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Support or Machines
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Definition

A very common and useful ML algorithm we will study is the Support
Vector Machine - SVM. It will be a running example and we will see how
we can analyse it from various perspectives.

The basic idea of SVM is a large margin linear predictor.

Assume a training set is linearly separable - i.e. there exists some w such
that Vi : y; (w, x;) > 0. This means the ERM has zero loss, but this zero
loss is achieved by many vectors. SVM picks the one with the largest
margin.

The distance between x and the hyperplane defined by w is [tw.2)]
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Support or Machines
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Definition

Algorithm Hard-SVM

Input: (z1,91), .., (Tm, ym) linearly separable.
Return: w = argmin ||w]|?
Subject to: Vi: y; (w,x;) >1

Lemma 1.2

If the data is linearly separable, the Hard-SVM returns the maximal
margin vector.

Proof -exercise.
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Definition

The demand that the data is linearly separable is usually not satisfied,
so to solve this we add slack variables.

Algorithm SVM

Input: (z1,91), ., (Tm, Ym), parameter A
Return: w = argming, ¢ (A||lw|> + = 37", &)
Subject to: Vi: y; (w,x;) > 1—& and & > 0.

There is another way to view the SV M objective -

Lemma 1.3

Define £hn9¢ (w, (x, y)) = maz{0,1 —y(w,z)}. Then the SVM returns
arg min(\||w||® + L}Slmge(w)).

This means that we replace the 0 — 1 loss with the hinge loss, and add a
regularization that biases towards lower norm.
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or Machines rene ation bounds for SV

Properties

The hinge loss has the following properties:
a 01w, (z,)) < £ (w, (2, ).
m (Mnge s conver.
m (hinge(y (x,y)) is ||x||-Lipschitz in w.

The first two claims make the hinge loss a convex surrogate loss, which
makes the optimization computationally tractable.

One can show that the hinge loss is the smallest function satisfying all
three requirements.
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Properties

Theorem 1.5 (Representation Theorem)

Let w = argmm <)\Hw\|2 + Z fw, ;) , yz)> for some X\ > 0, then
=1
W € span(xy, ..., Tm,), i.€. is a linear combination of the inputs.

Let @ be the minimizer, then @ = w; + w) where w € span(xy, ..., Tm)
and w) L span(z1, ..., 2m). We have ||w||2 = leHQ + ||y []?. If by
contradiction ||w, || > 0, then f({w,x;),y;) = <w||,:v1> y;) while
|lw)]]* < ||@||* contradiction it being the minimum. O
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Support Vector Machines
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Properties

Theorem 1.6

Let w be the minimizer of the SVM objective, then w =) a;y;x; where
a; > 0, and a; > 0 iff x; is on the margin or has a non-zero slack.

These vectors with a; > 0 are the support vectors which give the
algorithm its name. The proof is based on the KKT optimality
conditions.
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awtion bounds for SVM

Bounds on Linear classes

We will show how the Rademacher complexity can be used to prove
generalization bounds for SVM. We will start with a general linear space:

Theorem 2.1

Define Hy = {z — (z,w) : ||w||2 < 1} and let S = (21, ..., Tm) be vectors
i that space. Then

max; ||z||2

R(Hz05) = R({{w, 1), s (w, 2m) [|w]|2 <1}) < T

Proof:

m

mR(Ha0S) =, | sup Z oi (w, x;)
w: |[w|[<1 5,55

m
sup w, E g;%;
w: [|w||<1 i=1

Using the Cauchy-Schwartz inequality and the norm bound on w we get
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Bounds on Linear classes
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Where (1) is due to the Jensen inequality, and (2) is due to
independence. [
Notice that the bound does not depend on the dimension!
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yport Vector Machines

Hard-SVM

We will show a generalization bound for Hard-SVM, if the data is
linearly separable.

Theorem 2.2

Let D be a distribution on X x {1} such that there exists some w* with
Pp(y (w*;z) > 1) =1 and ||z||2 < R with probability 1. Let wg be the
output of the Hard-SVM, then with probability greater or equal to 1 — §
we have

20l (1 4 i) 2R

Poly # sign((ws, z)) = L3 (ws) < == i
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Hard-SVM

Proof: As the hinge loss bounds the 0 — 1 loss we note that
L%_l(’ws) < L%mge(ws). Also note that Lgmge(ws) =0.

Define ¢((w, x) ,y) = max{0,1 — y (w,z)}. Note that ¢ is R—Lipschitz

on our domain.

Define Ho = {w : ||w||]2 < ||w*||2}, we know that for any sample wg € Ho
so it is enough to bound

R(FoS)={(o({w,x),y), ..., d6({w,z),y)) : w € Ha}. From theorem 2.1
and the concentration lemma we get that R(F o .S) < Mﬂ:”.
From the generalization theorem on Rademacher complexity, with

probability greater or equal to 1 — ¢ for all w € Hs
Lp(h) — Ls(h) < 2Rp(F,m) + cy/ %, where ¢ is the maximal loss

which in our case is 1 + R||w*|| finishing the proof. O
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yport Vector Machines

Hard-SVM

There is one drawback to our proof - we do not know ||w*||. We will now
show a data-dependent bound.

Theorem 2.3

Let D be a distribution on X x {1} such that there exists some w* with
Pp(y (w*;z) > 1) =1 and ||z||2 < R with probability 1. Let wg be the
output of the Hard-SVM, then with probability greater or equal to 1 — §
we have

Poly # signl(fws,a)) < =2 -
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Generalization bounds for SVM

[eJe]e] ]

Hard-SVM

Proof - Define H; = {w : ||w|| < 2'} and §; = 6/2°. Note that
Y2, 8; = 4. For each i we have (similar to previous theorem) that for
all h € H; with probability greater then 1 — §;,

2R2 . [2In(2/6;)
L <L 14+ R2Y)4 ———=
From the union bound, we get that with probability greater then 1 — §
this holds for all ;. This means that for all w € H we have for

i = [log([[w][)] < log([[w]]) +1

AR 21In(4[|wl| /o
o) < stu) + UL 14 oy 2
Plugging w = wg, remembering Lg(wg) = 0 finishes the proof. O
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We notice that the last proof can be adjusted easily to work for ”soft”
SVM

Theorem 2.4

Let D be a distribution on X x {£1} such that ||z||2 < R with probability
1. Let wg be the output of the SVM algorithm, then with probability
greater or equal to 1 — § we have

AR]Jws| 2n(fws]/5)
T (L 2Rlslhy =

LY (ws) < L™ (ws) +
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