Introduction to Statistical Learning Theory

Lecture 3

Lecture 3



e Fundamental Theorem of Statistical Lear

Reminder:

Definition (Growth function)

The growth function of #, IIy(m) is the size of the largest
restriction of H to a set of size m.

Iy (m) = max{|H|c|: C C X, |C| =m}

Theorem (Uniform convergence bound)

Let H be a hypothesis set of {1} valued functions and ¢ be the
0 — 1 loss, then for any distribution D on X x {£1}, any € >0
and positive integer m, we have

2
Pspm (3h € H : [Ls(h) — Lp(h)| > €) < 4T13(2m) exp (_68m>
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Definition

In order to prove uniform convergence, and therefore PAC
learnability, it is enough to show that the growth function is
sub-exponential.

As we will see, the behavior Ty (m) is greatly controlled by a
single parameter - the VC dimension.

Definition (Shattering)

Let H be a set of functions from X to Y = {£1}. We say that
H shatters C C X if H|c = 2°.

Definition (VC-dimension)

Let H be a set of functions from X to Y = {£1}. The
VC-dimension of H is the size of the largest finite set that H
shatters (or oo if there is no maximum).

So VC(H) = d < Ty (d) = 29 A Tyy(d+ 1) < 24+
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Theorem (Sauer—Shelah )

Let H be a set of functions from X to Y = {£1} with

d
VC-dimension d < oo, then Ily(m) < (7,?)
k=1

Notice that S(m,d) = i (M) is the number of subset of size
smaller or equal to d OIE:a set of size m.

Proof.

We will show a stronger claim

d
|H|c| < {B C C: Hshatters B} < Y (7).
k=0

This is done by induction on m. For m = 1 the claim is trivial.
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Proof (Cont.)

Let C = {21, ...,2m4+1} and C = {1, ..., x,,}. Bach function of
H| s corresponds to either one function in H|c if it has a unique
extension, or to two function if both extensions are possible.

Define F C H|s as all the function that correspond to two
functions in H|c, then [H|c| = |H|as| + |F].

From our induction hypothesis [H|s| < |{B c C':
‘H shatters B }| = [{B C C : H shatters B A\ xy,1+1 ¢ B}|.

For F: |F| < |{B c C : F shatters B }|. For each such B
shattered by F, B U {x,+1} is shattered by H, so
|F| < {B C C : H shatters B A &y, 1 € B}|. O
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00
VC bounds on the growth function

Our next step is bound Ily(m) with a simpler bound:

Theorem

Let H be a set of functions from X to Y = {£1} with
VC-dimension d < oo, then Iy (m) < (%)d form > d.

Proof.
d
We know from the Sauer-Shelah theorem that ITy(m) < > (7))
k=0

S (1)) S (0 (&) <@ () () -

« /m\9 d\™ = rem\d

=(7) (” a) <(7)
Where (*) is the binomial theorem, and (**) follows from
Euler’s inequality (1 + %)z < e for all z > 0.
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We can combine all our results to show that if H has
VC-dimension d < oo then it is PAC learnable:

Theorem (PAC learnability of finite VC-dimension)

Let H be a set of functions from X to Y = {+1} with
VC-dimension d < oo, then H has the uniform convergence

. . dIn(1)+In(3) )
property with M(e, §) = O <572) and is therefore PAC
learnable with the ERM algorithm.

Note: One can get (with some extra effort) a better bound
without the In(1) factor.

€
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Proof (sketch).

To prove uniform convergence we need to show that

Ps..pm (3h € H : |Lg(h) — Lp(h)| >€) <5 Vm > M(e,0)

We already showed that
em
Ps..pm (3h € H : |Lg(h) — Lp(h)| > €) < 4113(2m) exp =

Using the inequality I3 (m) < (%) and the inequality
Va,z > 0: In(x) < ax — In(a), we can show (with some
algebra) that 411y (2m) exp < ) OJ
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Examples

Some examples:

Example 1: H = 2% for infinite &, II3;(m) = 2™ Therefore
VC(H) = oo.

Example 2: For finite H, IIy(m) < |H| = VC(H) < logs(|H])-

Example 3: For H = {hy(z) = sign(z — a), a € R},
Iy(m)=m+1=VCH) =

Example 4: For # = {hF(z) = sign(+z — a), a € R},
HH( )—2m2>VC'(H) 2.
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Example 5: The class of axis aligned rectangles
Pz o) (@0) =11 <x <z Ay <y <y for
1 < T2, Y1 < Y2

It is easy to find a 4 element set that H shatters. To show
VC(H) = 4, we need to show it cannot shatter any set of five
elements. This can be done by observing that one point is
always in the convex hall of the other points that cannot get
zero if all others are one.

Example 6: The class of convex sets in the plan

he(z,y) :=1 < (x,y) € C for a convex set C C R%2. We can see
that VC'(H) = oo by arranging points on the circle.
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Linear class

We will now compute the VC dimension on a simple, yet
practical, hypothesis set - linear classifiers:
Ha = {hw(z) = sign({w, z)) : w € R4}

To show that VC(H4) = d it is enough to prove the following
lemma:

Lemma

The vectors x1, ..., x; € R are shattered by Hq if and only if
they are linearly independent.
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Linear classifiers

= assume by contradiction that they are linearly dependent, so
j—1

there exist some j such that z; = ) «a;x;. Any labeling y; such
i=1

that o;y; > 0 has to have y; = 1, therefore the set is not

shattered - a contradiction.

< Let X be the matrix with rows xiT, then the vector of labels
given by any w is just sign(X - w). Our assumptions means
that X has rank k and is therefore an onto mapping, and the
set is shattered. [
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Statement

So far we have shown that if VC(H) < oo, then H is learnable
by the ERM algorithm. We will show bounds on what is
possible to learn.

We start with the ”No-Free-Lunch theorem” that shows there is
no universal learner, i.e. any learning algorithm will fail on some
distributions. This means that any (useful) learning algorithm
has to have some assumptions on the task being learned.
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Theorem (No-Free-Lunch)

Let A be any learning algorithm for the task of binary
classification with respect to the 0 — 1 loss over a domain X .
Let m be any number smaller than |X|/2, representing a
training set size. Then, there exists a distribution D over

X x{0,1} such that:

1) There exists a function f : X — {0,1} such that Lp(f) = 0.

2) With probability at least 1/7 over the choice of S ~ D™ we
have that Lp(A(S)) > 1/8.
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First we can assume w.l.o.g. that |X| = 2m (simply by giving
probability zero to excess points). There are T = 22™ functions
f: X —{0,1}, we will label them as fi, ..., fr. For each f;
define D; to be the distribution defined by f;, i.e.

otherwise.

L ifyu= f(zx
D) ={ gr ) )

The major step is to show that

max;e (7] Es~pm [Lp, (A(S))] > 1/4. To prove this we will use
the probabilistic method - we will show that by picking a
distribution D; randomly, the expected loss is larger then 1/4.

We will need this final notation: There are k = (2m)™ possible
samples S = (21, ..., Zp,) which we label Sy, ..., Sk. For each
distribution D; we define S;» = ((z1, fi(x1), ..y (@, fi(zm))-
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Proof

Proof (cont.)

A simple changing of sums gives:

wM—‘
%\

k T
We will finish the proof by showing 7 Y-, LDZ.(A(S;-)) > 1/4.
This can be done by looking at all the m unseen point v, ..., Uy,

and to notice that for each v, we can split the distributions into
T/2 pairs f;,, fi, that agree on all the labels except on v,,.



earnability VC dim: Examples No-Free-Lunch Fundamental Theorem of Statistical Learning
S 0000

Proof

Proof (cont.)

As they agree on the sample, S;l = S;-Q and the average loss
between them is 1/2. Since half the points are unseen this gives
a 1/4 loss bound. More rigorously:

T

23 Lo A 2 5= 3 7 S HAB) (@) # filwy)] =

i=1 p=1 =1

This shows that maxieITl Es.p, [Lp,(A(S)] > 1/4.
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Proof (final).

We have max;cm) Es~p, [Lp,(A(S)] > 1/4. Mark that
distribution as D. To finish the proof we need to show that:
with probability at least 1/7 over the choice of S ~ D™ we have
that Lp(A(S)) > 1/8. Using the law of total expectation we get:

1 S [Lo(AS)] < P (LoA(S) 2 § ) - 1+

(1- P (a2 §)) - 3 = P (1ota) 2 §
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Infinite VC dimension

We will use the No-Free-Lunch theorem to show that any H
with VC dimension is not PAC learnable.

Theorem

Let H be a hypothesis class of functions from a domain X to
{0,1} with VC(H) = oo and let the loss function be the 0 — 1
loss. The hypothesis class H is not PAC learnable.

Proof.

Assume by contradiction that H is PAC learnable. Then there
exists some learning algorithm A (not necessarily ERM) such
that for all €,0 > 0 there exists M(e,d) so that if m > M(e, J)
then for all distributions D,

Ps..pm(Lp(A(S)) > Lp(h*) + €) < § where

h* = arg minyey Lp(h)
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Assume by contradiction that such algorithm exists. Pick some
€<1/8,9 <1/7and m > M(e,d). Since VC(H) = oo there
exists some x1, ..., Loy, € X that H shatters.

From the No-Free-Lunch theorem there is a distribution D such
that: There exists some f: X — {0,1} with Lp(f) =0 and
PSNDm(LD(A(S)) > 1/8) > 1/7.

If we remember the proof of the No-Free-Lunch, then we can
recall that we can build such distribution supported only by
{x1,...,x2, }. Since this set is shattered by H, this means that
Lp(h*) =0.

This finishes the proof as Pg.pm (Lp(A(S)) > Lp(h*) +¢€) >
Ps..pm(Lp(A(S)) > 1/8) > 1/7 > 6. O
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Fundamental Theorem of Statistical Learning

We can combine everything we did so far and get the
fundamental theorem of statistical learning (binary
classification):

Theorem (Fundamental Theorem of Statistical Learning)

Let H be a hypothesis class of functions from a domain X to
{0,1} and let the loss function be the 0 — 1 loss. The following
are equivalent:

H has uniform convergence.

The ERM is a PAC learning algorithm for H.
H is PAC learnable.

H has finite VC dimension.



PAC learnability VC dim: e les Free-Lunch The Fundamental Theorem of Ste Learning
0e0

Fundamental Theorem of Statistical Learning

1 = 2 We have seen uniform convergence implies that ERM is
PAC learnable in lecture 2.

2 = 3 Obvious.

3 = 4 We just proved that PAC learnability implies finite VC
dimension.

4 = 1 We proved in lecture 3 that finite VC dimension implies

uniform convergence.
Ol
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Fundamental Theorem of Statistical Learning

Remarks:
We notice that the VC dimension fully determines learnability
for binary classification.

We can extend to regression problem with a similar idea called
fat shattering dimension.

The VC dimension doesn’t just determine learnability, it also

gives a bound on the sample complexity (which we will show is
tight).
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