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Definition

Reminder:

Definition (Growth function)

The growth function of H, ΠH(m) is the size of the largest
restriction of H to a set of size m.

ΠH(m) = max{|H|C | : C ⊂ X , |C| = m}

Theorem (Uniform convergence bound)

Let H be a hypothesis set of {±1} valued functions and ` be the
0− 1 loss, then for any distribution D on X × {±1}, any ε > 0
and positive integer m, we have

PS∼Dm (∃h ∈ H : |LS(h)− LD(h)| ≥ ε) ≤ 4ΠH(2m) exp

(
−ε

2m

8

)
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Definition

In order to prove uniform convergence, and therefore PAC
learnability, it is enough to show that the growth function is
sub-exponential.

As we will see, the behavior ΠH(m) is greatly controlled by a
single parameter - the VC dimension.

Definition (Shattering)

Let H be a set of functions from X to Y = {±1}. We say that
H shatters C ⊂ X if H|C = 2C .

Definition (VC-dimension)

Let H be a set of functions from X to Y = {±1}. The
VC-dimension of H is the size of the largest finite set that H
shatters (or ∞ if there is no maximum).

So V C(H) = d⇔ ΠH(d) = 2d ∧ ΠH(d+ 1) < 2d+1
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VC bounds on the growth function

Theorem (Sauer�Shelah )

Let H be a set of functions from X to Y = {±1} with

VC-dimension d <∞, then ΠH(m) ≤
d∑

k=1

(
m
k

)
Notice that S(m, d) =

d∑
k=0

(
m
k

)
is the number of subset of size

smaller or equal to d of a set of size m.

Proof.

We will show a stronger claim

|H|C | ≤ |{B ⊂ C : H shattersB }| ≤
d∑

k=0

(
m
k

)
.

This is done by induction on m. For m = 1 the claim is trivial.
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VC bounds on the growth function

Proof (Cont.)

Let C = {x1, ..., xm+1} and C̃ = {x1, ..., xm}. Each function of
H|C̃ corresponds to either one function in H|C if it has a unique
extension, or to two function if both extensions are possible.

Define F ⊂ H|C̃ as all the function that correspond to two
functions in H|C , then |H|C | = |H|C̃ |+ |F|.

From our induction hypothesis |H|C̃ | ≤ |{B ⊂ C̃ :
H shattersB }| = |{B ⊂ C : H shattersB ∧ xm+1 /∈ B}|.

For F : |F| ≤ |{B ⊂ C̃ : F shattersB }|. For each such B
shattered by F , B ∪ {xm+1} is shattered by H, so
|F| ≤ |{B ⊂ C : H shattersB ∧ xm+1 ∈ B}|.
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VC bounds on the growth function

Our next step is bound ΠH(m) with a simpler bound:

Theorem

Let H be a set of functions from X to Y = {±1} with

VC-dimension d <∞, then for m > d we have ΠH(m) ≤
(
em
d

)d
.

Proof.

We know from the Sauer-Shelah theorem that

ΠH(m)


= 2m if m ≤ d

≤
d∑

k=0

(
m
k

)
if m > d

We will prove
d∑

k=0

(
m
k

)
≤
(
em
d

)d
for m ≥ d to finish the proof.
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VC bounds on the growth function

Proof (Cont.)

Need to prove
d∑

k=0

(
m
k

)
≤
(
em
d

)d
for m ≥ d.

d∑
k=0

(
m

k

)
≤
(m
d

)d d∑
k=0

(
m

k

)(
d

m

)k

≤
(m
d

)d m∑
k=0

(
m

k

)(
d

m

)k

=

∗
=
(m
d

)d(
1 +

d

m

)m ∗∗
<
(em
d

)d
Where (*) is the binomial theorem, and (**) follows from

Euler’s inequality
(
1 + 1

x

)x
< e for all x > 0.
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PAC learnability of finite VC dimension

We can combine all our results to show that if H has
VC-dimension d <∞ then it is PAC learnable:

Theorem (PAC learnability of finite VC-dimension)

Let H be a set of functions from X to Y = {±1} with
VC-dimension d <∞, then H has the uniform convergence

property with M(ε, δ) = O
(
d ln( 1

ε
)+ln( 1

δ
)

ε2

)
and is therefore PAC

learnable with the ERM algorithm.

Note: One can get (with some extra effort) a better bound
without the ln(1ε ) factor.
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PAC learnability of finite VC dimension

Proof (sketch).

To prove uniform convergence we need to show that

PS∼Dm (∃h ∈ H : |LS(h)− LD(h)| ≥ ε) ≤ δ ∀m ≥M(ε, δ)

We already showed that

PS∼Dm (∃h ∈ H : |LS(h)− LD(h)| ≥ ε) ≤ 4ΠH(2m) exp

(
−ε

2m

8

)
Using the inequality ΠH(m) ≤

(
em
d

)d
and the inequality

∀α, x > 0 : ln(x) ≤ αx− ln(α), we can show (with some

algebra) that 4ΠH(2m) exp
(
− ε2m

8

)
≤ δ.
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Examples

Some examples:
Example 1: H = 2X for infinite X , ΠH(m) = 2m Therefore
V C(H) =∞.

Example 2: For finite H, ΠH(m) ≤ |H| ⇒ V C(H) ≤ log2(|H|).

Example 3: For H = {ha(x) = sign(x− a), a ∈ R},
ΠH(m) = m+ 1⇒ V C(H) = 1.

Example 4: For H = {h±a (x) = sign(±x− a), a ∈ R},
ΠH(m) = 2m⇒ V C(H) = 2.
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Examples

Example 5: The class of axis aligned rectangles
h(x1,x2,y1,y2)(x, y) := 1⇔ x1 < x < x2 ∧ y1 < y < y2 for
x1 < x2, y1 < y2.

It is easy to find a 4 element set that H shatters. To show
V C(H) = 4, we need to show it cannot shatter any set of five
elements. This can be done by observing that one point is
always in the convex hall of the other points that cannot get
zero if all others are one.

Example 6: The class of convex sets in the plan
hC(x, y) := 1⇔ (x, y) ∈ C for a convex set C ⊂ R2. We can
see that V C(H) =∞ by arranging points on the circle.
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Linear classifiers

We will now compute the VC dimension on a simple, yet
practical, hypothesis set - linear classifiers:
Hd = {hw(x) = sign(〈w, x〉) : w ∈ Rd}.

To show that V C(Hd) = d it is enough to prove the following
lemma:

Lemma

The vectors x1, ..., xk ∈ Rd are shattered by Hd if and only if
they are linearly independent.
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Linear classifiers

Proof.

⇒ assume by contradiction that they are linearly dependent, so

there exist some j such that xj =
j−1∑
i=1

αixi. Any labeling yi

such that αiyi ≥ 0 has to have yj = 1, therefore the set is not
shattered - a contradiction.

⇐ Let X be the matrix with rows xTi , then the vector of labels
given by any w is just sign(X · w). Our assumptions means
that X has rank k and is therefore an onto mapping, and the
set is shattered.
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Statement

So far we have shown that if V C(H) <∞, then H is learnable
by the ERM algorithm. We will show bounds on what is
possible to learn.

We start with the ”No-Free-Lunch theorem” that shows there is
no universal learner, i.e. any learning algorithm will fail on some
distributions. This means that any (useful) learning algorithm
has to have some assumptions on the task being learned.
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Statement

Theorem (No-Free-Lunch)

Let A be any learning algorithm for the task of binary
classification with respect to the 0− 1 loss over a domain X .
Let m be any number smaller than |X |/2, representing a
training set size. Then, there exists a distribution D over
X × {0, 1} such that:

1) There exists a function f : X → {0, 1} such that LD(f) = 0.
2) With probability at least 1/7 over the choice of S ∼ Dm we
have that LD(A(S)) ≥ 1/8.
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Proof

Proof.

First we can assume w.l.o.g. that |X | = 2m (simply by giving
probability zero to excess points). There are T = 22m

functions f : X → {0, 1}, we will label them as f1, ..., fT . For
each fi define Di to be the distribution defined by fi, i.e.

Di ((x, y)) =

{
1
2m if y = fi(x)
0 otherwise.

(1)

The major step is to show that
maxi∈[T ]ES∼Dmi [LDi(A(S))] ≥ 1/4. To prove this we will use
the probabilistic method - we will show that by picking a
distribution Di randomly, the expected loss is larger then 1/4.

We will need this final notation: There are k = (2m)m possible
samples S = (x1, ..., xm) which we label S1, ..., Sk. For each
distribution Di we define Sij = ((x1, fi(x1), ..., (xm, fi(xm)).
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Proof

Proof (cont.)

A simple changing of sums gives:

EDiES∼Dmi [LDi(A(S))] =
1

T

T∑
i=1

1

k

k∑
j=1

LDi(A(Sij))

=
1

k

k∑
j=1

1

T

T∑
i=1

LDi(A(Sij)).

We will finish the proof by showing 1
T

∑
i LDi(A(Sij)) ≥ 1/4.

This can be done by looking at all the m unseen point v1, ..., vm
and to notice that for each vp we can split the distributions into
T/2 pairs fi1 , fi2 that agree on all the labels except on vp.
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Proof

Proof (cont.)

A simple changing of sums gives:

EDiES∼Dmi [LDi(A(S))] =
1

T

T∑
i=1

1

k

k∑
j=1

LDi(A(Sij))

=
1

k

k∑
j=1

1

T

T∑
i=1

LDi(A(Sij)).

We will finish the proof by showing 1
T

∑
i LDi(A(Sij)) ≥ 1/4.

This can be done by looking at all the m unseen point v1, ..., vm
and to notice that for each vp we can split the distributions into
T/2 pairs fi1 , fi2 that agree on all the labels except on vp.
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Proof

Proof (cont.)

As they agree on the sample, Si1j = Si2j and the average loss
between them is 1/2. Since half the points are unseen this
gives a 1/4 loss bound. More rigorously:

1

T

T∑
i=1

LDi(A(Sij)) ≥
1

T

T∑
i=1

1

2m

m∑
p=1

1[A(Sij)(vp) = fi(vp)] =

1

T

T/2∑
i=1

1

2m

m∑
p=1

1[A(Si1j )(vp) = fi1(vp)] + 1[A(Si2j )(vp) = fi2(vp)] =

1

T

T/2∑
i=1

1

2m

m∑
p=1

1 =
1

4
.

This shows that maxi∈[T ]ES∼Di [LDi(A(S)] ≥ 1/4.
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Proof

Proof (final).

We have maxi∈[T ]ES∼Di [LDi(A(S)] ≥ 1/4. Mark that
distribution as D. To finish the proof we need to show that:
with probability at least 1/7 over the choice of S ∼ Dm we have
that LD(A(S)) ≥ 1/8. Using the law of total expectation we get:

1

4
≤ES∼D [LD(A(S)] ≤ P

(
LD(A(S) ≥ 1

8

)
· 1+(

1− P
(
LD(A(S) ≥ 1

8

))
· 1

8
⇒ P

(
LD(A(S) ≥ 1

8

)
≥ 1

7
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