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Definition

Reminder: We are given m samples {(xi, yi)}mi=1 ∼ Dm and a
hypothesis space H and we wish to return h ∈ H minimizing
LD(h) = E[`(h(x), y)].

Problem 1: It is unrealistic to hope to find the exact minimizer
after seeing only a sample of the data ( or even if we had
perfect knowledge). We can only reasonably hope for an
approximate solution: LD(h) ≤ min

h∈H
LD(h) + ε.

Problem 2: We depend on a random sample. There is always a
chance we get a bad sample that doesn’t represent D. Our
algorithm can only be probably correct: there is always some
probability δ that we are completely wrong.

We wish to find a probably approximately correct (PAC)
hypothesis.
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Definition

Definition (PAC learnable)

A hypothesis class H is PAC learnable, if there exists a learning
algorithm A, satisfying that for any ε > 0 and δ ∈ (0, 1) there
exist M(ε, δ) = poly(1

ε ,
1
δ ) such that for i.i.d samples

Sm = {(xi, yi)}mi=1 drawn from any distribution D and
m ≥M(ε, δ) the algorithm returns a hypothesis A(Sm) ∈ H
satisfying

PSm∼Dm(LD(A(S)) ≤ min
h∈H

LD(h) + ε) > 1− δ

Next will show that if LS(h) ≈ LD(h) for all h then the ERM
is a PAC learning algorithm.
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Uniform convergence

Definition (Uniform convergence)

A hypothesis class H has the uniform convergence property, if
for any ε > 0 and δ ∈ (0, 1) there exist M(ε, δ) = poly(1

ε ,
1
δ ) such

that for any distribution D and m ≥M(ε, δ) i.i.d samples
Sm = {(xi, yi)}mi=1 ∼ Dm with probability at least 1− δ,
|LS(h)− LD(h)| < ε for all h ∈ H.

It is trivial to bound |LS(h)− LD(h)| for a single h using the
Hoeffding inequality (for a bounded loss function). The
difficulty is to bound all the h ∈ H uniformly.
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Uniform convergence

Theorem (PAC by uniform convergence)

If H has the uniform convergence with M(ε, δ) then H is PAC
learnable with the ERM algorithm and M( ε2 , δ) samples.

Proof.

By uniform convergence: With probability at least 1− δ for all
h ∈ H, |LS(h)− LD(h)| ≤ ε

2 .

Define hERM = arg min
h∈H

LS(h) and h∗ = arg min
h∈H

LD(h).

LD(hERM ) ≤ LS(hERM ) + ε
2 ≤ LS(h∗) + ε

2 ≤ LD(h∗) + ε
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Finite hypothesis space

A first simple example of PAC learnable spaces - finite
hypothesis spaces.

Theorem (uniform convergence for finite H)

Let H be a finite hypothesis space and ` : Y × Y → [0, 1] be a
bounded loss function, then H has the uniform convergence

property with M(ε, δ) =
ln
(

|H|
δ

)
2ε2

and is therefore PAC learnable
by the ERM algorithm.

Proof.

For any h ∈ H, `(h(x1), y1), ..., `(h(xm), ym) are i.i.d random
variables with expected value LD(h).

According to the Hoeffding inequality,

P (|LS(h)− LD(h)| > ε) ≤ 2e−2ε2m ≤ 2e−2ε2M(ε,δ) =
δ

|H|
(1)
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Finite hypothesis space

Proof (Cont.)

We can now use the union bound: For all events A1, ..., An

P (∪ni=1Ai) ≤
n∑
i=1

P (Ai) (2)

For all h ∈ H define Ah as the event that |LS(h)− LD(h)| > ε.
By equation 1 we know that P (Ah) ≤ δ

|H| . With equation 2 we
can conclude

P (∃h ∈ H : |LS(h)− LD(h)| > ε) = P (∪h∈HAh) ≤
∑
h∈H

P (Ah)

≤
∑
h∈H

δ

|H|
= δ
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We have seen that finite hypothesis class can be learned, but
what about infinite ones like linear predictors?

We can discretize (after all we are working on a finite precision
machines), but this is not a great solution. The main problem is
with the use of the union bound as similar hypothesis will fail
on similar samples.

The solution is the check how many effective hypothesis there
are on a sample of size m.

We will restrict ourselves (for the time being) to binary
classification with 0− 1 loss.
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Definition

Definition

Let H be a set of function from X to {±1} and let C ⊂ X be a
subset of the input space. We denote by H|C all the function
that can be derived by restricting functions in H to C.

H|C = {h|C : C → {±1} : h ∈ H}

Definition (Growth function)

The growth function of H, ΠH(m) is the size of the largest
restriction of H to a set of size m.

ΠH(m) = max{|H|C | : C ⊂ X , |C| = m}
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Definition

Notice that ΠH(m) ≤ 2m.

Example 1: H = 2X for infinite X , ΠH(m) = 2m.

Example 2: For finite H, ΠH(m) ≤ |H|.

Example 3: For H = {ha(x) = sign(x− a), a ∈ R},
ΠH(m) = m+ 1.

Example 4: For H = {h±a (x) = sign(±x− a), a ∈ R},
ΠH(m) = 2m.

As we can see, even for an infinite hypothesis set it is possible
that ΠH(m)� 2m.
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Uniform convergence upper bound

We can now state the main theorem that shows the importance
of the growth function.

Theorem (Uniform convergence bound)

Let H be a hypothesis set of {±1} valued functions and ` be the
0− 1 loss, then for any distribution D on X × {±1}, any ε > 0
and positive integer m, we have

PS∼Dm (∃h ∈ H : |LS(h)− LD(h)| ≥ ε) ≤ 4ΠH(2m) exp

(
−ε

2m

8

)

Immediate corollary - if ΠH(m) grows sub-exponentially then H
is PAC learnable.
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Uniform convergence upper bound

This is not a simple proof, so we will go over the main steps
first.

We wish to reduce the problem to a finite problem , so we will
start by showing the we can replace LD by LS̃ - the error on
another m independent ”test” samples.

The next step to show you can fix the samples, and look at the
probability of permuting between the train and test sets.

Last part will be to use the union bound and Hoeffding on this
reduced case.
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Symmetrization

We define Z = X × {±1}.

Lemma (1)

Let Q = {S ∈ Zm : ∃h ∈ H s.t. |LS(h)− LD(h)| ≥ ε} and
R = {(S1, S2) ∈ Z2m : ∃h ∈ H s.t. |LS1(h)− LS2(h)| ≥ ε

2}. For
m ≥ 4

ε2
, PS∼Dm(Q) ≤ 2PS1×S2∼D2m(R).

Proof.

Let S1 ∈ Q and pick h ∈ H such that |LS1(h)− LD(h)| ≥ ε.
By the Hoeffding inequality we know that
PS2(|LS2(h)− LD(h)| ≤ ε

2) ≥ 1
2 . This means that

P
(
∃h ∈ H : |LD(h)− LS1(h)| ≥ ε ∧ |LD(h)− LS2(h)| ≤ ε

2

)
≥ P (Q)

2
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Symmetrization

Proof (Cont.)

P
(
∃h ∈ H : |LD(h)− LS1(h)| ≥ ε ∧ |LD(h)− LS2(h)| ≤ ε

2

)
≥ P (Q)

2

We now notice that if |LD(h)− LS1(h)| ≥ ε and
|LD(h)− LS2(h)| ≤ ε

2 , then by the triangle inequality
|LS2(h)− LS1(h)| ≥ ε

2 .

This means that the probability above is lesser or equal to
P (R) concluding our proof.
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Permutations

The next step is to bound the probability of R with
permutations between ”training” and ”testing”.

Define Γm as the set of permutations on {1, ..., 2m} that swap
between i and i+m, i.e. for σ ∈ Γm and 1 ≤ i ≤ m, σ(i) = i or
σ(i) = i+m.

Lemma (2)

Let R be any subset of Z2m and D any distribution on Z. Then

PS∼D2m(R) = ES [Pσ(σS ∈ R)] ≤ max
S∈Z2m

Pσ(σS ∈ R)

When σ is chosen uniformly from Γm.
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Permutations

Proof.

As S is a set of 2m i.i.d samples, then the probability of any
event is invariant to permutation, i.e. ∀σ ∈ Γm,
PS∼D2m(R) = PS∼D2m(σS ∈ R).

Based on this we can deduce:

PS∼D2m(R) = ES [1R(S)] =
1

|Γm|
∑
σ∈Γm

ES [1R(σS)]

From the linearity of expectation we get

PS∼D2m(R) = ES

[
1

|Γm|
∑
σ∈Γm

1R(σS)

]
= ES [Pσ(σS ∈ R)]

This proves the first equality, the fact that
ES [Pσ(σS ∈ R)] ≤ max

S∈Z2m
Pσ(σS ∈ R) is trivial.
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Finite case

We have shown that we just need to bound the probability of
permuting a fixed sample.

Lemma (3)

For the set
R = {(S1, S2) ∈ Z2m : ∃h ∈ H s.t. |LS1(h)− LS2(h)| ≥ ε

2} as in
lemma 1, and permutation σ chosen uniformly from Γm,

max
S∈Z2m

Pσ(σS ∈ R) ≤ 2ΠH(2m)e−
ε2m

8

Proof.

Let S = ((x1, y1), ..., (x2m, y2m)) be the maximizing S, and let
C = {x1, ..., x2m}. By definition H|C = {h1, ..., ht} for
t ≤ ΠH(2m).

Lecture 2



PAC learning The growth function Proof

Finite case

Proof (Cont.)

We have σS ∈ R if and only if for some h ∈ H,∣∣∣∣∣ 1

m

m∑
i=1

`(h(xσ(i)), yσ(i))−
1

m

2m∑
i=m+1

`(h(xσ(i)), yσ(i))

∣∣∣∣∣ ≥ ε

2

As h|C ≡ hj |C for some 1 ≤ j ≤ t, it is enough to look at
h1, ..., ht. We define

uji = `(hj(xi), yi) =

{
1 if hj(xi) 6= yi

0 otherwise

So σS ∈ R if and only if for some 1 ≤ j ≤ t∣∣∣∣∣ 1

m

m∑
i=1

ujσ(i) −
1

m

2m∑
i=m+1

ujσ(i)

∣∣∣∣∣ ≥ ε

2
(3)
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Finite case

Proof (Cont.)

Notice that ujσ(i) − u
j
σ(m+i) = ±|uji − u

j
m+i| with both

possibilities equally likely, so

Pσ

(∣∣∣∣∣ 1

m

m∑
i=1

(ujσ(i) − u
j
σ(i+m))

∣∣∣∣∣ ≥ ε

2

)
= P

(∣∣∣∣∣ 1

m

m∑
i=1

|uji − u
j
m+i|βi

∣∣∣∣∣ ≥ ε

2

)

where βi ∈ {±1} uniformly and independently. By the hoeffding

inequality this is smaller then 2 exp
(
− ε2m

8

)
and using the union

bound on all h ∈ H|C we can bound it by 2ΠH(2m)e−
ε2m

8
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Finite case

Summery -

Theorem (Uniform convergence bound)

Let H be a hypothesis set of {±1} valued functions and ` be the
0− 1 loss, then for any distribution D on X × {±1}, any ε > 0
and positive integer m, we have

PS∼Dm (∃h ∈ H : |LS(h)− LD(h)| ≥ ε) ≤ 4ΠH(2m) exp

(
−ε

2m

8

)

The proof is just the combination of lemmas 1-3.

note: in lemma 1 re required that m ≥ 4
ε2

, this is not a problem
because the bound in this theorem is trivial for m < 4

ε2
.
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