
Intro to Statistical Learning Theory

Exercise 5

1) Prove the second inequality in lemma 3.5, lecture 1.
Hint: Look at the two case a ≥ b and a < b. consider the function

f(x) = KL(a||b)− (a−b)2
2b .

2) Suppose a PAC-Bayes algorithm returns posterior Q(S) for every sample
S. Prove that prior that minimizes P ∗ = arg minES∼Dm [KL(Q||P )] is
ES [Q(S)].

3) Prove that given a weak learner we can produce a strong learner through
boosting.

4) a) Prove that after T rounds of adaBoost, the fraction of training sam-

ples with margin at most θ is bounded by
∏t

√
(1 + 2γt)(1+θ)(1− 2γt)(1−θ)

hint: Prove first that exp(−y
∑
αtht(x) + θ

∑
αt) ≥ 1 iff yf(x) ≤ θ

b) Assume ∀t, γt > γ. Find for which values of θ, this bound decays
exponentially.

5) Variational inference: In Bayesian inference we need to compute p(y) =∫
p(y|z)p(z)dz. This can be hard to do, and sampling from p(z) can be

hard as well (so simple monte-carlo methods aren’t practical). A solution
is to replace p(z) with q(z) with we can sample easily from. Prove the
”evidence lower bound”

log p(y) = log

∫
p(y|z)p(z)dz ≥ Eq[log p(y|z)]−KL[q(z)||p(z)]

i.e. the KL divergence bounds the penalty we pay for doing the expecta-
tion according to q instead of p.
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