv, we define the

manifold points manf(v)
def
= Ebi(Cv), where i is v’s level in the tree.
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These are the points that originate from all of v’s ancestors.
We rely on the manner in which the offspring were proportioned to deduce a high

level of consistency for these special points. We can now state the key inductive lemma
(Lemma 10.4) showing how consistency follows from having a low-norm super-assignment.
This lemma relies heavily on the precise structure of the forest, and shows that for every
good node u, there is a super-LDF on u’s domain that is ’almost’ consistent with ”the
anchor” m. The lemma is proved inductively, constructing u’s super-LDF from the super-
LDFs of u’s good offspring. We will later want to construct from these super-LDFs an
assignment that satisfies more than half of the tests in Φ. For this purpose, we need the
super-LDFs along the way to be legal,

Definition 10.3 (Legal) An LDF P is called legal for a node v ∈ Tϕ (for some ϕ ∈ Φ),
if it satisfies ϕ in the sense that if ϕ’s variables have pre-images x1, .., xD ∈ domv, then
P (x1), .., P (xD) satisfy ϕ. A super-LDF G is called legal for v ∈ Tϕ if for every LDF P
appearing in G, P is legal for v ∈ Tϕ.

Lemma 10.4 Let u ∈ nodes∗i for some i ≥ 1, and set α = 3/C and A = 4 · (D + 2)3 =

O(1). There exists a legal super-LDF Gu of degree at most r̃i
def
= AL−i · (ri + 1) and of

norm ≤ 2L−i ·Avg(u) that agrees with m on dst(u) and on 1− α fraction of the points in
manf(u), i.e.

∀x ∈ dst(u) πx(Gu) = m(x)

and

Pr
x∈manf(u)

(πx(Gu) = m(x)) ≥ 1− α

This lemma is the key to our construction. Its proof shows how consistent LDFs on offspring
nodes induce an LDF on the parent. Before we prove this lemma, which is somewhat
technical, let us first use it to complete the proof of Lemma 10.2.

Applying Lemma 10.4 for level-1 nodes, we deduce that SA induces a legal super-LDF
Gv of degree r̃1 and with ‖Gv‖ ≤ 2L−1Avg(v), for every node v in nodes∗1. We now join
these super-LDFs into one legal super-LDF over the root domain Fd0 , and then deduce
a satisfying assignment to the tests in Φ from this super-LDF. Let v ∈ nodes∗1 be an
offspring of rootϕ for some ϕ ∈ Φ, and let Cv ⊂ domrootϕ be the cube labeling v. We would
like to view Gv as a super-LDF over Cv, by restricting the LDFs in Gv to the manifold
manf(v) ⊂ domv that represents Cv. For every [r̃1, d]-LDF P : domv → F , define P̃ as
the [dr̃1 · (b1)3, D + 2]-LDF which is defined as P ’s restriction to the manifold manf(v):

∀x ∈ Cv ⊂ domrootϕ : P̃ (x)
def
= P (Eb1(x))

(Note that since P ’s total degree is ≤ r̃1 · d, the total degree of P̃ is ≤ r̃1 · d · (b1)3 because
the degree of Eb1 is (b1)

4−1 = (b1)
3). For every LDF P : domv → F , Gv assigns an integer
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value Gv[P ]. We define the super-LDF G̃v to be the same formal linear combination as Gv,
replacing each LDF P with P̃ :

G̃v[Q̃] =
∑

P, P̃=Q̃

Gv[P ]

In other words, the super-LDF G̃v is simply the restriction (and re-parameterization) of Gv
to the manifold manf(v), as discussed in Section 8.2. The total degree of G̃v is r̃1d · (b1)3.

Let rootϕ be a good root node. Since the average norm of all the tests is ≤ g, and a
good root node is by definition one with Avg(rootϕ) ≤ g · C, there are at least 1− 1/C =
1 − α/3 such nodes. For every good offspring v of rootϕ, Lemma 10.4 guarantees that

Prx∈Cv

(
πx(G̃v) = m(x)

)
≥ 1 − α, and that for every x ∈ dst(v), πx(G̃v) = m(x). Given

this assignment of super-LDF G̃v per label Cv ⊂ domrootϕ = Fd0 , we would like to use the
fact that these super-LDFs are consistent with m to deduce the existence of some global
super-LDF on Fd0 (that is also consistent with m). The following consistency lemma, when
applied for u = rootϕ, will imply just that.

Lemma 10.5 (Consistency Lemma) Let u ∈ nodes∗i for some 0 ≤ i < L. Define S∗ to

be the multi-set of cubes that label good offspring of u, S∗ def=
{
Cv ∈ labels(u) | v ∈ nodes∗i+1

}
.

If for every good offspring v of u there is a super-LDF G̃v over Cv, of total degree ≤ r =
r̃i/(D + 2) and norm ‖G̃v‖ ≤ 2L−i−1 · Avg(v), such that

Pr
x∈Cv

(πx(G̃v) = m(x)) ≥ 1− α

then there is a super-LDF Gu over domu of total degree r̃i = r(D + 2) and norm ‖Gu‖ ≤
2L−i · Avg(u) that obeys

Pr
Cv∈S∗

(
πCv(Gu) = G̃v

)
≥ 1− α/6

We defer the proof of this lemma to the next section, and continue with the proof of
Lemma 10.2. As previously mentioned, the super-LDFs G̃v obtained for the Cvs were of
total degree r̃1 · d(b1)3, hence the degree is:

r̃1 · d(b1)3 = AL−1(r1 + 1) · d(b1)3 = AL−1 · d · (b1)4 =

= AL−1 · 4(D + 2) · (r0(D + 2) + 1)

< AL−1 · 4(D + 2)2(r0 + 1) = AL(r0 + 1)/(D + 2) = r̃0/(D + 2)

using the definitions A = 4(D + 2)3, r̃i = AL−i(ri + 1), bi+1 = 4
√
ri(D + 2) + 1 and ri+1 =

bi+1 − 1. Hence we obtain from the consistency lemma a global super-LDF Gϕ of degree r̃0
over Fd0 that agrees with Gv for 1− α/6 of the good offspring v of u = rootϕ.

We next show that Gϕ = Gϕ′ for every ϕ 6= ϕ′ whose corresponding nodes rootϕ and
rootϕ′ are both good. Choose a random cube Cv ∈ labels(rootϕ) and a random point
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x ∈ Cv ⊂ Fd0 . We claim that Prx,Cv(πx(G̃v) = m(x)) ≥ 1 − 2α. By Proposition 10.3 the
probability that Cv is not good is ≤ α/3. If Cv is good, the above Lemma 10.5 tells us
that with probability at most α/6, πCv(Gϕ) 6= G̃v (altogether we have that with probability
≥ 1−α/3−α/6 ≥ 1−α over the cubes in labels(ϕ), πCv(Gϕ) = G̃v). Now, by Lemma 10.4,
for any good Cv, Prx∈Cv(πx(G̃v) 6= m(x)) ≤ α. For all otherwise chosen points, we have
πx(Gϕ) = m(x), and the claim is proven.

These points constitute roughly1 a 1− 2α fraction of Fd0 . Hence Gϕ and Gϕ′ agree with
m on the same ≥ 1 − 4α > 1/2 fraction of the points. Thus, the super-LDF Gϕ − Gϕ′
(subtraction is defined as subtraction of the coefficient vectors) is zero when projected on
more than half of the points.

Now, utilizing the fact that ‖Gϕ − Gϕ′‖ ≤ ‖Gϕ‖ + ‖Gϕ′‖ ≤ 2L+1g, and by the low-
ambiguity property (see Proposition 8.1) the fraction of ambiguous points (the only candi-
dates on which the projection can be zero) is bounded by

amb(r̃0, d0, 2
L+1g) < 22(L+1)g2 r̃0d0

|F|
≤ 22(L+1) · AL · d0 · |F|2cg+c/c1−1 � 1/2

Thus, we deduce that Gϕ = Gϕ′ . In addition, Gϕ must be non-trivial since m(x) 6= ~0 for
every x.

We choose an arbitrary LDF P that appears in G def
= Gϕ′ 6= ~0 for some good rootϕ′ , and

define an assignment AP : VΦ → {true, false} for the variables of Φ as follows. For each

v ∈ VΦ, we define AP (v)
def
= true iff P (x) = 0 on the corresponding point x = varrootϕ

−1(v)

(see Definition 9.3), and AP (v)
def
= false otherwise.

The fraction of tests ϕ ∈ Φ for which rootϕ is good is at least 1− 1/C > 1/2 (because
the total average of Avg(rootϕ) over all ϕ ∈ Φ is g, and a good root node rootϕ is defined
as a node with Avg(rootϕ) ≤ C · g).

We will show that AP satisfies ϕ for every good node rootϕ, and thus Φ is totally
satisfiable. Let ϕ ∈ Φ be such that rootϕ is a good node. By the above consistency lemma,
we know that for 1 − α/6 of the good offspring v of rootϕ, πCv(G) = G̃v, and unless P is
cancelled on Cv, P |Cv appears in G̃v. P will be cancelled on Cv only if there is another LDF
Q appearing in G whose restriction to Cv equals P ’s restriction. For each Q the probability
for this is bounded by (see Proposition 8.2) r̃0d0

|F| . Since there are no more than 2Kg possible

LDFs Q that appear in G, P is cancelled with probability ≤ r̃0d0
|F| · 2

Kg � 1/2.

Thus there exists at least one good offspring v of rootϕ for which πCv(G) = G̃v and P |Cv
appears in G̃v. Recall that the distinguished points of each offspring v of a root node rootϕ,
dst(v), are mapped to ϕ’s variables. In addition, since v is good, Lemma 10.4 ensures that
G̃v is legal, i.e. for every Q appearing in G̃v, Q’s restriction to ϕ’s variables satisfies ϕ. It
follows that ϕ is satisfied by AP .

1This procedure is almost equivalent to choosing a point uniformly at random, however there is a small
(negligible) bias in favor of points in the span of dst(rootϕ)
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This completes the proof of soundness, Lemma 10.2.

We now fill in the proof of Lemma 10.4.
Proof: (of Lemma 10.4) We prove this statement by induction on L−i. We ascend from

the leaves to the top level, obtaining a super-LDF for each good node from the super-LDFs
of its good offspring.

For obtaining the base of the induction (i = L), recall that for every leaf u ∈ nodes∗L, the
test ψu is assigned a super-LDF SA(ψu). The definition of nodes∗L implies ‖SA(ψu)‖ ≤ gL.
Since SA is a consistent super-assignment, SA(ψu) agrees with m on all of domu (in
particular with all of manf(u) and dst(u)), and thus the base of the induction is established.

To see the inductive step (1 ≤ i < L), let u ∈ nodes∗i be a good level-i node. By the
inductive hypothesis for L − i − 1, every good offspring v of u has a legal super-LDF Gv
(of degree r̃i+1) with norm ≤ 2L−i−1 ·Avg(v) such that Gv agrees with m on dst(v) and on
1− α of the points in manf(v).

Let v be a good offspring of u. We define G̃v, as in the proof of Lemma 10.2, to be the
same linear combination as Gv, taking LDFs P̃ instead of P , where P̃ : Cv → F is defined

by ∀x ∈ Cv P̃ (x)
def
= P (Ebi+1

(x)). It follows from definition 8.3 and from the inductive

hypothesis that G̃v is a super-LDF of total degree dr̃i+1 · (bi+1)
3 as before. As before, this

is bounded by ≤ r̃i/(D + 2).
For any good label Cv, let x ∈ Cv, and let y = Ebi+1

(x) ∈ manf(v) ⊂ domv. Re-
call that we abbreviated m(x) to mean m(varv(x)). Furthermore, we defined varv(y) =
varv(Ebi+1

(x)) = varu(x), thus m(y) = m(x). Note also that by definition of G̃v, πx(G̃v) =
πy(Gv).

By the inductive hypothesis, and since Ebi+1
bijects Cv to manf(v), we have that the

following equality holds both (1) for 1 − α of the points x ∈ Cv, and (2) for every point
x ∈ Cv such that y = Ebi+1

(x) ∈ dst(v) :

πx(G̃v) = πy(Gv) = m(y) = m(x)

By (1), and applying the consistency lemma (Lemma 10.5), we deduce a global super-
LDF Gu over domu of norm ‖Gu‖ ≤ 2L−i ·Avg(u) and of degree r̃i such that for 1−α/6 of
the cubes in S∗,

πCv(Gu) = G̃v (∗)

This constitutes at least 1− α/6− 1/C = 1− α/2 of all the cubes in labels(u) (there are
no more than 1/C no-good cubes, see Proposition 10.3). Now recall from the construction
of the offspring-labels (see Definition 9.6) that at least one half of the offspring v of u are
labelled by cubes in labels1(u). We deduce that 1 − 2 · α/2 = 1 − α of these cubes obey
(∗). Similarly, labels2(u) make up at least one third of the total number of labels, thus (∗)
holds for ≈ 1− 3

2
α of them (and in particular for at least one cube in labels2(u), which is

all we’ll need).
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Recall from the construction of the offspring-labels that the cubes Cv ∈ labels2(u)
have dst(v) = Ebi+1

(dst(u)). By Definition 9.4, these points are mapped to the exact
same variables: varu(dst(u)) = varv(dst(v)). As long as there exists one good cube
Cv ∈ labels2(v), we’ll have for every x ∈ dst(u), y = Ebi+1

(x) ∈ dst(v), and by (2),

πx(G̃v) = m(x). We have shown,

∀x ∈ dst(u) πx(Gu) = m(x) .

We have left to show that

Pr
x∈manf(u)

(πx(Gu) = m(x)) ≥ 1− α

Consider the second half of u’s offspring, labelled by a label from

labels1(u) =
⋃

x∈varu(domu)\Vu

labelsx(u)

These offspring are actually divided into |manf(u)| parts, one per each point x ∈ manf(u)
(with the correspondence varu(x) = x). By definition, the offspring v in x’s sub-part have

dst(v)
def
=
{
Ebi+1

(x)
}
. We have shown (recall (2) from before) that πx(G̃v) = m(x) holds

for any x such that y = Ebi+1
(x) ∈ dst(v). Hence for every x ∈ manf(u), if there is a good

label Cv ∈ labelsvaru(x)(u), then πx(G̃v) = m(x).

As shown above, 1−α of the cubes in labels1(u) are both good, and obey πCv(Gu) = G̃v.
Hence for 1−α of the points x ∈ manf(u) there must be a good cube Cv ∈ labelsvaru(x)(u)

for which πCv(Gu) = G̃v. In this case,

πx(Gu) = πx(πCv(Gu)) = πx(G̃v) = m(x)

This establishes,

Pr
x∈manf(u)

(πx(Gu) = m(x)) ≥ 1− α

10.3 The Consistency Lemma

In this section we prove the consistency lemma, that allows us to deduce one global super-
LDF for any good node, assuming ”consistent” LDFs on its good offspring.
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Lemma 10.5 (Consistency Lemma) Let u ∈ nodes∗i for some 0 ≤ i < L. Define S∗ to

be the multi-set of cubes that label good offspring of u, S∗ def=
{
Cv ∈ labels(u) | v ∈ nodes∗i+1

}
.

If for every good offspring v of u there is a super-LDF G̃v over Cv, of total degree ≤ r =
r̃i/(D + 2) and norm ‖G̃v‖ ≤ 2L−i−1 · Avg(v), such that

Pr
x∈Cv

(πx(G̃v) = m(x)) ≥ 1− α

then there is a super-LDF Gu over domu of total degree r̃i = r(D + 2) and norm ‖Gu‖ ≤
2L−i · Avg(u) that obeys

Pr
Cv∈S∗

(
πCv(Gu) = G̃v

)
≥ 1− α/6

Proof: Throughout the following proof, we make no effort to minimize the constants,
but rather to shorten the mathematical expressions in which they appear.

Unless otherwise mentioned, Cv will denote the cube labeling the node v.
For simplicity, assume domu = Fd (Fd0 in case i = 0).
An [r, d]-LDF P : Fd → F is called permissible with coefficient cP if cP 6= 0 and for at

least 2/3 of the cubes Cv ∈ S∗, G̃v[P |Cv ] = cP . We define the global super-LDF Gu by

∀P ∈ LDFr,d : Gu[P ]
def
=


cP P is permissible with cP

0 P isn’t permissible

We claim that Gu is the desired global super-LDF. We first claim that ‖Gu‖ ≤ 2·2L−i−1Avg(u).

Proposition 10.6 The norm of Gu is bounded by 2 · 2L−i−1Avg(u) = 2L−iAvg(u).

Proof: Denote by P1, .., Pa the permissible LDFs (if a = 0 we’re done), and denote ci
def
=

Gu[Pi]. Let us consider the average A of the norms ‖G̃v‖,

A
def
=

1

|S∗|
∑
Cv∈S∗

‖G̃v‖ ≤
1

|S∗|
∑
Cv∈S∗

2L−i−1Avg(v) ≤ 2L−i−1Avg(u)

≤ 2L−i−1gi = 2L−i−1 · g · Ci+1 < |F|cg · CL �
√
|F|

where the second inequality in the first line is true since averaging the norm over all of the
offspring is at least as large as the average of the good offspring.

We will lower bound A as follows. P1 appears with c1 in ≥ 2/3 of the good cubes, which
means A ≥ 2/3 · |c1|. P2 appears with c2 in ≥ 2/3 of the good cubes, however some of its
appearances can coincide with those of P1. Denote by γ the maximal fraction of cubes on
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which possibly P1|C = P2|C (by Proposition 8.2, γ ≤ rd
|F|). Hence A ≥ 2/3·|c1|+(2/3−γ)·|c2|.

Continuing in this manner, P3 adds at least (2/3− 2γ) · |c3| and we obtain

∀1 ≤ j ≤ a A ≥
j∑
i=1

(
2

3
− (i− 1)γ

)
· |ci|

If a ≥ 1
6γ
≥ |F|

6rd
, we get A ≥

∑1/6γ
i=1

(
2
3
− 1

6γ
γ
)
· |ci| ≥ 1

6γ
· 1

2
· 1 �

√
|F|, a contradiction.

Thus a < 1/6γ, and

A ≥
a∑
i=1

(
2

3
− (i− 1)γ

)
· |ci| ≥

1

2

a∑
i=1

|ci| =
1

2
‖Gu‖

and indeed ‖Gu‖ ≤ 2A ≤ 2 · 2L−i−1Avg(u) = 2L−iAvg(u).
We have left to show that for almost all of the cubes Cv ∈ S∗, πCv(Gu) = G̃v.
Let us define, for every good node v, the remainder super-LDF: Rv

def
= G̃v − πCv(Gu)

(the definition of Gu implies that every LDF P appearing in it has degree ≤ r; subtraction
is defined as usual subtraction of two vectors in ZZLDFr,D+2). Assume, for contradiction,
that for at least an α/6 fraction of the good nodes, Rv 6= ~0. We will derive a contradiction
by finding an LDF P that appears with the same coefficient cP 6= 0 in Rv in at least
2/3 + γ‖Gu‖ fraction of the good nodes v. This LDF P can agree with another LDF in
Gu on at most γ‖Gu‖ fraction of the good cubes. Hence on at least 2/3 of the good cubes,

c′P
def
= G̃v[P |Cv ] = cP + Gu[P ], which implies that P is permissible with c′P , so by definition

Gu[P ] = c′P , hence cP = 0, a contradiction.

For every x ∈ Fd, define mR(x)
def
= m(x) − πx(Gu). Obviously mR(x) = πx(Rv) if and

only if m(x) = πx(G̃v). (This happens for at least 1 − α of the points x ∈ Cv for every
Cv ∈ S∗, by the conditions of the lemma).

Proposition 10.7 Let Rv
def
= G̃v − πCv(Gu) be as before. There exists an [r,D+ 2]-LDF P

and a coefficient cP 6= 0 such that

Pr
Cv∈S∗

(Rv[P |Cv ] = cP ) > δ

where δ = Ω
(
(α
s
)9
)

and s
def
= 2L−iAvg(u).

Proof: Consider the following random procedure:

1. For every cube Cv ∈ labels(u) choose a random LDF from the set

{Q ∈ LDFr,D+2 |Rv[Q] 6= 0}. If Cv 6∈ S∗ or this set is empty, choose nothing.

2. For every point x ∈ domu choose a random value from the set {a ∈ F |mR(x)[a] 6= 0}.
If this set is empty, choose nothing.
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3. Choose a random cube Cv ∈ labels(u) and a random point x ∈ Cv. If no value is
chosen for either the point or the cube, the procedure fails.

We are interested in pairs of good cube and point on it, on which the procedure doesn’t
fail, and that have relatively few possible values to choose from, and that are consistent.
We eliminate ’bad’ pairs as follows.

For a cube Cv ∈ labels(u) define E1(Cv) to be the predicate that evaluates to true iff
Cv ∈ S∗ and the set {Q ∈ LDFr,D+2 |Rv[Q] 6= 0} is non-empty. PrCv∈labels(u)(E1(Cv)) ≥
(1− 1/C) · α/6 because 1− 1/C of the cubes are in S∗ (since u is good), and we assumed
for contradiction that for α/6 of these cubes Rv is non-trivial.

For a cube Cv ∈ labels(u) define E2(Cv) to be the predicate that evaluates to true iff
E1(Cv) is true and also ‖G̃v‖ ≤ 2 · 6s

α(1−1/C)
where s = 2L−iAvg(u) bounds the average of

‖G̃v‖ taken over nodes v ∈ S∗. We note that the average norm ‖G̃v‖ taken over cubes for
which E1 is true does not exceed 6s

α(1−1/C)
. The standard Markov argument shows

Pr
Cv∈labels(u)

(E2(Cv)) ≥
1

2
· Pr
Cv∈labels(u)

(E1(Cv)) ≥ (1− 1/C) · α/12

By the triangle inequality, ‖Rv‖ = ‖G̃v − πCv(Gu)‖ ≤ ‖G̃v‖ + ‖Gu‖ ≤ ‖G̃v‖ + s hence the
cubes Cv for which E2(Cv) = true have ‖Rv‖ ≤ 12s/α(1− 1/C) + s < 13s/α.

For a cube Cv ∈ labels(u), and a point x ∈ Cv, define E3(Cv, x) to be the predicate that
evaluates to true iff E2(Cv) = true and also x ∈ Cv and x obeys mR(x) = πx(Rv) and
Rv is not ambiguous on x. We say, in this case, that the point x and the cube Cv agree
non-ambiguously. Since for every good cube Cv no more than α fraction of its points have
mR(x) 6= πx(Rv), and no more than amb(r,D + 2, ‖Rv‖) are ambiguous, it follows that

Pr
Cv∈labels(u)

x∈Cv

(E3(Cv, x)) ≥ Pr
Cv

(E2(Cv)) · (1− α− amb(r,D + 2, ‖Rv‖))

≥ (1− 1/C) · α/12 · (1− α− |F|−
1
2 )

> α/100

(the second inequality follows from amb(r,D+ 2, ‖Rv‖) ≤ r̃i/(D+2)·(D+2)
|F| · ‖Rv‖2 � |F|−

1
2 ).

The pairs of point x and cube Cv for which E3(Cv, x) = true are pairs that agree non-
ambiguously, and for which ‖Rv‖ ≤ 13s/α.

For a cube Cv ∈ labels(u), a point x ∈ Cv, an [r,D + 2]-LDF Q (viewed as an
LDF over Cv) and a value a ∈ F , define E4(Cv, x,Q, a) to be the predicate that evalu-
ates to true iff E3(Cv, x) = true and also Q(x) = a. We will lower bound the proba-
bility PrCv ,x,Q,a(E4(Cv, x,Q, a)) where Cv ∈ labels(u), x ∈ Cv, and Q and a are chosen
according to the random procedure described in the beginning of the proof (i.e. Q is
chosen uniformly from the set {Q ∈ LDFr,D+2 |Rv[Q] 6= 0}, and a uniformly from the set
{a ∈ F |mR(x)[a] 6= 0}. Note that when E4 is true, there are no more than 13s

α
LDFs that
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appear in Rv. Since E4(Cv, x,Q, a) = true implies by definition E3(Cv, x) = true we know
that mR(x) = πx(Rv), hence any value a randomly chosen for x has a “matching value”
in the set {Q ∈ LDFr,D+2 |Rv[Q] 6= 0}. This value is the chosen one with probability at
least α

13s
. Thus,

Pr(E4(Cv, x,Q, a)) ≥ Pr(E3(Cv, x)) ·
α

13s

Finally, note that if E4(Cv, x,Q, a) = true, then Rv[Q] = mR(x)[a] because the cube
and point agree non-ambiguously. Also, since in this case ‖Rv‖ ≤ 13s/α, the coefficient

Rv[Q] can be any value from the set B
def
= {±1, ...,±13s/α}, 26s/α values in all. Denote

by Ec(Cv, x,Q, a) the predicate that is the same as E4 except that it evaluates to true only
if in addition, Rv[Q] = mR(x)[a] = c. There must be at least one value c0 ∈ B for which

Pr(Ec0(Cv, x,Q, a)) ≥
α

26s
·Pr(E4(Cv, x,Q, a)) ≥

α

26s
· α
13s

·Pr(E3(Cv, x)) ≥
α2

338s2
· α
100

= Ω(
α

s
)3

We now apply the following corollary of [RS97],

Lemma 10.8 Let ρ = ( rdF )c for some constant c > 0, and let S = labels(u) for labels(u)
as above. Let A : S → LDFr,D+2 be an assignment of [r,D + 2]-LDF per cube, and let
A0 : Fd → F be an assignment of value per point. If

Pr
C∈RS,x∈RC

(A[C](x) = A0[x]) ≥ ρ

then there is an [r, d]-LDF P for which PrC∈S(P |C = A[C]) ≥ ρ3.

We omit the proof of this lemma, and note that a very similar cube vs. point version
appears in [DFK+99]. We apply this lemma as follows. We take S = labels(u). For every
cube Cv whose selected value Q has Rv[Q] = c0, assign A[Cv] = Q, otherwise let A[Cv] be a
totally random value. For each point x ∈ Fd, we define A0[x] to be the value selected for
it in the random procedure. Again, if no value was selected, we assign a totally random
value. We have

Pr
C∈S,x∈C

(A[C](x) = A0[x]) ≥ Pr(Ec0(C, x,A[C],A0[x]))

The probability on the right hand side is taken over a random choice of cube C ∈ S and
point x ∈ C, and over the random choices made when defining A[C] and A0[x]. It follows
easily that this probability is at least ≥ Pr(Ec0). Thus we obtain an LDF P that agrees
with ≥ (Pr(Ec0))

3 ≥ Ω
(
(α
s
)9
)

fraction of the cubes and their chosen values. P expectedly
appears in less than 1/ |F| of the cubes that were randomly assigned. Thus at least half
of the cubes in which P appears also obey Rv[P |Cv ] = c0. These cubes make up at least
δ = 1

2
· (Pr(Ec0))

3 = Ω
(
(α
s
)9
)

of the good cubes.
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We have found a polynomial P that appears (with the same coefficient c0 6= 0) in a
non-negligible fraction of the cubes (i.e. Rv[P |Cv ] = c0 for a non-negligible ≥ δ fraction of
the good offspring v of u). We now show that P , in fact, appears in most of the points
with coefficient c0,

Proposition 10.9 For most points x ∈ domu, mR(x)[P (x)] = c0.

Proof: Let N = {x ∈ domu |mR(x)[P (x)] 6= c0} be the set of points where P does not

appear with coefficient c0. We shall prove that µ
def
= |N |
|domu| <

1
2
. We now state a hitting

lemma that shows that if N is not too small, then almost all of the cubes must hit a
non-negligible fraction of the points in N .

Lemma 10.10 (Hitting Lemma) Let 0 < β < 1 and let D = Fd. Let N ⊂ D be a set
of points, |N | ≥ β |D|. Most (1− 8

β|F|) cubes in labels(u) (for u as above) have at least β
2

of their points in N .

The proof of this lemma is easily obtained using the pairwise independence of points in
a random cube, and is omitted (special care should be given to the fact that the points
in these cubes are distributed only almost uniformly: certain points – e.g. span(dst(u)) –
appear more often than others).

We now know that 1 − 8
µ|F| of the cubes in labels(u) (1 − 16

µ|F| fraction of S∗, since

|S∗| > 1
2
|labels(u)|) have µ

2
of their points from N . Consider only cubes Cv whose norm

isn’t too large – ‖Rv‖ ≤ 2s/(δ/2) (the average of ‖Rv‖ over all nodes v ∈ S∗ is ≤ s+s = 2s,
hence we are ignoring a δ/2 fraction). If µ

2
> α + amb(r,D + 2, 2s/(δ/2)) then every such

cube must agree non-ambiguously with at least one point from N . This implies that P
does not appear in these cubes (that constitute at least 1− 16

µ|F| − δ/2 fraction of S∗) with

coefficient c0, and hence, δ ≤ 16
µ|F| + δ/2. Altogether we have that

µ ≤ max

(
2(amb(r,D + 2, 2s/(δ/2)) + α),

32

δ |F|

)
<

1

2

Having P appearing in most points, we now show that P appears in most cubes with
coefficient c0.

Proposition 10.11 For at least 3/4 of the cubes Cv ∈ S∗, Rv[P |Cv ] = c0.

Proof: Let N = {x ∈ domu |mR(x)[P (x)] = c0}. N has, by Proposition 10.9, most of the
points in Fd. According to the hitting lemma, all except 16

|F| of the cubes in labels(u) ( 32
|F|

of S∗), have 1
4

of their points from N .
By the Markov inequality, at most 1/10 of the cubes in S∗ have norm ‖Rv‖ ≤ 10 · 2s =

20s, and thus no more than 20s LDFs appearing in them. Therefore 1− 1/10− 32
|F| > 3/4
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of the cubes in S∗ have 1
4

of their points from N , and are assigned no more than 20s LDFs.
Denote these cubes S∗(P ). We will show that for every cube Cv ∈ S∗(P ), Rv[P |Cv ] = c0.

Let Cv be a cube in S∗(P ). The fraction of points of Cv on which mR agrees with Rv

non-ambiguously and the point belongs to N is at least 1
4
− α − amb(r,D + 2, 20s) > 1

5

(recall α ≤ 1/100). For each such point x ∈ Cv, there is an LDF Q, Q(x) = P (x) with
Rv[Q] = c0. For every such point there are no more than 20s candidates, hence there is at
least one LDF Q with Rv[Q] = c0 that is equal to P on at least

1

5
· 1

20s
>
r(D + 2)

|F|

of Cv’s points. This LDF is therefore equal to P |Cv (two distinct [r,D+ 2]-LDFs can agree

on at most r(D+2)
|F| fraction of their domain).

We have shown that Rv[P |Cv ] = c0 for all cubes Cv ∈ S∗(P ), which make up at least
3/4 of the cubes in S∗.

We unveiled an LDF P that appears with the same coefficient c0 6= 0 in Rv for at least
3/4 > 2/3 + γ‖Gu‖ of the good nodes v. Hence P appears with the same (c′ = c0 + Gu[P ])
coefficient in G̃v for at least 2/3 of the good nodes v. Thus, P is permissible with coefficient
c′, and by our definition of Gu, Gu[P ] = c′. Thus c0 = 0, a contradiction.



Chapter 11

g-CVP is NP-hard

We begin by defining the Closest Vector Problem (CVP), and its gap version g-CVP. We
then define an intermediate problem called Shortest Integer Solution (SIS), and show a
reduction from g-SIS to g-CVP. We then show the simple reduction from g-S-SAT to g-SIS
and therefore to g-CVP. We restrict ourselves to l1 norm, although the results can be easily
translated to any lp norm, 1 ≤ p <∞.

A lattice L = L(v1, .., vn), for linearly independent vectors v1, .., vn ∈ Rk is the set of all
integral linear combinations of v1, .., vn, L = {

∑
aivi | ai ∈ ZZ}.

The closest-vector problem is defined as follows:

CVP. Given (L, y) where L = L(v1, .., vn) is a lattice and y ∈ Rk, find a lattice vector
closest to y (i.e. a lattice vector v ∈ L that minimizes ‖v − y‖.

Approximating CVP to within factor g = g(n) means finding a lattice vector v whose
distance from y, ‖v − y‖, is no more than g times the minimal distance. The gap version
of CVP is a decision problem as follows,

g-CVP. Given (L, y, d) for a lattice L, a vector y ∈ Rk, and a number d, distinguish
between the following two cases:

Yes: There exists a lattice vector v ∈ L for which ‖v − y‖ ≤ d.

No: For every lattice vector v ∈ L, ‖v − y‖ > g · d.

Proving that g-CVP is NP-hard means that having an approximation algorithm to within
factor g were to imply P = NP .
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11.1 Shortest Integer Solution - SIS

Definition of SIS and g-SIS

We define a variant of CVP named Shortest Integer Solution (SIS) and its gap version,
g-SIS. We then show a simple reduction from g-SIS to g-CVP.

SIS: Given (B, t) for an integer matrix B with columns b1, .., bn and a target vector
t ∈ L(b1, ..., bn), find integer coefficients ai such that

∑
aibi = t (we assume such ai exist),

and such that the length
∑
|ai| of the solution is minimal. In other words, find the shortest

integer solution for the linear system B · x = t.
The gap version of SIS is as follows,
g-SIS: Given (B, t, d) with B and t as before, and a number d, distinguish between the

following two cases:

Yes: The shortest integer solution is of length d or less.

No: The shortest integer solution is of length > g · d.

Reducing g-SIS to g-CVP

Given an instance of g-SIS, (B, t, d), we efficiently construct a lattice L and a target vector
y such that ’yes’ instances of g-SIS are translated into ’yes’ instances of g-CVP and ’no’
instances are translated into ’no’ instances. The lattice L is constructed by multiplying the
matrix B by a very large number w, and adding a distinct 1-coordinate to each column.
The vector y (that we are to approximate from within the lattice) will be t multiplied by
w with zeros in the n additional coordinates:

L =


wB

1 0
. . .

0 1

 y =



...
wt
...
0
...
0


To see that ’yes’ instances map into ’yes’ instances just note that any solution a, B·a = t,

gives a lattice vector L · a such that ‖L · a − y‖ = ‖a‖. Let w be such that the entries in
the upper half of the matrix are all integer multiples of g ·d+1. The next lemma will show
that ’no’ instances of g-SIS (where the shortest solution is of length > g · d) map into ’no’
instances of g-CVP.

Lemma 11.1 If there is a lattice vector, L ·a, such that r
def
= ‖L ·a− y‖ ≤ g ·d, then there

is an integer solution to (B, t) of length r.
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Proof: r ≤ gd means that L · a = y in all but the lower n coordinates, otherwise the
distance r would be at least g · d+ 1. In other words, a is a solution to the g-SIS instance.
The lower n coordinates of L · a are exactly equal to a, and therefore ‖a‖ = r.

11.2 From S-SAT to g-SIS

We shall prove that g-SIS is NP hard for g = nc/ log logn (for some constant c > 0) by
reducing g-S-SAT to it.

We begin with a g-S-SAT test system I = 〈Ψ = {ψ1, .., ψn}, V = {v1, .., vm}, {Rψ1 , ..,Rψn}〉
where Ψ is a set of tests over variables V , and for each ψ ∈ Ψ, Rψ is the set of satisfying
assignments for ψ. We (efficiently) construct from it an instance of g-SIS, (B, t, d). We
then show that the ’yes’ instances of g-S-SAT are mapped to ’yes’ instanceof g-SIS and ’no’
instances to ’no’ instances.

We show that a consistent natural super-assignment to Ψ translates to a short (i.e. of l1
norm |Ψ|) solution for (B, t). On the other hand we show that any solution that is shorter
than g · |Ψ|, translates to a consistent super-assignment of norm < g for Ψ.

The General Construction. The matrix B will have a column for every pair of test
ψ ∈ Ψ and a satisfying assignment r ∈ Rψ for it. The upper rows of B will take care of
consistency, and the lower rows will take care of non-triviality.

Non-Triviality Rows. There will be a row designated to each test. In the row of ψ all
of the columns associated with ψ will have a 1, and all other columns will have zero.

Consistency Rows. We shall have |F| rows for each pair of tests ψi and ψj and common
variable x (there will be a · |F| rows if ψi and ψj share a variables). These rows serve as
a consistency-ensuring gadget and only the columns associated with ψi and ψj will have
non-zero values in these rows. The gadget will ensure that the super-assignments to ψi and
ψj are consistent on their common variable x.

The target vector t will be an all-1 vector. We set d
def
= |Ψ|.

We now turn to describe the structure of the gadget itself. This will complete the description
of the g-SIS instance.

The Gadget. Let’s concentrate on the gadget for the pair of tests ψi and ψj with common
variable x. This is a pair of matrices G1 of dimension (|F| × |Rψi|) and G2 of dimension
(|F| ×

∣∣Rψj

∣∣). The matrices G1 and G2 have |F| rows, each corresponding to a possible
assignment for the variable x. The r-th column in G1 is the ’characteristic function’ of r|x,
i.e. zeros everywhere except for a 1 in the r|x-th coordinate. Similarly, the column in G2
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Figure 11.1: The SIS matrix B

corresponding to r′ is the negation of the characteristic function of r′|x, i.e. 1 everywhere
except for one 0 in the r′|x-th coordinate (see Figure 11.1).

Proving Correctness. Let us now show that ’yes’ instances of the S-SAT map to ’yes’
instances of the g-SIS.

Lemma 11.2 If there is a consistent natural super-assignment to the S-SAT test system
Ψ, then there is a solution of l1 norm |Ψ| to the above g-SIS instance.

Proof: We take the consistent natural super-assignment S and construct from it a
solution to the g-SIS. We will concatenate the vectors S(ψ1)S(ψ2)... (turning n |Rψi|-
coordinate vectors into one long vector with

∑
i |Rψi| coordinates) to obtain our alleged

solution to g-SIS. The target vector is reached in the non-triviality rows because S is natural
i.e. it assigns a +1 coefficient to exactly one column of every test.

To show that the target vector is reached in the consistency rows, consider the set
of |F| rows belonging to an arbitrary pair of tests ψi and ψj with common variable x.
Suppose S(ψi)[r1], S(ψj)[r2] are the single 1’s in S(ψi), S(ψj) respectively (S is natural). S
is consistent so r1|x = r2|x. By the construction of B we see that



r1
1 0
... 0

r1|x 1
... 0

|F| 0

+



r2
1 1
... 1

r2|x 0
... 1

|F| 1

 =


1
1
1
1
1
1


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and the target vector is reached in these rows.
The length of the solution is the sum of the lengths of the S(x)’s, and since ‖S‖ = 1, it

is exactly |Ψ|.

We will now show that ’no’ instances of the S-SAT map to ’no’ instances of the g-SIS
by showing that if we ended up with an instance that isn’t a ’no’ instance, then we must
have started with a non-’no’ instance.

Lemma 11.3 Let s be a solution to the above g-SIS instance, ‖s‖ ≤ g |Ψ|. There exists a
non-trivial consistent super-assignment S of norm ≤ g for the S-SAT instance.

Proof: We show how to construct S from s: we ’break’ s into |Ψ| pieces of length |Rψ|,
one for each test ψ ∈ Ψ. We obtain a super-assignment S whose norm is 1

|Ψ|‖s‖.
For any arbitrary ψ ∈ Ψ, the target vector is reached in the ψ-th row of the non-triviality

rows. This implies that ∑
r∈Rψ

S(ψ)[r] = 1 (11.1)

and in particular S is non-trivial (the sum of the coordinates in S(ψ) remains the same
under projection to any single variable).

Let ψi, ψj ∈ Ψ be arbitrary tests with a common variable x. We shall show that
πx(S(ψi)) = πx(S(ψj)). Consider the |F| rows that correspond to ψi, ψj, x. In each of
these rows the sum of the vectors is 1, in other words, for any f ∈ F ,∑

r : r|x=f

S(ψi)[r] +
∑

r : r|x 6=f

S(ψj)[r] = 1 (11.2)

Subtracting (11.1) for ψj from (11.2) gives,∑
r : r|x=f

S(ψi)[r] =
∑

r : r|x=f

S(ψj)[r]

which, by definition of the projection means πx(S(ψi)) = πx(S(ψj)). We hence have a
consistent super-assignment of norm 1

|Ψ|‖s‖ ≤ g.

The two above lemmas complete the reduction of S-SAT to g-SIS.

11.3 Other lp norms

Our result actually holds for CVP with any lp norm for 1 < p <∞, as seen by the following
reduction.
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Let us begin by observing that in our reduction from S-SAT to CVP via g-SIS, a ’yes’
instance (a test-system with a consistent natural super-assignment), was transformed to a
g-SIS instance having a solution of length |Ψ|, which was transformed to a CVP instance
(L, y, dist = |Ψ|) such that there is a lattice vector v ∈ L with ‖v − y‖1 = |Ψ|, and such
that the vector v − y is a zero-one vector, thus ‖v − y‖p = p

√
‖v − y‖1 = p

√
|Ψ|.

Now take the same lattice L and target vector y as a CVPp instance with distance

parameter p
√
|Ψ|, (L, y, distp = p

√
|Ψ|). The above observation simply says that a ’yes’

instance has a solution whose distance is p
√
|Ψ|.

On the other hand, if (L, y, |Ψ|) is a ’no’ CVP1 instance, then every lattice vector
v ∈ L, has ‖v − y‖1 > g · |Ψ|. Since ‖x‖p ≥ p

√
‖x‖1 for any integer-vector x, we have

‖v − y‖p > p
√
g · |Ψ| = p

√
g · p
√
|Ψ|.

This establishes that it is NP-hard to approximate CVPp to within a factor of p
√
g =

ncp/ log logn for some constant cp > 0.



Chapter 12

Discussion

Our result for the Closest Vector Problem was obtained via S-SAT using recursive compo-
sition, that alternates between two types of algebraic encodings: the embedding extension,
and the low-degree extension. This technique was adapted from the proof of a low error-
probability PCP characterization of NP [DFK+99], and proved to be useful in this setting
as well.

Two interesting open problems remain. The first is the Shortest Vector Problem, the
homogeneous counterpart of CVP. This problem is easier to approximate than CVP, as
an approximation algorithm for CVP yields an approximation for SVP [GMSS99], yet
currently the best approximation algorithms for it give no better factors than those for
CVP. However, where hardness results go, the SVP lags behind, with known hardness of
approximation for a factor no larger than some constant.

The hardness of approximating SVP is of special interest in cryptography, where the
hardness of this problem serves as the basic assumption of a crypto-system of Ajtai and
Dwork, see [AD97].

The second open problem is to achieve hardness of approximation factors for CVP that
are polynomial in n, say nε for some ε > 0. Our technique seems incapable of doing this,
as the recursive structure requires super-constant depth, limiting the blow-up allowable at
each level.
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Appendix A

Weighted vs Unweighted

We show a simple reduction from Vertex-Cover on weighted graphs to the non-weighted
case.

Lemma A.1 Let % > 0 be an arbitrary precision parameter. Given a weighted graph
G = (V,E,Λ), one can construct, in polynomial time in |G| , 1

%
an unweighted graph G% =

(V%, E%) such that ∣∣∣∣α(G%)

|V%|
− α(G)

∣∣∣∣ ≤ %

Proof: Let m = |V | · 1
%
. We replace each v ∈ V with mv = dm · Λ(v)c copies (dxc

denotes the integer nearest x), and set

V%
def
= {〈v, i〉 | v ∈ V, 1 ≤ i ≤ mv }

E%
def
= { {〈v1, i1〉 , 〈v2, i2〉} | {v1, v2} ∈ E, i1 ∈ [mv1 ], i2 ∈ [mv2 ]}

If C ⊆ V is a vertex cover for G, then C% =
⋃
v∈C {v}× [mv] is a vertex cover for G%. More-

over, every minimal vertex cover C% ⊆ V% is of this form. Thus we show
∣∣∣α(G%)

|V%| − α(G)
∣∣∣ ≤ %

by the following proposition,

Proposition A.2 Let C ⊆ V , and let C% =
⋃
v∈C {v} × [mv]. Then

∣∣∣ |C%||V%| − Λ(C)
∣∣∣ ≤ %.

Proof: For every C,C% as above, |C%| =
∑

v∈Cmv =
∑

v∈C dm · Λ(v)c = m · Λ(C) +∑
v∈C(dm · Λ(v)c −m · Λ(v)). For any z, |dzc − z| ≤ 1

2
, and so∣∣∣∣ |C%|m

− Λ(C)

∣∣∣∣ ≤ 1

2

|C|
m

≤ %

2
(∗)

To complete our proof we need to replace |C%|
m

by |C%||V%| in (∗). Indeed, taking C = V in (∗),

yields
∣∣∣ |V%|m − 1

∣∣∣ ≤ %
2
, and multiplying by |C%||V%| ≤ 1, we obtain

∣∣∣ |C%|m − |C%|
|V%|

∣∣∣ ≤ %
2
.
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Appendix B

A Chernoff Bound

In this appendix we make use of the following Chernoff bound [MR97, p. 70],

Theorem B.1 (A Chernoff Bound) Let X1, .., Xl be independent Bernoulli variables,
s.t. ∀i, Pr[Xi = 1] = p. Then for X =

∑l
i=1Xi, µ = E[X] = p · l and for any 0 < δ < 1,

Pr[X < (1− δ)µ] < exp(−µδ2/2)

This bound directly implies the following proposition,

Proposition B.2 Let A : Z → {T,F} be such that Prz∈Z [A(z) = T] = 1
|RX |

, then,

Pr
B∈Z

[∣∣A−1(T) ∩B
∣∣ < t

]
< 2e

− l
8|RX |

Proof: Consider the indicator variables Iz taking a 1 when A(z) = T, Prz [Iz = 1] = 1
|RX |

.

Note that for B ∈ Z =
(
Z
l

)
, |A−1(T) ∩B| =

∑
z∈B Iz, and the expectation of this sum is

l/ |RX |. The above Chernoff bound directly (taking p = 1
|RX |

, µ = l
|RX |

, δ = 1
2
) gives

Pr
z1,..,zl∈Z

∑
i∈[l]

Izi < t =
1

2
· l/ |RX |

 < e
− l

8|RX |

We are almost done, except that the above probability was taken with repetitions, while
in our case, for z1, . . . , zl to constitute a block B ∈ Z, they must be l distinct values. In
fact, this happens with overwhelming probability and in particular ≥ 1

2
, thus we write,

Pr
z1,...,zl∈Z

[∑
i

Izi < t

∣∣∣∣∣ |{z1, ..., zl}| = l

]
≤ Prz1,...,zl∈Z [

∑
i Izi < t]

Prz1,...,zl∈Z [|{z1, ..., zl}| = l]

≤ e
− l

8|RX |

1
2

= 2e
− l

8|RX |
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